Search results for: big video data analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 42462

Search results for: big video data analysis

41472 Towards Integrating Statistical Color Features for Human Skin Detection

Authors: Mohd Zamri Osman, Mohd Aizaini Maarof, Mohd Foad Rohani

Abstract:

Human skin detection recognized as the primary step in most of the applications such as face detection, illicit image filtering, hand recognition and video surveillance. The performance of any skin detection applications greatly relies on the two components: feature extraction and classification method. Skin color is the most vital information used for skin detection purpose. However, color feature alone sometimes could not handle images with having same color distribution with skin color. A color feature of pixel-based does not eliminate the skin-like color due to the intensity of skin and skin-like color fall under the same distribution. Hence, the statistical color analysis will be exploited such mean and standard deviation as an additional feature to increase the reliability of skin detector. In this paper, we studied the effectiveness of statistical color feature for human skin detection. Furthermore, the paper analyzed the integrated color and texture using eight classifiers with three color spaces of RGB, YCbCr, and HSV. The experimental results show that the integrating statistical feature using Random Forest classifier achieved a significant performance with an F1-score 0.969.

Keywords: color space, neural network, random forest, skin detection, statistical feature

Procedia PDF Downloads 460
41471 Nonlinear Multivariable Analysis of CO2 Emissions in China

Authors: Hsiao-Tien Pao, Yi-Ying Li, Hsin-Chia Fu

Abstract:

This paper addressed the impacts of energy consumption, economic growth, financial development, and population size on environmental degradation using grey relational analysis (GRA) for China, where foreign direct investment (FDI) inflows is the proxy variable for financial development. The more recent historical data during the period 2004–2011 are used, because the use of very old data for data analysis may not be suitable for rapidly developing countries. The results of the GRA indicate that the linkage effects of energy consumption–emissions and GDP–emissions are ranked first and second, respectively. These reveal that energy consumption and economic growth are strongly correlated with emissions. Higher economic growth requires more energy consumption and increasing environmental pollution. Likewise, more efficient energy use needs a higher level of economic development. Therefore, policies to improve energy efficiency and create a low-carbon economy can reduce emissions without hurting economic growth. The finding of FDI–emissions linkage is ranked third. This indicates that China do not apply weak environmental regulations to attract inward FDI. Furthermore, China’s government in attracting inward FDI should strengthen environmental policy. The finding of population–emissions linkage effect is ranked fourth, implying that population size does not directly affect CO2 emissions, even though China has the world’s largest population, and Chinese people are very economical use of energy-related products. Overall, the energy conservation, improving efficiency, managing demand, and financial development, which aim at curtailing waste of energy, reducing both energy consumption and emissions, and without loss of the country’s competitiveness, can be adopted for developing economies. The GRA is one of the best way to use a lower data to build a dynamic analysis model.

Keywords: China, CO₂ emissions, foreign direct investment, grey relational analysis

Procedia PDF Downloads 402
41470 Vehicle Detection and Tracking Using Deep Learning Techniques in Surveillance Image

Authors: Abe D. Desta

Abstract:

This study suggests a deep learning-based method for identifying and following moving objects in surveillance video. The proposed method uses a fast regional convolution neural network (F-RCNN) trained on a substantial dataset of vehicle images to first detect vehicles. A Kalman filter and a data association technique based on a Hungarian algorithm are then used to monitor the observed vehicles throughout time. However, in general, F-RCNN algorithms have been shown to be effective in achieving high detection accuracy and robustness in this research study. For example, in one study The study has shown that the vehicle detection and tracking, the system was able to achieve an accuracy of 97.4%. In this study, the F-RCNN algorithm was compared to other popular object detection algorithms and was found to outperform them in terms of both detection accuracy and speed. The presented system, which has application potential in actual surveillance systems, shows the usefulness of deep learning approaches in vehicle detection and tracking.

Keywords: artificial intelligence, computer vision, deep learning, fast-regional convolutional neural networks, feature extraction, vehicle tracking

Procedia PDF Downloads 124
41469 Principal Components Analysis of the Causes of High Blood Pressure at Komfo Anokye Teaching Hospital, Ghana

Authors: Joseph K. A. Johnson

Abstract:

Hypertension affects 20 percent of the people within the ages 55 upward in Ghana. Of these, almost one-third are unaware of their condition. Also at the age of 55, more men turned to have hypertension than women. After that age, the condition becomes more prevalent with women. Hypertension is significantly more common in African Americans of both sexes than the racial or ethnic groups. This study was conducted to determine the causes of high blood pressure in Ashanti Region, Ghana. The study employed One Hundred and Seventy (170) respondents. The sample population for the study was all the available respondents at the time of the data collection. The research was conducted using primary data where convenience sampling was used to locate the respondents. A set of questionnaire were used to gather the data for the study. The gathered data was analysed using principal component analysis. The study revealed that, personal description, lifestyle behavior and risk awareness as some of the causes of high blood pressure in Ashanti Region. The study therefore recommend that people must be advice to see to their personal characteristics that may contribute to high blood pressure such as controlling of their temper and how to react perfectly to stressful situations. They must be educated on the factors that may increase the level of their blood pressure such as the essence of seeing a medical doctor before taking in any drug. People must also be made known by the public health officers to those lifestyles behaviour such as smoking and drinking of alcohol which are major contributors of high blood pressure.

