Search results for: absorption heat transformer
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4616

Search results for: absorption heat transformer

3626 Performance of Self-Compacting Mortars Containing Foam Glass Granulate

Authors: Brahim Safi, Djamila Aboutaleb, Mohammed Saidi, Abdelbaki Benmounah, Fahima Benbrahim

Abstract:

The inorganic wastes are currently used in the manufacture of concretes as mineral additions by cement substitution or as fine/coarse aggregates by replacing traditional aggregates. In this respect, this study aims to valorize the mineral wastes in particular glass wastes to produce granulated foam glass (as fine aggregates). Granulated foam glasses (GFG) were prepared from the glass powder (glass cullet) and foaming agent (limestone) according to applied manufacturing of GFG (at a heat treatment 850 ° C for 20min). After, self-compacting mortars were elaborated with fine aggregate (sand) and other variant mortars with granulated foam glass at volume ratio (0, 30, 50 and 100 %). Rheological characterization tests (fluidity) and physic-mechanical (density, porosity /absorption of water and mechanical tests) were carried out on studied mortars. The results obtained show that a slightly decreasing of compressive strength of mortars having lightness very important for building construction.

Keywords: glass wastes, lightweight aggregate, mortar, fluidity, density, mechanical strength

Procedia PDF Downloads 225
3625 Optical Parametric Oscillators Lidar Sounding of Trace Atmospheric Gases in the 3-4 µm Spectral Range

Authors: Olga V. Kharchenko

Abstract:

Applicability of a KTA crystal-based laser system with optical parametric oscillators (OPO) generation to lidar sounding of the atmosphere in the spectral range 3–4 µm is studied in this work. A technique based on differential absorption lidar (DIAL) method and differential optical absorption spectroscopy (DOAS) is developed for lidar sounding of trace atmospheric gases (TAG). The DIAL-DOAS technique is tested to estimate its efficiency for lidar sounding of atmospheric trace gases.

Keywords: atmosphere, lidar sounding, DIAL, DOAS, trace gases, nonlinear crystal

Procedia PDF Downloads 392
3624 Study of Frequency and Distribution of Skin Ionocytes in Caspian Sea Zander Larvae during Acclimation to Different Salinity

Authors: Mohaddeseh Ahmadnezhad, Shahrbano Oryan, Mahmoud Bahmani, Mohammadd Sayad Bourani

Abstract:

Changes in abundance and size of skin ionocytes were investigated in two larval stage of Caspian sea zander, Sander lucioperca, before and after yolk sac absorption, at 96h after transfer from fresh water (FW; <0.5‰) to 7‰ (estuary) and 12‰ (Caspian sea water=CW) salinity. Survival rate in the stage of after yolk sac absorption were more than larval pre-absorbed yolk sac in condition of salinity (p<0.05). Ionocyte abundance increased significantly in 7 and 12‰ salinity (p<0.05), but not about ionocyte size. The results of this study suggest that development of skin Ionocyte osmoregulatory function and osmoregulation capability of Caspian Sea zander larvae increased with growth of the larvae.

Keywords: Caspian Sea, larvae, Sander lucioperca, salinity, skin ionocyte

Procedia PDF Downloads 289
3623 Variation of Fertility-Related Traits in Italian Tomato Landraces under Mild Heat Stress

Authors: Maurizio E. Picarella, Ludovica Fumelli, Francesca Siligato, Andrea Mazzucato

Abstract:

Studies on reproductive dynamics in crops subjected to heat stress are crucial to breed more tolerant cultivars. In tomato, cultivars, breeding lines, and wild species have been thoroughly evaluated for the response to heat stress in several studies. Here, we address the reaction to temperature stress in a panel of selected landraces representing genotypes cultivated before the advent of professional varieties that usually show high adaptation to local environments. We adopted an experimental design with two open field trials, where transplanting was spaced by one month. In the second field, plants were thus subjected to mild stress with natural temperature fluctuations. The genotypes showed wide variation for both vegetative (plant height) and reproductive (stigma exsertion, pollen viability, number of flowers per inflorescence, and fruit set) traits. On average, all traits were affected by heat conditions; except for the number of flowers per inflorescence, the “G*E” interaction was always significant. In agreement with studies based on different materials, estimated broad sense heritability was high for plant height, stigma exsertion, and pollen viability and low for the number of flowers per inflorescence and fruit set. Despite the interaction, traits recorded in control and in heat conditions were positively correlated. The first two principal components estimated by multivariate analysis explained more than 50% of the total variability. The study indicated that landraces present a wide variability for the response of reproductive traits to temperature stress and that such variability could be very informative to dissect the traits with higher heritability and identify new QTL useful for breeding more resilient varieties.

Keywords: fruit set, heat stress, solanum lycopersicum L., style exsertion, tomato

Procedia PDF Downloads 121
3622 Geothermal Energy Evaluation of Lower Benue Trough Using Spectral Analysis of Aeromagnetic Data

Authors: Stella C. Okenu, Stephen O. Adikwu, Martins E. Okoro

Abstract:

The geothermal energy resource potential of the Lower Benue Trough (LBT) in Nigeria was evaluated in this study using spectral analysis of high-resolution aeromagnetic (HRAM) data. The reduced to the equator aeromagnetic data was divided into sixteen (16) overlapping blocks, and each of the blocks was analyzed to obtain the radial averaged power spectrum which enabled the computation of the top and centroid depths to magnetic sources. The values were then used to assess the Curie Point Depth (CPD), geothermal gradients, and heat flow variations in the study area. Results showed that CPD varies from 7.03 to 18.23 km, with an average of 12.26 km; geothermal gradient values vary between 31.82 and 82.50°C/km, with an average of 51.21°C/km, while heat flow variations range from 79.54 to 206.26 mW/m², with an average of 128.02 mW/m². Shallow CPD zones that run from the eastern through the western and southwestern parts of the study area correspond to zones of high geothermal gradient values and high subsurface heat flow distributions. These areas signify zones associated with anomalous subsurface thermal conditions and are therefore recommended for detailed geothermal energy exploration studies.

