Search results for: network security management
5718 Advancements in Autonomous Drones for Enhanced Healthcare Logistics
Authors: Bhaargav Gupta P., Vignesh N., Nithish Kumar R., Rahul J., Nivetha Ruvah D.
Abstract:
Delivering essential medical supplies to rural and underserved areas is challenging due to infrastructure limitations and logistical barriers, often resulting in inefficiencies and delays. Traditional delivery methods are hindered by poor road networks, long distances, and difficult terrains, compromising timely access to vital resources, especially in emergencies. This paper introduces an autonomous drone system engineered to optimize last-mile delivery. By utilizing advanced navigation and object-detection algorithms, such as region-based convolutional neural networks (R-CNN), our drones efficiently avoid obstacles, identify safe landing zones, and adapt dynamically to varying environments. Equipped with high-precision GPS and autonomous capabilities, the drones effectively navigate complex, remote areas with minimal dependence on established infrastructure. The system includes a dedicated mobile application for secure order placement and real-time tracking, and a secure payload box with OTP verification ensures tamper-resistant delivery to authorized recipients. This project demonstrates the potential of automated drone technology in healthcare logistics, offering a scalable and eco-friendly approach to enhance accessibility and service delivery in underserved regions. By addressing logistical gaps through advanced automation, this system represents a significant advancement toward sustainable, accessible healthcare in remote areas.Keywords: region-based convolutional neural network, one time password, global positioning system, autonomous drones, healthcare logistics
Procedia PDF Downloads 105717 Development of Beeswax-Discharge Writing Material for Visually Impaired Persons
Authors: K. Doi, T. Nishimura, H. Fujimoto, T. Tanaka
Abstract:
It has been known that visually impaired persons have some problems in getting visual information. Therefore, information accessibility for the visually impaired persons is very important in a current information society. Some application software with read-aloud function for using personal computer and smartphone are getting more and more popular among visually impaired persons in the world. On the other hand, it is also very important for being able to learn how to read and write characters such as Braille and Visual character. Braille typewriter has been widely used in learning Braille. And also raised-line drawing kits as writing material has been used for decades for especially acquired visually impaired persons. However, there are some drawbacks such as the drawn line cannot be erased. Moreover, visibility of drawing lines is not so good for visually impaired with low vision. We had significant number of requests for developing new writing material for especially acquired visually impaired persons instead of raised-line drawing kits. For conducting development research of novel writing material, we could receive a research grant from ministry of health, labor and welfare in Japanese government. In this research, we developed writing material typed pens and pencils with Beeswax-discharge instead of conventional raised-line drawing kits. This writing material was equipped with cartridge heater for melting beeswax and its heat controller. When this pen users held down the pen tip on the regular paper such as fine paper and so on, the melted beeswax could be discharged from pen tip with valve structure. The beeswax was discharged at 100 gf of holding down force based on results of our previous trial study. The shape of pen tip was semispherical for becoming low friction between pen tip and surface of paper. We conducted one basic experiment to evaluate influence of the curvature of pen tip on ease to write. Concretely, the conditions of curvature was 0.15, 0.35, 0.50, 1.00 mm. The following four interval scales were used as indexes of subjective assessment during writing such as feeling of smooth motion of pen, feeling of comfortable writing, sense of security and feeling of writing fatigue. Ten subjects were asked to participate in this experiment. The results reveal that subjects could draw easily when the radius of the pen tip was 1.00 mm, and lines drawn with beeswax-discharge writing material were easy to perceive.Keywords: beeswax-discharge writing material, raised-line drawing kits, visually impaired persons, pen tip
Procedia PDF Downloads 3095716 Submarines Unmanned Vehicle for Underwater Exploration and Monitoring System in Indonesia
Authors: Nabila Dwi Agustin, Ria Septitis Mentari, Nugroho Adi Sasongko
Abstract:
Indonesia is experiencing a crisis in the development of defense equipment. Most of Indonesia's defense equipment must import its parts from other countries. Moreover, the area of Indonesia is 2/3 of its territory is the sea areas. For the protection of marine areas, Indonesia relies solely on submarines in monitoring conditions and whether or not intruders enter their territory. In fact, we know the submarine has a large size so that the expenses are getting bigger, the time it takes longer and needs a big maneuver to operate the submarine. Indeed, the submarine can only be operated for deeper seas. Many other countries enter the underwater world of Indonesia but Indonesia could not do anything due to the limitations of underwater monitoring system. At the same time, reconnaissance and monitor for shallow seas cannot be done by submarine. Equipment that can be used