Keywords: high blood pressure, principal component analysis, hypertension, public health

Procedia PDF Downloads 484
41468 Building Green Infrastructure Networks Based on Cadastral Parcels Using Network Analysis

Authors: Gon Park

Abstract:

Seoul in South Korea established the 2030 Seoul City Master Plan that contains green-link projects to connect critical green areas within the city. However, the plan does not have detailed analyses for green infrastructure to incorporate land-cover information to many structural classes. This study maps green infrastructure networks of Seoul for complementing their green plans with identifying and raking green areas. Hubs and links of main elements of green infrastructure have been identified from incorporating cadastral data of 967,502 parcels to 135 of land use maps using geographic information system. Network analyses were used to rank hubs and links of a green infrastructure map with applying a force-directed algorithm, weighted values, and binary relationships that has metrics of density, distance, and centrality. The results indicate that network analyses using cadastral parcel data can be used as the framework to identify and rank hubs, links, and networks for the green infrastructure planning under a variable scenarios of green areas in cities.

Keywords: cadastral data, green Infrastructure, network analysis, parcel data

Procedia PDF Downloads 204
41467 Opportunities and Challenges to Local Legislation at the Height of the COVID-19 Pandemic: Evidence from a Fifth Class Municipality in the Visayas, Philippines

Authors: Renz Paolo B. Ramos, Jake S. Espina

Abstract:

The Local Government Academy of the Philippines explains that Local legislation is both a power and a process by which it enacts ordinances and resolutions that have the force and effect of law while engaging with a range of stakeholders for their implementation. Legislative effectiveness is crucial for the development of any given area. This study's objective is to evaluate the legislative performance of the 10th Sangguniang of Kawayan, a legislative body in a fifth-class municipality in the Province of Biliran, during the height of the COVID-19 pandemic (2019-2021) with a focus on legislation, accountability, and participation, institution-building, and intergovernmental relations. The aim of the study was that a mixed-methods strategy was used to gather data. The Local Legislative Performance Appraisal Form (LLPAF) was completed, while Focus Interviews for Local Government Unit (LGU) personnel, a survey questionnaire for constituents, and ethnographic diary-writing were conducted. Convenience Sampling was utilized for LGU workers, whereas Simple Random Sampling was used to identify the number of constituents participating. Interviews were analyzed using thematic analysis, while frequency data analysis was employed to describe and evaluate the nature and connection of the data to the underlying population. From this data, the researchers draw opportunities and challenges met by the local legislature during the height of the pandemic.

Keywords: local legislation, local governance, legislative effectiveness, legislative analysis

Procedia PDF Downloads 67
41466 Process Flows and Risk Analysis for the Global E-SMC

Authors: Taeho Park, Ming Zhou, Sangryul Shim

Abstract:

With the emergence of the global economy, today’s business environment is getting more competitive than ever in the past. And many supply chain (SC) strategies and operations have significantly been altered over the past decade to overcome more complexities and risks imposed onto the global business. First, offshoring and outsourcing are more adopted as operational strategies. Manufacturing continues to move to better locations for enhancing competitiveness. Second, international operations are a challenge to a company’s SC system. Third, the products traded in the SC system are not just physical goods, but also digital goods (e.g., software, e-books, music, video materials). There are three main flows involved in fulfilling the activities in the SC system: physical flow, information flow, and financial flow. An advance of the Internet and electronic communication technologies has enabled companies to perform the flows of SC activities in electronic formats, resulting in the advent of an electronic supply chain management (e-SCM) system. A SC system for digital goods is somewhat different from the supply chain system for physical goods. However, it involves many similar or identical SC activities and flows. For example, like the production of physical goods, many third parties are also involved in producing digital goods for the production of components and even final products. This research aims at identifying process flows of both physical and digital goods in a SC system, and then investigating all risk elements involved in the physical, information, and financial flows during the fulfilment of SC activities. There are many risks inherent in the e-SCM system. Some risks may have severe impact on a company’s business, and some occur frequently but are not detrimental enough to jeopardize a company. Thus, companies should assess the impact and frequency of those risks, and then prioritize them in terms of their severity, frequency, budget, and time in order to be carefully maintained. We found risks involved in the global trading of physical and digital goods in four different categories: environmental risk, strategic risk, technological risk, and operational risk. And then the significance of those risks was investigated through a survey. The survey asked companies about the frequency and severity of the identified risks. They were also asked whether they had faced those risks in the past. Since the characteristics and supply chain flows of digital goods are varying industry by industry and country by country, it is more meaningful and useful to analyze risks by industry and country. To this end, more data in each industry sector and country should be collected, which could be accomplished in the future research.

Keywords: digital goods, e-SCM, risk analysis, supply chain flows

Procedia PDF Downloads 419
41465 Investigating the Relationship between Growth, Beta and Liquidity

Authors: Zahra Amirhosseini, Mahtab Nameni

Abstract:

The aim of this study was to investigate the relationship between growth, beta, and Company's cash. We calculate cash as dependent variable and growth opportunity and beta as independent variables. This study was based on an analysis of panel data. Population of the study is the companies which listed in Tehran Stock exchange and a financial data of 215 companies during the period 2010 to 2015 have been selected as the sample through systematic sampling. The results of the first hypothesis showed there is a significant relationship between growth opportunities cash holdings. Also according to the analysis done in the second hypothesis, we determined that there is an inverse relation between company risk and cash holdings.