Keywords: geothermal energy, curie-point depth, geothermal gradient, heat flow, aeromagnetic data, LBT

Procedia PDF Downloads 64
3621 Urban Vegetation as a Mitigation Strategy for Urban Heat Island Effect a Case of Kerala

Authors: Athul T.

Abstract:

Kerala cities in India are grappling with an alarming rise in temperatures fueled by the Urban Heat Island (UHI) effect. This phenomenon, exacerbated by rapid urbanization and climate change, poses a significant threat to public health and environmental well-being. In response to this growing concern, this study investigates the potential of urban vegetation as a powerful mitigation strategy against UHI. The study delves into the intricate relationship between micro-climate changes, UHI intensity, and the strategic placement of greenery in alleviating these effects. Utilizing advanced simulation software, the most effective vegetation types and configurations for maximizing UHI reduction will be identified. By analyzing the current state of Kozhikode's urban vegetation and its influence on microclimates, this study aims to tailor actionable strategies for Kerala cities, potentially paving the way for a more sustainable and thermally comfortable urban future.

Keywords: urban heat island, climate change, micro climate, urban vegetation

Procedia PDF Downloads 53
3620 Study of Temperature Distribution in Coolant Channel of Nuclear Power with Fuel Cylinder Element Using Fluent Software

Authors: Elham Zamiri

Abstract:

In this research, we have focused on numeral simulation of a fuel rod in order to examine distribution of heat temperature in components of fuel rod by Fluent software by providing steady state, single phase fluid flow, frequency heat flux in a fuel rod in nuclear reactor to numeral simulation. Results of examining different layers of a fuel rod consist of fuel layer, gap, pod, and fluid cooling flow, also examining thermal properties and fluids such as heat transition rate and pressure drop. The obtained results through analytical method and results of other sources have been compared and have appropriate correspondence. Results show that using heavy water as cooling fluid along with few layers of gas and pod have the ability of reducing the temperature from above 300 C to 70 C. This investigation is developable for any geometry and material used in the nuclear reactor.

Keywords: nuclear fuel fission, numberal simulation, fuel rod, reactor, Fluent software

Procedia PDF Downloads 154
3619 Effects of Heat Treatment on the Mechanical Properties of Kenaf Fiber

Authors: Paulo Teodoro De Luna Carada, Toru Fujii, Kazuya Okubo

Abstract:

Natural fibers have wide variety of uses (e.g., rope, paper, and building materials). One specific application of it is in the field of composite materials (i.e., green composites). Huge amount of research are being done in this field due to rising concerns in the harmful effects of synthetic materials to the environment. There are several natural fibers used in this field, one of which can be extracted from a plant called kenaf (Hibiscus cannabinus L.). Kenaf fiber is regarded as a good alternative because the plant is easy to grow and the fiber is easy to extract. Additionally, it has good properties. Treatments, which are classified as mechanical or chemical in nature, can be done in order to improve the properties of the fiber. The aim of this study is to assess the effects of heat treatment in kenaf fiber. It specifically aims to observe the effect in the tensile strength and modulus of the fiber. Kenaf fiber bundles with an average diameter of at most 100μm was used for this purpose. Heat treatment was done using a constant temperature oven with the following heating temperatures: (1) 160̊C, (2) 180̊C, and (3) 200̊C for a duration of one hour. As a basis for comparison, tensile test was first done to kenaf fibers without any heat treatment. For every heating temperature, three groups of samples were prepared. Two groups of which were for doing tensile test (one group was tested right after heat treatment while the remaining group was kept inside a closed container with relative humidity of at least 95% for two days). The third group was used to observe how much moisture the treated fiber will absorb when it is enclosed in a high moisture environment for two days. The results showed that kenaf fiber can retain its tensile strength when heated up to a temperature of 160̊C. However, when heated at a temperature of about 180̊C or higher, the tensile strength decreases significantly. The same behavior was observed for the tensile modulus of the fiber. Additionally, the fibers which were stored for two days absorbed nearly the same amount of moisture (about 20% of the dried weight) regardless of the heating temperature. Heat treatment might have damaged the fiber in some way. Additional test was done in order to see if the damage due to heat treatment is attributed to changes in the viscoelastic property of the fiber. The findings showed that kenaf fibers can be heated for at most 160̊C to attain good tensile strength and modulus. Additionally, heating the fiber at high temperature (>180̊C) causes changes in its viscoelastic property. The results of this study is significant for processes which requires heat treatment not only in kenaf fiber but might also be helpful for natural fibers in general.