Keywords: growth, beta, liquidity, company

Procedia PDF Downloads 393
41464 Joint Modeling of Longitudinal and Time-To-Event Data with Latent Variable

Authors: Xinyuan Y. Song, Kai Kang

Abstract:

Joint models for analyzing longitudinal and survival data are widely used to investigate the relationship between a failure time process and time-variant predictors. A common assumption in conventional joint models in the survival analysis literature is that all predictors are observable. However, this assumption may not always be supported because unobservable traits, namely, latent variables, which are indirectly observable and should be measured through multiple observed variables, are commonly encountered in the medical, behavioral, and financial research settings. In this study, a joint modeling approach to deal with this feature is proposed. The proposed model comprises three parts. The first part is a dynamic factor analysis model for characterizing latent variables through multiple observed indicators over time. The second part is a random coefficient trajectory model for describing the individual trajectories of latent variables. The third part is a proportional hazard model for examining the effects of time-invariant predictors and the longitudinal trajectories of time-variant latent risk factors on hazards of interest. A Bayesian approach coupled with a Markov chain Monte Carlo algorithm to perform statistical inference. An application of the proposed joint model to a study on the Alzheimer's disease neuroimaging Initiative is presented.

Keywords: Bayesian analysis, joint model, longitudinal data, time-to-event data

Procedia PDF Downloads 142
41463 A Framework for Teaching the Intracranial Pressure Measurement through an Experimental Model

Authors: Christina Klippel, Lucia Pezzi, Silvio Neto, Rafael Bertani, Priscila Mendes, Flavio Machado, Aline Szeliga, Maria Cosendey, Adilson Mariz, Raquel Santos, Lys Bendett, Pedro Velasco, Thalita Rolleigh, Bruna Bellote, Daria Coelho, Bruna Martins, Julia Almeida, Juliana Cerqueira

Abstract:

This project presents a framework for teaching intracranial pressure monitoring (ICP) concepts using a low-cost experimental model in a neurointensive care education program. Data concerning ICP monitoring contribute to the patient's clinical assessment and may dictate the course of action of a health team (nursing, medical staff) and influence decisions to determine the appropriate intervention. This study aims to present a safe method for teaching ICP monitoring to medical students in a Simulation Center. Methodology: Medical school teachers, along with students from the 4th year, built an experimental model for teaching ICP measurement. The model consists of a mannequin's head with a plastic bag inside simulating the cerebral ventricle and an inserted ventricular catheter connected to the ICP monitoring system. The bag simulating the ventricle can also be changed for others containing bloody or infected simulated cerebrospinal fluid. On the mannequin's ear, there is a blue point indicating the right place to set the "zero point" for accurate pressure reading. The educational program includes four steps: 1st - Students receive a script on ICP measurement for reading before training; 2nd - Students watch a video about the subject created in the Simulation Center demonstrating each step of the ICP monitoring and the proper care, such as: correct positioning of the patient, anatomical structures to establish the zero point for ICP measurement and a secure range of ICP; 3rd - Students train the procedure in the model. Teachers help students during training; 4th - Student assessment based on a checklist form. Feedback and correction of wrong actions. Results: Students expressed interest in learning ICP monitoring. Tests concerning the hit rate are still being performed. ICP's final results and video will be shown at the event. Conclusion: The study of intracranial pressure measurement based on an experimental model consists of an effective and controlled method of learning and research, more appropriate for teaching neurointensive care practices. Assessment based on a checklist form helps teachers keep track of student learning progress. This project offers medical students a safe method to develop intensive neurological monitoring skills for clinical assessment of patients with neurological disorders.

Keywords: neurology, intracranial pressure, medical education, simulation

Procedia PDF Downloads 170
41462 Corporate Social Responsibility and Corporate Reputation: A Bibliometric Analysis

Authors: Songdi Li, Louise Spry, Tony Woodall

Abstract:

Nowadays, Corporate Social responsibility (CSR) is becoming a buzz word, and more and more academics are putting efforts on CSR studies. It is believed that CSR could influence Corporate Reputation (CR), and they hold a favourable view that CSR leads to a positive CR. To be specific, the CSR related activities in the reputational context have been regarded as ways that associate to excellent financial performance, value creation, etc. Also, it is argued that CSR and CR are two sides of one coin; hence, to some extent, doing CSR is equal to establishing a good reputation. Still, there is no consensus of the CSR-CR relationship in the literature; thus, a systematic literature review is highly in need. This research conducts a systematic literature review with both bibliometric and content analysis. Data are selected from English language sources, and academic journal articles only, then, keyword combinations are applied to identify relevant sources. Data from Scopus and WoS are gathered for bibliometric analysis. Scopus search results were saved in RIS and CSV formats, and Web of Science (WoS) data were saved in TXT format and CSV formats in order to process data in the Bibexcel software for further analysis which later will be visualised by the software VOSviewer. Also, content analysis was applied to analyse the data clusters and the key articles. In terms of the topic of CSR-CR, this literature review with bibliometric analysis has made four achievements. First, this paper has developed a systematic study which quantitatively depicts the knowledge structure of CSR and CR by identifying terms closely related to CSR-CR (such as ‘corporate governance’) and clustering subtopics emerged in co-citation analysis. Second, content analysis is performed to acquire insight on the findings of bibliometric analysis in the discussion section. And it highlights some insightful implications for the future research agenda, for example, a psychological link between CSR-CR is identified from the result; also, emerging economies and qualitative research methods are new elements emerged in the CSR-CR big picture. Third, a multidisciplinary perspective presents through the whole bibliometric analysis mapping and co-word and co-citation analysis; hence, this work builds a structure of interdisciplinary perspective which potentially leads to an integrated conceptual framework in the future. Finally, Scopus and WoS are compared and contrasted in this paper; as a result, Scopus which has more depth and comprehensive data is suggested as a tool for future bibliometric analysis studies. Overall, this paper has fulfilled its initial purposes and contributed to the literature. To the author’s best knowledge, this paper conducted the first literature review of CSR-CR researches that applied both bibliometric analysis and content analysis; therefore, this paper achieves its methodological originality. And this dual approach brings advantages of carrying out a comprehensive and semantic exploration in the area of CSR-CR in a scientific and realistic method. Admittedly, its work might exist subjective bias in terms of search terms selection and paper selection; hence triangulation could reduce the subjective bias to some degree.

Keywords: corporate social responsibility, corporate reputation, bibliometric analysis, software program

Procedia PDF Downloads 126
41461 The Duty of Application and Connection Providers Regarding the Supply of Internet Protocol by Court Order in Brazil to Determine Authorship of Acts Practiced on the Internet

Authors: João Pedro Albino, Ana Cláudia Pires Ferreira de Lima

Abstract:

Humanity has undergone a transformation from the physical to the virtual world, generating an enormous amount of data on the world wide web, known as big data. Many facts that occur in the physical world or in the digital world are proven through records made on the internet, such as digital photographs, posts on social media, contract acceptances by digital platforms, email, banking, and messaging applications, among others. These data recorded on the internet have been used as evidence in judicial proceedings. The identification of internet users is essential for the security of legal relationships. This research was carried out on scientific articles and materials from courses and lectures, with an analysis of Brazilian legislation and some judicial decisions on the request of static data from logs and Internet Protocols (IPs) from application and connection providers. In this article, we will address the determination of authorship of data processing on the internet by obtaining the IP address and the appropriate judicial procedure for this purpose under Brazilian law.

Keywords: IP address, digital forensics, big data, data analytics, information and communication technology

Procedia PDF Downloads 122
41460 Analysis of User Data Usage Trends on Cellular and Wi-Fi Networks

Authors: Jayesh M. Patel, Bharat P. Modi

Abstract:

The availability of on mobile devices that can invoke the demonstrated that the total data demand from users is far higher than previously articulated by measurements based solely on a cellular-centric view of smart-phone usage. The ratio of Wi-Fi to cellular traffic varies significantly between countries, This paper is shown the compression between the cellular data usage and Wi-Fi data usage by the user. This strategy helps operators to understand the growing importance and application of yield management strategies designed to squeeze maximum returns from their investments into the networks and devices that enable the mobile data ecosystem. The transition from unlimited data plans towards tiered pricing and, in the future, towards more value-centric pricing offers significant revenue upside potential for mobile operators, but, without a complete insight into all aspects of smartphone customer behavior, operators will unlikely be able to capture the maximum return from this billion-dollar market opportunity.

Keywords: cellular, Wi-Fi, mobile, smart phone

Procedia PDF Downloads 364
41459 Principal Component Analysis in Drug-Excipient Interactions

Authors: Farzad Khajavi

Abstract:

Studies about the interaction between active pharmaceutical ingredients (API) and excipients are so important in the pre-formulation stage of development of all dosage forms. Analytical techniques such as differential scanning calorimetry (DSC), Thermal gravimetry (TG), and Furrier transform infrared spectroscopy (FTIR) are commonly used tools for investigating regarding compatibility and incompatibility of APIs with excipients. Sometimes the interpretation of data obtained from these techniques is difficult because of severe overlapping of API spectrum with excipients in their mixtures. Principal component analysis (PCA) as a powerful factor analytical method is used in these situations to resolve data matrices acquired from these analytical techniques. Binary mixtures of API and interested excipients are considered and produced. Peaks of FTIR, DSC, or TG of pure API and excipient and their mixtures at different mole ratios will construct the rows of the data matrix. By applying PCA on the data matrix, the number of principal components (PCs) is determined so that it contains the total variance of the data matrix. By plotting PCs or factors obtained from the score of the matrix in two-dimensional spaces if the pure API and its mixture with the excipient at the high amount of API and the 1:1mixture form a separate cluster and the other cluster comprise of the pure excipient and its blend with the API at the high amount of excipient. This confirms the existence of compatibility between API and the interested excipient. Otherwise, the incompatibility will overcome a mixture of API and excipient.

Keywords: API, compatibility, DSC, TG, interactions

Procedia PDF Downloads 131
41458 An Analysis on the Appropriateness and Effectiveness of CCTV Location for Crime Prevention

Authors: Tae-Heon Moon, Sun-Young Heo, Sang-Ho Lee, Youn-Taik Leem, Kwang-Woo Nam

Abstract:

This study aims to investigate the possibility of crime prevention through CCTV by analyzing the appropriateness of the CCTV location, whether it is installed in the hotspot of crime-prone areas, and exploring the crime prevention effect and transition effect. The real crime and CCTV locations of case city were converted into the spatial data by using GIS. The data was analyzed by hotspot analysis and weighted displacement quotient(WDQ). As study methods, it analyzed existing relevant studies for identifying the trends of CCTV and crime studies based on big data from 1800 to 2014 and understanding the relation between CCTV and crime. Second, it investigated the current situation of nationwide CCTVs and analyzed the guidelines of CCTV installation and operation to draw attention to the problems and indicating points of domestic CCTV use. Third, it investigated the crime occurrence in case areas and the current situation of CCTV installation in the spatial aspects, and analyzed the appropriateness and effectiveness of CCTV installation to suggest a rational installation of CCTV and the strategic direction of crime prevention. The results demonstrate that there was no significant effect in the installation of CCTV on crime prevention. This indicates that CCTV should be installed and managed in a more scientific way reflecting local crime situations. In terms of CCTV, the methods of spatial analysis such as GIS, which can evaluate the installation effect, and the methods of economic analysis like cost-benefit analysis should be developed. In addition, these methods should be distributed to local governments across the nation for the appropriate installation of CCTV and operation. This study intended to find a design guideline of the optimum CCTV installation. In this regard, this study is meaningful in that it will contribute to the creation of a safe city.