Keywords: heat treatment, kenaf fiber, natural fiber, mechanical properties

Procedia PDF Downloads 347
3618 Temperature-Related Alterations to Mineral Levels and Crystalline Structure in Porcine Long Bone: Intense Heat Vs. Open Flame

Authors: Caighley Logan

Abstract:

The outcome of fire related fatalities, along with other research, has found fires can have a detrimental effect to the mineral and crystalline structures within bone. This study focused on the mineral and crystalline structures within porcine bone samples to analyse the changes caused, with the intent of effectively ‘reverse engineering’ the data collected from burned bone samples to discover what may have happened. Using Fourier Transform Infrared (FT-IR), and X-Ray Fluorescence (XRF), the data collected from a controlled source of intense heat (muffle furnace) and an open fire, based in a living room setting in a standard size shipping container (8.5ft x 8ft) of a similar temperature with a known ignition source, a gasoline lighter. This approach is to analyse the changes to the samples and how the changes differ depending on the heat source. Results have found significant differences in the levels of remaining minerals for each type of heat/burning (p=<0.001), particularly Phosphorus and Calcium, this also includes notable additions of absorbed elements and minerals from the surrounding materials, i.e., Cerium (Ce), Bromine (Br) and Neodymium (Ne). The analysis techniques included provide validated results in conjunction with previous studies.

Keywords: forensic anthropology, thermal alterations, porcine bone, FTIR, XRF

Procedia PDF Downloads 75
3617 Electric Field Impact on the Biomass Gasification and Combustion Dynamics

Authors: M. Zake, I. Barmina, R. Valdmanis, A. Kolmickovs

Abstract:

Experimental investigations of the DC electric field effect on thermal decomposition of biomass, formation of the axial flow of volatiles (CO, H2, CxHy), mixing of volatiles with swirling airflow at low swirl intensity (S ≈ 0.2-0.35), their ignition and on formation of combustion dynamics are carried out with the aim to understand the mechanism of electric field influence on biomass gasification, combustion of volatiles and heat energy production. The DC electric field effect on combustion dynamics was studied by varying the positive bias voltage of the central electrode from 0.6 kV to 3 kV, whereas the ion current was limited to 2 mA. The results of experimental investigations confirm the field-enhanced biomass gasification with enhanced release of volatiles and the development of endothermic processes at the primary stage of thermochemical conversion of biomass determining the field-enhanced heat energy consumption with the correlating decrease of the flame temperature and heat energy production at this stage of flame formation. Further, the field-enhanced radial expansion of the flame reaction zone correlates with a more complete combustion of volatiles increasing the combustion efficiency by 3 % and decreasing the mass fraction of CO, H2 and CxHy in the products, whereas by 10 % increases the average volume fraction of CO2 and the heat energy production downstream the combustor increases by 5-10 %

Keywords: biomass, combustion, electrodynamic control, gasification

Procedia PDF Downloads 438
3616 The Optimization of Sun Collector Parameters

Authors: István Patkó, Hosam Bayoumi Hamuda, András Szeder

Abstract:

In order to efficiently solve the problems created by the deepening energy crisis affecting Europe and the world, governments cannot neglect the opportunities of using the energy produced by sun collectors. In many of the EU countries there are sun collectors producing heat energy, e.g. in 2011 in the area of EU27 (countries which belong to European Union) + Switzerland altogether 37519126 m2 were operated, which are capable of producing 26.3 GWh heat energy. The energy produced by these sun collectors is utilized at the place of production. In the near future governments will have to focus more on spreading and using sun collectors. Among the complex problems of operating sun collectors, this article deals with determining the optimal tilt angle, directions of sun collectors. We evaluate the contamination of glass surface of sun collector to the produced energy. Our theoretically results are confirmed by laboratory measurements. The purpose of our work is to help users and engineers in determination of optimal operation parameters of sun collectors.

Keywords: heat energy, tilt angle, direction of sun collector, contamination of surface

Procedia PDF Downloads 422
3615 Multi-Objective Optimization of a Solar-Powered Triple-Effect Absorption Chiller for Air-Conditioning Applications

Authors: Ali Shirazi, Robert A. Taylor, Stephen D. White, Graham L. Morrison

Abstract:

In this paper, a detailed simulation model of a solar-powered triple-effect LiBr–H2O absorption chiller is developed to supply both cooling and heating demand of a large-scale building, aiming to reduce the fossil fuel consumption and greenhouse gas emissions in building sector. TRNSYS 17 is used to simulate the performance of the system over a typical year. A combined energetic-economic-environmental analysis is conducted to determine the system annual primary energy consumption and the total cost, which are considered as two conflicting objectives. A multi-objective optimization of the system is performed using a genetic algorithm to minimize these objectives simultaneously. The optimization results show that the final optimal design of the proposed plant has a solar fraction of 72% and leads to an annual primary energy saving of 0.69 GWh and annual CO2 emissions reduction of ~166 tonnes, as compared to a conventional HVAC system. The economics of this design, however, is not appealing without public funding, which is often the case for many renewable energy systems. The results show that a good funding policy is required in order for these technologies to achieve satisfactory payback periods within the lifetime of the plant.

Keywords: economic, environmental, multi-objective optimization, solar air-conditioning, triple-effect absorption chiller

Procedia PDF Downloads 228
3614 The Study of Heat and Mass Transfer for Ferrous Materials' Filtration Drying

Authors: Dmytro Symak

Abstract:

Drying is a complex technologic, thermal and energy process. Energy cost of drying processes in many cases is the most costly stage of production, and can be over 50% of total costs. As we know, in Ukraine over 85% of Portland cement is produced moist, and the finished product energy costs make up to almost 60%. During the wet cement production, energy costs make up over 5500 kJ / kg of clinker, while during the dry only 3100 kJ / kg, that is, switching to a dry Portland cement will allow result into double cutting energy costs. Therefore, to study raw materials drying process in the manufacture of Portland cement is very actual task. The fine ferrous materials drying (small pyrites, red mud, clay Kyoko) is recommended to do by filtration method, that is one of the most intense. The essence of filtration method drying lies in heat agent filtering through a stationary layer of wet material, which is located on the perforated partition, in the "layer-dispersed material - perforated partition." For the optimum drying purposes, it is necessary to establish the dependence of pressure loss in the layer of dispersed material, and the values of heat and mass transfer, depending on the speed of the gas flow filtering. In our research, the experimentally determined pressure loss in the layer of dispersed material was generalized based on dimensionless complexes in the form and coefficients of heat exchange. We also determined the relation between the coefficients of mass and heat transfer. As a result of theoretic and experimental investigations, it was possible to develop a methodology for calculating the optimal parameters for the thermal agent and the main parameters for the filtration drying installation. The comparison of calculated by known operating expenses methods for the process of small pyrites drying in a rotating drum and filtration method shows to save up to 618 kWh per 1,000 kg of dry material and 700 kWh during filtration drying clay.

Keywords: drying, cement, heat and mass transfer, filtration method

Procedia PDF Downloads 252
3613 Application of Residual Correction Method on Hyperbolic Thermoelastic Response of Hollow Spherical Medium in Rapid Transient Heat Conduction

Authors: Po-Jen Su, Huann-Ming Chou

Abstract:

In this article we uses the residual correction method to deal with transient thermoelastic problems with a hollow spherical region when the continuum medium possesses spherically isotropic thermoelastic properties. Based on linear thermoelastic theory, the equations of hyperbolic heat conduction and thermoelastic motion were combined to establish the thermoelastic dynamic model with consideration of the deformation acceleration effect and non-Fourier effect under the condition of transient thermal shock. The approximate solutions of temperature and displacement distributions are obtained using the residual correction method based on the maximum principle in combination with the finite difference method, making it easier and faster to obtain upper and lower approximations of exact solutions. The proposed method is found to be an effective numerical method with satisfactory accuracy. Moreover, the result shows that the effect of transient thermal shock induced by deformation acceleration is enhanced by non-Fourier heat conduction with increased peak stress. The influence on the stress increases with the thermal relaxation time.

Keywords: maximum principle, non-Fourier heat conduction, residual correction method, thermo-elastic response

Procedia PDF Downloads 418
3612 A Thermo-mechanical Finite Element Model to Predict Thermal Cycles and Residual Stresses in Directed Energy Deposition Technology

Authors: Edison A. Bonifaz

Abstract:

In this work, a numerical procedure is proposed to design dense multi-material structures using the Directed Energy Deposition (DED) process. A thermo-mechanical finite element model to predict thermal cycles and residual stresses is presented. A numerical layer build-up procedure coupled with a moving heat flux was constructed to minimize strains and residual stresses that result in the multi-layer deposition of an AISI 316 austenitic steel on an AISI 304 austenitic steel substrate. To simulate the DED process, the automated interface of the ABAQUS AM module was used to define element activation and heat input event data as a function of time and position. Of this manner, the construction of ABAQUS user-defined subroutines was not necessary. Thermal cycles and thermally induced stresses created during the multi-layer deposition metal AM pool crystallization were predicted and validated. Results were analyzed in three independent metal layers of three different experiments. The one-way heat and material deposition toolpath used in the analysis was created with a MatLab path script. An optimal combination of feedstock and heat input printing parameters suitable for fabricating multi-material dense structures in the directed energy deposition metal AM process was established. At constant power, it can be concluded that the lower the heat input, the lower the peak temperatures and residual stresses. It means that from a design point of view, the one-way heat and material deposition processing toolpath with the higher welding speed should be selected.

Keywords: event series, thermal cycles, residual stresses, multi-pass welding, abaqus am modeler

Procedia PDF Downloads 56
3611 Instrumental Neutron Activation Analysis (INAA) and Atomic Absorption Spectroscopy (AAS) for the Elemental Analysis Medicinal Plants from India Used in the Treatment of Heart Diseases

Authors: B. M. Pardeshi

Abstract:

Introduction: Minerals and trace elements are chemical elements required by our bodies for numerous biological and physiological processes that are necessary for the maintenance of health. Medicinal plants are highly beneficial for the maintenance of good health and prevention of diseases. They are known as potential sources of minerals and vitamins. 30 to 40% of today’s conventional drugs used in the medicinal and curative properties of various plants are employed in herbal supplement botanicals, nutraceuticals and drug. Aim: The authors explored the mineral element content of some herbs, because mineral elements may have significant role in the development and treatment of gastrointestinal diseases, and a close connection between the presence or absence of mineral elements and inflammatory mediators was noted. Methods: Present study deals with the elemental analysis of medicinal plants by Instrumental Neutron activation Analysis and Atomic Absorption Spectroscopy. Medicinal herbals prescribed for skin diseases were purchased from markets and were analyzed by Instrumental Neutron Activation Analysis (INAA) using 252Cf Californium spontaneous fission neutron source (flux* 109 n s-1) and the induced activities were counted by γ-ray spectrometry and Atomic Absorption Spectroscopy (AAS) techniques (Perkin Elmer 3100 Model) available at Department of Chemistry University of Pune, India, was used for the measurement of major, minor and trace elements. Results: 15 elements viz. Al, K, Cl, Na, Mn by INAA and Cu, Co, Pb Ni, Cr, Ca, Fe, Zn, Hg and Cd by AAS were analyzed from different medicinal plants from India. A critical examination of the data shows that the elements Ca , K, Cl, Al, and Fe are found to be present at major levels in most of the samples while the other elements Na, Mn, Cu, Co, Pb, Ni, Cr, Ca, Zn, Hg and Cd are present in minor or trace levels. Conclusion: The beneficial therapeutic effect of the studied herbs may be related to their mineral element content. The elemental concentration in different medicinal plants is discussed.