Keywords: CCTV, safe city, crime prevention, spatial analysis

Procedia PDF Downloads 437
41457 Modeling and Performance Evaluation of an Urban Corridor under Mixed Traffic Flow Condition

Authors: Kavitha Madhu, Karthik K. Srinivasan, R. Sivanandan

Abstract:

Indian traffic can be considered as mixed and heterogeneous due to the presence of various types of vehicles that operate with weak lane discipline. Consequently, vehicles can position themselves anywhere in the traffic stream depending on availability of gaps. The choice of lateral positioning is an important component in representing and characterizing mixed traffic. The field data provides evidence that the trajectory of vehicles in Indian urban roads have significantly varying longitudinal and lateral components. Further, the notion of headway which is widely used for homogeneous traffic simulation is not well defined in conditions lacking lane discipline. From field data it is clear that following is not strict as in homogeneous and lane disciplined conditions and neighbouring vehicles ahead of a given vehicle and those adjacent to it could also influence the subject vehicles choice of position, speed and acceleration. Given these empirical features, the suitability of using headway distributions to characterize mixed traffic in Indian cities is questionable, and needs to be modified appropriately. To address these issues, this paper attempts to analyze the time gap distribution between consecutive vehicles (in a time-sense) crossing a section of roadway. More specifically, to characterize the complex interactions noted above, the influence of composition, manoeuvre types, and lateral placement characteristics on time gap distribution is quantified in this paper. The developed model is used for evaluating various performance measures such as link speed, midblock delay and intersection delay which further helps to characterise the vehicular fuel consumption and emission on urban roads of India. Identifying and analyzing exact interactions between various classes of vehicles in the traffic stream is essential for increasing the accuracy and realism of microscopic traffic flow modelling. In this regard, this study aims to develop and analyze time gap distribution models and quantify it by lead lag pair, manoeuvre type and lateral position characteristics in heterogeneous non-lane based traffic. Once the modelling scheme is developed, this can be used for estimating the vehicle kilometres travelled for the entire traffic system which helps to determine the vehicular fuel consumption and emission. The approach to this objective involves: data collection, statistical modelling and parameter estimation, simulation using calibrated time-gap distribution and its validation, empirical analysis of simulation result and associated traffic flow parameters, and application to analyze illustrative traffic policies. In particular, video graphic methods are used for data extraction from urban mid-block sections in Chennai, where the data comprises of vehicle type, vehicle position (both longitudinal and lateral), speed and time gap. Statistical tests are carried out to compare the simulated data with the actual data and the model performance is evaluated. The effect of integration of above mentioned factors in vehicle generation is studied by comparing the performance measures like density, speed, flow, capacity, area occupancy etc under various traffic conditions and policies. The implications of the quantified distributions and simulation model for estimating the PCU (Passenger Car Units), capacity and level of service of the system are also discussed.

Keywords: lateral movement, mixed traffic condition, simulation modeling, vehicle following models

Procedia PDF Downloads 340
41456 Research Analysis of Urban Area Expansion Based on Remote Sensing

Authors: Sheheryar Khan, Weidong Li, Fanqian Meng

Abstract:

The Urban Heat Island (UHI) effect is one of the foremost problems out of other ecological and socioeconomic issues in urbanization. Due to this phenomenon that human-made urban areas have replaced the rural landscape with the surface that increases thermal conductivity and urban warmth; as a result, the temperature in the city is higher than in the surrounding rural areas. To affect the evidence of this phenomenon in the Zhengzhou city area, an observation of the temperature variations in the urban area is done through a scientific method that has been followed. Landsat 8 satellite images were taken from 2013 to 2015 to calculate the effect of Urban Heat Island (UHI) along with the NPP-VRRIS night-time remote sensing data to analyze the result for a better understanding of the center of the built-up area. To further support the evidence, the correlation between land surface temperatures and the normalized difference vegetation index (NDVI) was calculated using the Red band 4 and Near-infrared band 5 of the Landsat 8 data. Mono-window algorithm was applied to retrieve the land surface temperature (LST) distribution from the Landsat 8 data using Band 10 and 11 accordingly to convert the top-of-atmosphere radiance (TOA) and to convert the satellite brightness temperature. Along with Landsat 8 data, NPP-VIIRS night-light data is preprocessed to get the research area data. The analysis between Landsat 8 data and NPP night-light data was taken to compare the output center of the Built-up area of Zhengzhou city.

Keywords: built-up area, land surface temperature, mono-window algorithm, NDVI, remote sensing, threshold method, Zhengzhou

Procedia PDF Downloads 137
41455 Value Analysis of Islamic Banking and Conventional Banking to Measure Value Co-Creation

Authors: Amna Javed, Hisashi Masuda, Youji Kohda

Abstract:

This study examines the value analysis in Islamic and conventional banking services in Pakistan. Many scholars have focused on co-creation of values in services but mainly economic values not non-economic. As Islamic banking is based on Islamic principles that are more concerned with non-economic values (well-being, partnership, fairness, trust worthy, and justice) than economic values as money in terms of interest. This study is important to know the providers point of view about the co-created values, because, it may be more sustainable and appropriate for today’s unpredictable socioeconomic environment. Data were collected from 4 banks (2 Islamic and 2 conventional banks). Text mining technique is applied for data analysis, and values with 100% occurrences in Islamic banking are chosen. The results reflect that Islamic banking is more centric towards non-economic values than economic values and it promotes team work and partnership concept by applying Islamic spirit and trust worthiness concept.