Keywords: instrumental neutron activation analysis, atomic absorption spectroscopy, medicinal plants, trace elemental analysis, mineral contents

Procedia PDF Downloads 326
3610 Applying Wavelet Transform to Ferroresonance Detection and Protection

Authors: Chun-Wei Huang, Jyh-Cherng Gu, Ming-Ta Yang

Abstract:

Non-synchronous breakage or line failure in power systems with light or no loads can lead to core saturation in transformers or potential transformers. This can cause component and capacitance matching resulting in the formation of resonant circuits, which trigger ferroresonance. This study employed a wavelet transform for the detection of ferroresonance. Simulation results demonstrate the efficacy of the proposed method.

Keywords: ferroresonance, wavelet transform, intelligent electronic device, transformer

Procedia PDF Downloads 488
3609 Exploring the Correlation between Population Distribution and Urban Heat Island under Urban Data: Taking Shenzhen Urban Heat Island as an Example

Authors: Wang Yang

Abstract:

Shenzhen is a modern city of China's reform and opening-up policy, the development of urban morphology has been established on the administration of the Chinese government. This city`s planning paradigm is primarily affected by the spatial structure and human behavior. The subjective urban agglomeration center is divided into several groups and centers. In comparisons of this effect, the city development law has better to be neglected. With the continuous development of the internet, extensive data technology has been introduced in China. Data mining and data analysis has become important tools in municipal research. Data mining has been utilized to improve data cleaning such as receiving business data, traffic data and population data. Prior to data mining, government data were collected by traditional means, then were analyzed using city-relationship research, delaying the timeliness of urban development, especially for the contemporary city. Data update speed is very fast and based on the Internet. The city's point of interest (POI) in the excavation serves as data source affecting the city design, while satellite remote sensing is used as a reference object, city analysis is conducted in both directions, the administrative paradigm of government is broken and urban research is restored. Therefore, the use of data mining in urban analysis is very important. The satellite remote sensing data of the Shenzhen city in July 2018 were measured by the satellite Modis sensor and can be utilized to perform land surface temperature inversion, and analyze city heat island distribution of Shenzhen. This article acquired and classified the data from Shenzhen by using Data crawler technology. Data of Shenzhen heat island and interest points were simulated and analyzed in the GIS platform to discover the main features of functional equivalent distribution influence. Shenzhen is located in the east-west area of China. The city’s main streets are also determined according to the direction of city development. Therefore, it is determined that the functional area of the city is also distributed in the east-west direction. The urban heat island can express the heat map according to the functional urban area. Regional POI has correspondence. The research result clearly explains that the distribution of the urban heat island and the distribution of urban POIs are one-to-one correspondence. Urban heat island is primarily influenced by the properties of the underlying surface, avoiding the impact of urban climate. Using urban POIs as analysis object, the distribution of municipal POIs and population aggregation are closely connected, so that the distribution of the population corresponded with the distribution of the urban heat island.

Keywords: POI, satellite remote sensing, the population distribution, urban heat island thermal map

Procedia PDF Downloads 94
3608 Rayleigh-Bénard-Taylor Convection of Newtonian Nanoliquid

Authors: P. G. Siddheshwar, T. N. Sakshath

Abstract:

In the paper we make linear and non-linear stability analyses of Rayleigh-Bénard convection of a Newtonian nanoliquid in a rotating medium (called as Rayleigh-Bénard-Taylor convection). Rigid-rigid isothermal boundaries are considered for investigation. Khanafer-Vafai-Lightstone single phase model is used for studying instabilities in nanoliquids. Various thermophysical properties of nanoliquid are obtained using phenomenological laws and mixture theory. The eigen boundary value problem is solved for the Rayleigh number using an analytical method by considering trigonometric eigen functions. We observe that the critical nanoliquid Rayleigh number is less than that of the base liquid. Thus the onset of convection is advanced due to the addition of nanoparticles. So, increase in volume fraction leads to advanced onset and thereby increase in heat transport. The amplitudes of convective modes required for estimating the heat transport are determined analytically. The tri-modal standard Lorenz model is derived for the steady state assuming small scale convective motions. The effect of rotation on the onset of convection and on heat transport is investigated and depicted graphically. It is observed that the onset of convection is delayed due to rotation and hence leads to decrease in heat transport. Hence, rotation has a stabilizing effect on the system. This is due to the fact that the energy of the system is used to create the component V. We observe that the amount of heat transport is less in the case of rigid-rigid isothermal boundaries compared to free-free isothermal boundaries.

Keywords: nanoliquid, rigid-rigid, rotation, single phase

Procedia PDF Downloads 222
3607 Effects of Titanium Dioxide Coatings on Building Composites for Sustainable Construction Applications

Authors: Ifeyinwa Ijeoma Obianyo, Luqman Adedeji Taiwo, Olugbenga O. Amu, Azikiwe Peter Onwualu

Abstract:

Improving the durability of building materials saves maintenance costs, construction time, and energy. In this study, titanium dioxide coated conventional and non-conventional composites were produced, and the effects of titanium dioxide coatings were investigated. Conventional composites were produced using river sand and Portland cement, whereas non-conventional composites were produced by partially replacing river sand and Portland cement with quarry dust and rice husk ash. Water absorption and thickness swelling tests were conducted on the produced coated and non-coated block samples. A reduction in water absorption was observed in the coated composite samples when compared to the non-coated composite samples, and this is an indication of the improved durability of the samples coated with titanium dioxide. However, there was an increase in the thickness swelling of coatings on the coated block samples, but this increase has a slight influence on the compressive strength of the coated samples. The outcome of this study indicates that coating composite building blocks with titanium dioxide will improve theirdurability. Also, the site exposure experiments revealed the self-cleansing properties of TiO2-coated composite block samples, while the Rhodamine B discolouration test confirmed the photocatalytic features of TiO2-coated composite block samples.