Keywords: economic values, Islamic banking, non-economic values, value system

Procedia PDF Downloads 461
41454 Multi-Criteria Decision Approach to Performance Measurement Techniques Data Envelopment Analysis: Case Study of Kerman City’s Parks

Authors: Ali A. Abdollahi

Abstract:

During the last several decades, scientists have consistently applied Multiple Criteria Decision-Making methods in making decisions about multi-faceted, complicated subjects. While making such decisions and in order to achieve more accurate evaluations, they have regularly used a variety of criteria instead of applying just one Optimum Evaluation Criterion. The method presented here utilizes both ‘quantity’ and ‘quality’ to assess the function of the Multiple-Criteria method. Applying Data envelopment analysis (DEA), weighted aggregated sum product assessment (WASPAS), Weighted Sum Approach (WSA), Analytic Network Process (ANP), and Charnes, Cooper, Rhodes (CCR) methods, we have analyzed thirteen parks in Kerman city. It further indicates that the functions of WASPAS and WSA are compatible with each other, but also that their deviation from DEA is extensive. Finally, the results for the CCR technique do not match the results of the DEA technique. Our study indicates that the ANP method, with the average rate of 1/51, ranks closest to the DEA method, which has an average rate of 1/49.

Keywords: multiple criteria decision making, Data envelopment analysis (DEA), Charnes Cooper Rhodes (CCR), Weighted Sum Approach (WSA)

Procedia PDF Downloads 215
41453 Simulation-Based Optimization Approach for an Electro-Plating Production Process Based on Theory of Constraints and Data Envelopment Analysis

Authors: Mayada Attia Ibrahim

Abstract:

Evaluating and developing the electroplating production process is a key challenge in this type of process. The process is influenced by several factors such as process parameters, process costs, and production environments. Analyzing and optimizing all these factors together requires extensive analytical techniques that are not available in real-case industrial entities. This paper presents a practice-based framework for the evaluation and optimization of some of the crucial factors that affect the costs and production times associated with this type of process, energy costs, material costs, and product flow times. The proposed approach uses Design of Experiments, Discrete-Event Simulation, and Theory of Constraints were respectively used to identify the most significant factors affecting the production process and simulate a real production line to recognize the effect of these factors and assign possible bottlenecks. Several scenarios are generated as corrective strategies for improving the production line. Following that, data envelopment analysis CCR input-oriented DEA model is used to evaluate and optimize the suggested scenarios.

Keywords: electroplating process, simulation, design of experiment, performance optimization, theory of constraints, data envelopment analysis

Procedia PDF Downloads 97
41452 An Approach for Estimation in Hierarchical Clustered Data Applicable to Rare Diseases

Authors: Daniel C. Bonzo

Abstract:

Practical considerations lead to the use of unit of analysis within subjects, e.g., bleeding episodes or treatment-related adverse events, in rare disease settings. This is coupled with data augmentation techniques such as extrapolation to enlarge the subject base. In general, one can think about extrapolation of data as extending information and conclusions from one estimand to another estimand. This approach induces hierarchichal clustered data with varying cluster sizes. Extrapolation of clinical trial data is being accepted increasingly by regulatory agencies as a means of generating data in diverse situations during drug development process. Under certain circumstances, data can be extrapolated to a different population, a different but related indication, and different but similar product. We consider here the problem of estimation (point and interval) using a mixed-models approach under an extrapolation. It is proposed that estimators (point and interval) be constructed using weighting schemes for the clusters, e.g., equally weighted and with weights proportional to cluster size. Simulated data generated under varying scenarios are then used to evaluate the performance of this approach. In conclusion, the evaluation result showed that the approach is a useful means for improving statistical inference in rare disease settings and thus aids not only signal detection but risk-benefit evaluation as well.

Keywords: clustered data, estimand, extrapolation, mixed model

Procedia PDF Downloads 134
41451 The Arts of Walisanga's Mosques in Java: Structure/Architecture Studies and Its Meaning in Anthropological Perspective

Authors: Slamet Subiyantoro, Mulyanto

Abstract:

Revealing the structure and symbolism meaning of the walisanga’s mosque arts in Java is very important to explain the philosophy of religious foundation which is a manifestation of the norms/ value system and behavior of the Javanese Islam society that support the culture. This research's aims are also to find the structure pattern of walisanga’s mosque and its symbolic meaning in the context of Javanese Islam society. In order to obtain the research objectives, the research were done in several walisanga’s mosques in Java using anthropological approach which is focused on its interpretation and semiotic analysis. The data were collected through interviews with key informants who well informed about the shape and symbolism of walisanga’s mosques in Java. The observation technique is done through visiting walisanga’s mosques to see directly about its structure/ architecture. In completing the information of comprehensive result of the research, it is also used documents and archives as well as any other source which is analyzed to deepen the discussion in answering the problems research. The flow of analysis is done using an interactive model through stages of data collection, data reduction, data presentation and verification. The analysis is done continuously in a cycle system to draw valid conclusions. The research result indicates that the structure/architecture of walisanga’s mosque in Java is structured/built up vertically as well as horizontally. Its structure/architecture is correlated to each other which is having a sacred meaning that is a process represents the mystical belief such as sangkan paraning dumadi and manuggaling kawula gusti.