Keywords: titanium dioxide, water absorption, durability, mechanical properties, building composite

Procedia PDF Downloads 99
3606 Preliminary Evaluation of Echinacea Species by UV-VIS Spectroscopy Fingerprinting of Phenolic Compounds

Authors: Elena Ionescu, Elena Iacob, Marie-Louise Ionescu, Carmen Elena Tebrencu, Oana Teodora Ciuperca

Abstract:

Echinacea species (Asteraceae) has received a global attention because it is widely used for treatment of cold, flu and upper respiratory tract infections. Echinacea species contain a great variety of chemical components that contribute to their activity. The most important components responsible for the biological activity are those with high molecular-weight such as polysaccharides, polyacetylenes, highly unsaturated alkamides and caffeic acid derivatives. The principal factors that may influence the chemical composition of Echinacea include the species and the part of plant used (aerial parts or roots ). In recent years the market for Echinacea has grown rapidly and also the cases of adultery/replacement especially for Echinacea root. The identification of presence or absence of same biomarkers provide information for safe use of Echinacea species in food supplements industry. The aim of the study was the preliminary evaluation and fingerprinting by UV-VISIBLE spectroscopy of biomarkers in terms of content in phenolic derivatives of some Echinacea species (E. purpurea, E. angustifolia and E. pallida) for identification and authentication of the species. The steps of the study were: (1) samples (extracts) preparation from Echinacea species (non-hydrolyzed and hydrolyzed ethanol extracts); (2) samples preparation of reference substances (polyphenol acids: caftaric acid, caffeic acid, chlorogenic acid, ferulic acid; flavonoids: rutoside, hyperoside, isoquercitrin and their aglycones: quercitri, quercetol, luteolin, kaempferol and apigenin); (3) identification of specific absorption at wavelengths between 700-200 nm; (4) identify the phenolic compounds from Echinacea species based on spectral characteristics and the specific absorption; each class of compounds corresponds to a maximum absorption in the UV spectrum. The phytochemical compounds were identified at specific wavelengths between 700-200 nm. The absorption intensities were measured. The obtained results proved that ethanolic extract showed absorption peaks attributed to: phenolic compounds (free phenolic acids and phenolic acids derivatives) registrated between 220-280 nm, unsymmetrical chemical structure compounds (caffeic acid, chlorogenic acid, ferulic acid) with maximum absorption peak and absorption "shoulder" that may be due to substitution of hydroxyl or methoxy group, flavonoid compounds (in free form or glycosides) between 330-360 nm, due to the double bond in position 2,3 and carbonyl group in position 4 flavonols. UV spectra showed two major peaks of absorption (quercetin glycoside, rutin, etc.). The results obtained by UV-VIS spectroscopy has revealed the presence of phenolic derivatives such as cicoric acid (240 nm), caftaric acid (329 nm), caffeic acid (240 nm), rutoside (205 nm), quercetin (255 nm), luteolin (235 nm) in all three species of Echinacea. The echinacoside is absent. This profile mentioned above and the absence of phenolic compound echinacoside leads to the conclusion that species harvested as Echinacea angustifolia and Echinacea pallida are Echinacea purpurea also; It can be said that preliminary fingerprinting of Echinacea species through correspondence with the phenolic derivatives profile can be achieved by UV-VIS spectroscopic investigation, which is an adequate technique for preliminary identification and authentication of Echinacea in medicinal herbs.

Keywords: Echinacea species, Fingerprinting, Phenolic compounds, UV-VIS spectroscopy

Procedia PDF Downloads 245
3605 Temperature Distribution in Friction Stir Welding Using Finite Element Method

Authors: Armansyah, I. P. Almanar, M. Saiful Bahari Shaari, M. Shamil Jaffarullah, Nur’amirah Busu, M. Arif Fadzleen Zainal Abidin, M. Amlie A. Kasim

Abstract:

Temperature distribution in Friction Stir Welding (FSW) of 6061-T6 Aluminum Alloy is modeled using the Finite Element Method (FEM). In order to obtain temperature distribution in the welded aluminum plates during welding operation, transient thermal finite element analyses are performed. Heat input from tool shoulder and tool pin are considered in the model. A moving heat source with a heat distribution simulating the heat generated by frictions between tool shoulder and workpiece is used in the analysis. Three-dimensional model for simulated process is carried out by using Altair HyperWork, a commercially available software. Transient thermal finite element analyses are performed in order to obtain the temperature distribution in the welded Aluminum plates during welding operation. The developed model was then used to show the effect of various input parameters such as total rate of welding speed and rotational speed on temperature distribution in the workpiece.

Keywords: frictions stir welding, temperature distribution, finite element method, altair hyperwork

Procedia PDF Downloads 529
3604 Topology Optimization of Heat Exchanger Manifolds for Aircraft

Authors: Hanjong Kim, Changwan Han, Seonghun Park

Abstract:

Heat exchanger manifolds in aircraft play an important role in evenly distributing the fluid entering through the inlet to the heat transfer unit. In order to achieve this requirement, the manifold should be designed to have a light weight by withstanding high internal pressure. Therefore, this study aims at minimizing the weight of the heat exchanger manifold through topology optimization. For topology optimization, the initial design space was created with the inner surface extracted from the currently used manifold model and with the outer surface having a dimension of 243.42 mm of X 74.09 mm X 65 mm. This design space solid model was transformed into a finite element model with a maximum tetrahedron mesh size of 2 mm using ANSYS Workbench. Then, topology optimization was performed under the boundary conditions of an internal pressure of 5.5 MPa and the fixed support for rectangular inlet boundaries by SIMULIA TOSCA. This topology optimization produced the minimized finial volume of the manifold (i.e., 7.3% of the initial volume) based on the given constraints (i.e., 6% of the initial volume) and the objective function (i.e., maximizing manifold stiffness). Weight of the optimized model was 6.7% lighter than the currently used manifold, but after smoothing the topology optimized model, this difference would be bigger. The current optimized model has uneven thickness and skeleton-shaped outer surface to reduce stress concentration. We are currently simplifying the optimized model shape with spline interpolations by reflecting the design characteristics in thickness and skeletal structures from the optimized model. This simplified model will be validated again by calculating both stress distributions and weight reduction and then the validated model will be manufactured using 3D printing processes.

Keywords: topology optimization, manifold, heat exchanger, 3D printing

Procedia PDF Downloads 235
3603 Effects of Cattaneo-Christov Heat Flux on 3D Magnetohydrodynamic Viscoelastic Fluid Flow with Variable Thermal Conductivity

Authors: Muhammad Ramzan

Abstract:

A mathematical model has been envisaged to discuss three-dimensional Viscoelastic fluid flow with an effect of Cattaneo-Christov heat flux in attendance of magnetohydrodynamic (MHD). Variable thermal conductivity with the impact of homogeneous-heterogeneous reactions and convective boundary condition is also taken into account. Homotopy analysis method is engaged to obtain series solutions. Graphical illustrations depicting behaviour of sundry parameters on skin friction coefficient and all involved distributions are also given. It is observed that velocity components are decreasing functions of Viscoelastic fluid parameter. Furthermore, strength of homogeneous and heterogeneous reactions have opposite effects on concentration distribution. A comparison with a published paper has also been established and an excellent agreement is obtained; hence reliable results are being presented.

Keywords: Cattaneo Christov heat flux, homogenous-heterogeneous reactions, magnetic field, variable thermal conductivity

Procedia PDF Downloads 191
3602 Effect of Post Hardening on PVD Coated Tools

Authors: Manjinder Bajwa, Mahipal Singh, Ashish Tulli

Abstract:

In the research, the effect of varying cutting parameters, design parameters and heat treatment processes were studied on the cutting performance (Tool life) of a PVD coated tool. Thus, in a quest for these phenomenon comparison, a single coated tool and a multicoated tool were analyzed after suitable heat treatment process. TNMG shaped insert with single coating of TiCN and multi-coating of TiAlN/TiN were developed on tungsten carbide substrate. These coated inserts were then successfully annealed and normalized for a temperature of 350°C for 30 minutes and their cutting performance was evaluated as per the flank wear obtained after turning of mild steel. The results showed that heat treatment had a suitable impact on the tool life of the coated insert and also led to increase in the micro-hardness of the tool coatings and decrease in the wear rate.

Keywords: PVD coatings, flank wear, micro-hardness, annealing, normalizing

Procedia PDF Downloads 341
3601 Heat Transfer Phenomena Identification of a Non-Active Floor in a Stack-Ventilated Building in Summertime: Empirical Study

Authors: Miguel Chen Austin, Denis Bruneau, Alain Sempey, Laurent Mora, Alain Sommier

Abstract:

An experimental study in a Plus Energy House (PEH) prototype was conducted in August 2016. It aimed to highlight the energy charge and discharge of a concrete-slab floor submitted to the day-night-cycles heat exchanges in the southwestern part of France and to identify the heat transfer phenomena that take place in both processes: charge and discharge. The main features of this PEH, significant to this study, are the following: (i) a non-active slab covering the major part of the entire floor surface of the house, which include a concrete layer 68 mm thick as upper layer; (ii) solar window shades located on the north and south facades along with a large eave facing south, (iii) large double-glazed windows covering the majority of the south facade, (iv) a natural ventilation system (NVS) composed by ten automatized openings with different dimensions: four are located on the south facade, four on the north facade and two on the shed roof (north-oriented). To highlight the energy charge and discharge processes of the non-active slab, heat flux and temperature measurement techniques were implemented, along with airspeed measurements. Ten “measurement-poles” (MP) were distributed all over the concrete-floor surface. Each MP represented a zone of measurement, where air and surface temperatures, and convection and radiation heat fluxes, were intended to be measured. The airspeed was measured only at two points over the slab surface, near the south facade. To identify the heat transfer phenomena that take part in the charge and discharge process, some relevant dimensionless parameters were used, along with statistical analysis; heat transfer phenomena were identified based on this analysis. Experimental data, after processing, had shown that two periods could be identified at a glance: charge (heat gain, positive values) and discharge (heat losses, negative values). During the charge period, on the floor surface, radiation heat exchanges were significantly higher compared with convection. On the other hand, convection heat exchanges were significantly higher than radiation, in the discharge period. Spatially, both, convection and radiation heat exchanges are higher near the natural ventilation openings and smaller far from them, as expected. Experimental correlations have been determined using a linear regression model, showing the relation between the Nusselt number with relevant parameters: Peclet, Rayleigh, and Richardson numbers. This has led to the determination of the convective heat transfer coefficient and its comparison with the convective heat coefficient resulting from measurements. Results have shown that forced and natural convection coexists during the discharge period; more accurate correlations with the Peclet number than with the Rayleigh number, have been found. This may suggest that forced convection is stronger than natural convection. Yet, airspeed levels encountered suggest that it is natural convection that should take place rather than forced convection. Despite this, Richardson number values encountered indicate otherwise. During the charge period, air-velocity levels might indicate that none air motion occurs, which might lead to heat transfer by diffusion instead of convection.