Keywords: Walisanga’s mosques, Java, structure and architecture, meaning

Procedia PDF Downloads 368
41450 Swot Analysis for Employment of Graduates of Physical Education and Sport Sciences in Iran

Authors: Mohammad Reza Boroumand Devlagh

Abstract:

Employment problem, especially university graduates is the most important challenges in the decade ahead. The purpose of this study is the SWOT analysis for employment of graduates of Physical Education and Sport Sciences in Iran. The sample of this research consist of 115 (35.5 + 8.0 years) of physical education and sport sciences faculty members of higher education institutions, major sport managers and graduates of physical education and sport sciences. Library method, interview and questioners were used to collect data. The questionnaires were made in four parts: Strengths, Weaknesses, Opportunities and Threats with Cronbach's alpha coefficient of 0.94. After data collection, means, standard deviation (SD) and percentage were calculated by using SPSS software. Fridman was used for the statical analysis at P < 0.05. The results showed that Employment of graduates of Physical Education and Sport Sciences in Iran Located In the worst position possible (T-W area) in Strategic Position and Action Evaluation Matrix) SPACEM), and there are more weaknesses than strengths (2.02 < 2.5) in internal evaluation and there are more threats than opportunities(2.36 < 2.5) in external evaluation.

Keywords: employment, graduate, physical education and sport sciences, SWOT analysis

Procedia PDF Downloads 539
41449 Text Mining of Veterinary Forums for Epidemiological Surveillance Supplementation

Authors: Samuel Munaf, Kevin Swingler, Franz Brülisauer, Anthony O’Hare, George Gunn, Aaron Reeves

Abstract:

Web scraping and text mining are popular computer science methods deployed by public health researchers to augment traditional epidemiological surveillance. However, within veterinary disease surveillance, such techniques are still in the early stages of development and have not yet been fully utilised. This study presents an exploration into the utility of incorporating internet-based data to better understand the smallholder farming communities within Scotland by using online text extraction and the subsequent mining of this data. Web scraping of the livestock fora was conducted in conjunction with text mining of the data in search of common themes, words, and topics found within the text. Results from bi-grams and topic modelling uncover four main topics of interest within the data pertaining to aspects of livestock husbandry: feeding, breeding, slaughter, and disposal. These topics were found amongst both the poultry and pig sub-forums. Topic modeling appears to be a useful method of unsupervised classification regarding this form of data, as it has produced clusters that relate to biosecurity and animal welfare. Internet data can be a very effective tool in aiding traditional veterinary surveillance methods, but the requirement for human validation of said data is crucial. This opens avenues of research via the incorporation of other dynamic social media data, namely Twitter and Facebook/Meta, in addition to time series analysis to highlight temporal patterns.

Keywords: veterinary epidemiology, disease surveillance, infodemiology, infoveillance, smallholding, social media, web scraping, sentiment analysis, geolocation, text mining, NLP

Procedia PDF Downloads 96
41448 Fuzzy Total Factor Productivity by Credibility Theory

Authors: Shivi Agarwal, Trilok Mathur

Abstract:

This paper proposes the method to measure the total factor productivity (TFP) change by credibility theory for fuzzy input and output variables. Total factor productivity change has been widely studied with crisp input and output variables, however, in some cases, input and output data of decision-making units (DMUs) can be measured with uncertainty. These data can be represented as linguistic variable characterized by fuzzy numbers. Malmquist productivity index (MPI) is widely used to estimate the TFP change by calculating the total factor productivity of a DMU for different time periods using data envelopment analysis (DEA). The fuzzy DEA (FDEA) model is solved using the credibility theory. The results of FDEA is used to measure the TFP change for fuzzy input and output variables. Finally, numerical examples are presented to illustrate the proposed method to measure the TFP change input and output variables. The suggested methodology can be utilized for performance evaluation of DMUs and help to assess the level of integration. The methodology can also apply to rank the DMUs and can find out the DMUs that are lagging behind and make recommendations as to how they can improve their performance to bring them at par with other DMUs.

Keywords: chance-constrained programming, credibility theory, data envelopment analysis, fuzzy data, Malmquist productivity index

Procedia PDF Downloads 364
41447 A Security Cloud Storage Scheme Based Accountable Key-Policy Attribute-Based Encryption without Key Escrow

Authors: Ming Lun Wang, Yan Wang, Ning Ruo Sun

Abstract:

With the development of cloud computing, more and more users start to utilize the cloud storage service. However, there exist some issues: 1) cloud server steals the shared data, 2) sharers collude with the cloud server to steal the shared data, 3) cloud server tampers the shared data, 4) sharers and key generation center (KGC) conspire to steal the shared data. In this paper, we use advanced encryption standard (AES), hash algorithms, and accountable key-policy attribute-based encryption without key escrow (WOKE-AKP-ABE) to build a security cloud storage scheme. Moreover, the data are encrypted to protect the privacy. We use hash algorithms to prevent the cloud server from tampering the data uploaded to the cloud. Analysis results show that this scheme can resist conspired attacks.