Keywords: heat flux measurement, natural ventilation, non-active concrete slab, plus energy house

Procedia PDF Downloads 407
3600 Numerical Study of Entropy Generation Due to Hybrid Nano-Fluid Flow through Coaxial Porous Disks

Authors: Muhammad Bilal Ameen, M. Zubair Akbar Qureshi

Abstract:

The current investigation of two-dimensional hybrid nanofluid flows with two coaxial parallel disks has been presented. Consider the hybrid nanofluid has been taken as steady-state. Consider the coaxial disks that have been porous. Consider the heat equation to examine joule heating and viscous dissipation effects. Nonlinear partial differential equations have been solved numerically. For shear stress and heat transfer, results are tabulated. Hybrid nanoparticles and Eckert numbers are increasing for heat transfer. Entropy generation is expanded with radiation parameters Eckert, Reynold, Prandtl, and Peclet numbers. A set of ordinary differential equations is obtained to utilize the capable transformation variables. The numerical solution of the continuity, momentum, energy, and entropy generation equations is obtaining using the command bvp4c of Matlab as a solver. To explore the impact of main parameters like suction/infusion, Prandtl, Reynold, Eckert, Peclet number, and volume fraction parameters, various graphs have been plotted and examined. It is concluded that a convectional nanofluid is highly compared by entropy generation with the boundary layer of hybrid nanofluid.

Keywords: entropy generation, hybrid nano fluid, heat transfer, porous disks

Procedia PDF Downloads 137
3599 Austenite Transformation in Duplex Stainless Steels under Fast Cooling Rates

Authors: L. O. Luengas, E. V. Morales, L. F. G. De Souza, I. S. Bott

Abstract:

Duplex Stainless Steels are well known for its good mechanical properties, and corrosion resistance. However, when submitted to heating, these features can be lost since the good properties are strongly dependent on the austenite-ferrite phase ratio which has to be approximately 1:1 to keep the phase balance. In a welded joint, the transformation kinetics at the heat affected zone (HAZ) is a function of the cooling rates applied which in turn are dependent on the heat input. The HAZ is usually ferritized at these temperatures, and it has been argued that small variations of the chemical composition can play a role in the solid state transformation sequence of ferrite to austenite during cooling. The δ → γ transformation has been reported to be massive and diffusionless due to the fast cooling rate, but it is also considered a diffusion controlled transformation. The aim of this work is to evaluate the effect of different heat inputs on the HAZ of two duplex stainless steels UNS S32304 and S32750, obtained by physical simulation.

Keywords: duplex stainless steels, HAZ, microstructural characterization, physical simulation

Procedia PDF Downloads 270
3598 Investigation of Water Absorption and Compressive Strength of Resin Coated Mortar

Authors: Yasir Ali, Zain Ul Abdin, Muhammad Wisal Khattak

Abstract:

Nowadays various advanced techniques are used to enhance the performance of materials in the field of construction engineering. Structures exposed to an aggressive, humid and hostile environment are experiencing severe negative impacts which lead to premature failure. Polyester resin is one of the advanced material used for improving performance of structural materials especially for repair/ refurbish purpose of structures and protection from contaminated environmental effect/ hazards. This study investigated the aptness of the polyester resin as coating agent on the mortar and assessed its performance in an ambient environment of Pakistan. Cubical specimens of mortar were fabricated. These specimens were tested for water absorption and compressive strength after one day and sixty days. These tests were performed under different exposure conditions (ambient environment and submerged in water). The specimens were coated with one, two and three layers and results were compared to control (no/ zero resin layer) specimens. Test results indicated that there is a significant decrease in water absorption of mortar coated with resin when compared to controlled specimens. The compressive strength test results revealed that resin coated specimen had higher strength when compared to controlled specimens. The results suggested that resin is a promising material and can be used effectively in structures which are exposed to high temperatures. The study would be helpful in improving performance of the structural material in a hazardous environment.

Keywords: ambient environment, coating, mortar, polyester resin

Procedia PDF Downloads 351
3597 Effects of G-jitter Combined with Heat and Mass Transfer by Mixed Convection MHD Flow of Maxwell Fluid in a Porous Space

Authors: Faisal Salah, Z. A. Aziz, K. K. Viswanathan

Abstract:

In this article, the effects of g-jitter induced and combined with heat and mass transfer by mixed convection of MHD Maxwell fluid in microgravity situation is investigated for a simple system. This system consists of two heated vertical parallel infinite flat plates held at constant but different temperatures and concentrations. By using modified Darcy’s law, the equations governing the flow are modelled. These equations are solved analytically for the induced velocity, temperature and concentration distributions. Many interesting available results in the relevant literature (i.e. Newtonian fluid) is obtained as the special case of the present general analysis. Finally, the graphical results for the velocity profile of the oscillating flow in the channel are presented and discussed for different values of the material constants.

Keywords: g-jitter, heat and mass transfer, mixed convection, Maxwell fluid, porous medium

Procedia PDF Downloads 480