Keywords: cloud storage security, sharing storage, attributes, Hash algorithm

Procedia PDF Downloads 388
41446 3D Plant Growth Measurement System Using Deep Learning Technology

Authors: Kazuaki Shiraishi, Narumitsu Asai, Tsukasa Kitahara, Sosuke Mieno, Takaharu Kameoka

Abstract:

The purpose of this research is to facilitate productivity advances in agriculture. To accomplish this, we developed an automatic three-dimensional (3D) recording system for growth of field crops that consists of a number of inexpensive modules: a very low-cost stereo camera, a couple of ZigBee wireless modules, a Raspberry Pi single-board computer, and a third generation (3G) wireless communication module. Our system uses an inexpensive Web stereo camera in order to keep total costs low. However, inexpensive video cameras record low-resolution images that are very noisy. Accordingly, in order to resolve these problems, we adopted a deep learning method. Based on the results of extended period of time operation test conducted without the use of an external power supply, we found that by using Super-Resolution Convolutional Neural Network method, our system could achieve a balance between the competing goals of low-cost and superior performance. Our experimental results showed the effectiveness of our system.

Keywords: 3D plant data, automatic recording, stereo camera, deep learning, image processing

Procedia PDF Downloads 271
41445 Prevalence Of Listeria And Salmonella Contamination In Fda Recalled Foods

Authors: Oluwatofunmi Musa-Ajakaiye, Paul Olorunfemi M.D MPH, John Obafaiye

Abstract:

Introduction: The U.S Food and Drug Administration (FDA) reports the public notices for recalled FDA-regulated products over periods of time. It study reviewed the primary reasons for recalls of products of various types over a period of 7 years. Methods: The study analyzed data provided in the FDA’s archived recalls for the years 2010-2017. It identified the various reasons for product recalls in the categories of foods, beverages, drugs, medical devices, animal and veterinary products, and dietary supplements. Using SPSS version 29, descriptive statistics and chi-square analysis of the data were performed. Results (numbers, percentages, p-values, chi-square): Over the period of analysis, a total of 931 recalls were reported. The most frequent reason for recalls was undeclared products (36.7%). The analysis showed that the most recalled product type in the data set was foods and beverages, representing 591 of all recalled products (63.5%).In addition, it was observed that foods and beverages represent 77.2% of products recalled due to the presence of microorganisms. Also, a sub-group analysis of recall reasons of food and beverages found that the most prevalent reason for such recalls was undeclared products (50.1%) followed by Listeria (17.3%) then Salmonella (13.2%). Conclusion: This analysis shows that foods and beverages have the greatest percentages of total recalls due to the presence of undeclared products listeria contamination and Salmonella contamination. The prevalence of Salmonella and Listeria contamination suggests that there is a high risk of microbial contamination in FDA-approved products and further studies on the effects of such contamination must be conducted to ensure consumer safety.

Keywords: food, beverages, listeria, salmonella, FDA, contamination, microbial

Procedia PDF Downloads 62
41444 Towards a Distributed Computation Platform Tailored for Educational Process Discovery and Analysis

Authors: Awatef Hicheur Cairns, Billel Gueni, Hind Hafdi, Christian Joubert, Nasser Khelifa

Abstract:

Given the ever changing needs of the job markets, education and training centers are increasingly held accountable for student success. Therefore, education and training centers have to focus on ways to streamline their offers and educational processes in order to achieve the highest level of quality in curriculum contents and managerial decisions. Educational process mining is an emerging field in the educational data mining (EDM) discipline, concerned with developing methods to discover, analyze and provide a visual representation of complete educational processes. In this paper, we present our distributed computation platform which allows different education centers and institutions to load their data and access to advanced data mining and process mining services. To achieve this, we present also a comparative study of the different clustering techniques developed in the context of process mining to partition efficiently educational traces. Our goal is to find the best strategy for distributing heavy analysis computations on many processing nodes of our platform.

Keywords: educational process mining, distributed process mining, clustering, distributed platform, educational data mining, ProM

Procedia PDF Downloads 452
41443 Optimizing Energy Efficiency: Leveraging Big Data Analytics and AWS Services for Buildings and Industries

Authors: Gaurav Kumar Sinha

Abstract:

In an era marked by increasing concerns about energy sustainability, this research endeavors to address the pressing challenge of energy consumption in buildings and industries. This study delves into the transformative potential of AWS services in optimizing energy efficiency. The research is founded on the recognition that effective management of energy consumption is imperative for both environmental conservation and economic viability. Buildings and industries account for a substantial portion of global energy use, making it crucial to develop advanced techniques for analysis and reduction. This study sets out to explore the integration of AWS services with big data analytics to provide innovative solutions for energy consumption analysis. Leveraging AWS's cloud computing capabilities, scalable infrastructure, and data analytics tools, the research aims to develop efficient methods for collecting, processing, and analyzing energy data from diverse sources. The core focus is on creating predictive models and real-time monitoring systems that enable proactive energy management. By harnessing AWS's machine learning and data analytics capabilities, the research seeks to identify patterns, anomalies, and optimization opportunities within energy consumption data. Furthermore, this study aims to propose actionable recommendations for reducing energy consumption in buildings and industries. By combining AWS services with metrics-driven insights, the research strives to facilitate the implementation of energy-efficient practices, ultimately leading to reduced carbon emissions and cost savings. The integration of AWS services not only enhances the analytical capabilities but also offers scalable solutions that can be customized for different building and industrial contexts. The research also recognizes the potential for AWS-powered solutions to promote sustainable practices and support environmental stewardship.

Keywords: energy consumption analysis, big data analytics, AWS services, energy efficiency

Procedia PDF Downloads 63