for surveillance of shallow underwater areas shall be made. This study reviewed the current research and development initiative of the submarine unmanned vehicle (SUV) or unmanned undersea vehicle (UUV) in Indonesia. This can explore underwater without the need for an operator to operate in it, but we can monitor it from a long distance. UUV has several advantages that size can be reduced as we desired, rechargeable ship batteries, has a detection sonar commonly found on a submarine and agile movement to detect at shallow sea depth. In the sonar sensors consisted of MEMS (Micro Electro Mechanical System), the sonar system runs more efficiently and effectively to monitor the target. UUV that has been developed will be very useful if the equipment is used around the outlying islands and outer from Indonesia especially the island frequented by foreign submarines without us know. The impact of this may not be felt now but it will allow foreign countries to attack Indonesia from within for the future. In addition, UUV needs to be equipped with a anti-radar system so that submarines of other countries crossing borders cannot detect it and Indonesia anti-submarine vessels can take further security measures. As the recommendation, Indonesia should take decisive steps in the state border rules, especially submarines of other countries that deliberately cross the borders of the state. This decisive action not only by word alone but also action as well. Indonesia government should show the strength and sovereignty as the entire society unites and applies the principle of universal peace.Keywords: submarine unmanned vehicle, submarine, development of defense equipment, the border of Indonesia
Procedia PDF Downloads 1475715 Bayesian System and Copula for Event Detection and Summarization of Soccer Videos
Authors: Dhanuja S. Patil, Sanjay B. Waykar
Abstract:
Event detection is a standout amongst the most key parts for distinctive sorts of area applications of video data framework. Recently, it has picked up an extensive interest of experts and in scholastics from different zones. While detecting video event has been the subject of broad study efforts recently, impressively less existing methodology has considered multi-model data and issues related efficiency. Start of soccer matches different doubtful circumstances rise that can't be effectively judged by the referee committee. A framework that checks objectively image arrangements would prevent not right interpretations because of some errors, or high velocity of the events. Bayesian networks give a structure for dealing with this vulnerability using an essential graphical structure likewise the probability analytics. We propose an efficient structure for analysing and summarization of soccer videos utilizing object-based features. The proposed work utilizes the t-cherry junction tree, an exceptionally recent advancement in probabilistic graphical models, to create a compact representation and great approximation intractable model for client’s relationships in an interpersonal organization. There are various advantages in this approach firstly; the t-cherry gives best approximation by means of junction trees class. Secondly, to construct a t-cherry junction tree can be to a great extent parallelized; and at last inference can be performed utilizing distributed computation. Examination results demonstrates the effectiveness, adequacy, and the strength of the proposed work which is shown over a far reaching information set, comprising more soccer feature, caught at better places.Keywords: summarization, detection, Bayesian network, t-cherry tree
Procedia PDF Downloads 3265714 Neural Network based Risk Detection for Dyslexia and Dysgraphia in Sinhala Language Speaking Children
Authors: Budhvin T. Withana, Sulochana Rupasinghe
Abstract:
The educational system faces a significant concern with regards to Dyslexia and Dysgraphia, which are learning disabilities impacting reading and writing abilities. This is particularly challenging for children who speak the Sinhala language due to its complexity and uniqueness. Commonly used methods to detect the risk of Dyslexia and Dysgraphia rely on subjective assessments, leading to limited coverage and time-consuming processes. Consequently, delays in diagnoses and missed opportunities for early intervention can occur. To address this issue, the project developed a hybrid model that incorporates various deep learning techniques to detect the risk of Dyslexia and Dysgraphia. Specifically, Resnet50, VGG16, and YOLOv8 models were integrated to identify handwriting issues. The outputs of these models were then combined with other input data and fed into an MLP model. Hyperparameters of the MLP model were fine-tuned using Grid Search CV, enabling the identification of optimal values for the model. This approach proved to be highly effective in accurately predicting the risk of Dyslexia and Dysgraphia, providing a valuable tool for early detection and intervention. The Resnet50 model exhibited a training accuracy of 0.9804 and a validation accuracy of 0.9653. The VGG16 model achieved a training accuracy of 0.9991 and a validation accuracy of 0.9891. The MLP model demonstrated impressive results with a training accuracy of 0.99918, a testing accuracy of 0.99223, and a loss of 0.01371. These outcomes showcase the high accuracy achieved by the proposed hybrid model in predicting the risk of Dyslexia and Dysgraphia.Keywords: neural networks, risk detection system, dyslexia, dysgraphia, deep learning, learning disabilities, data science
Procedia PDF Downloads 645713 Remaining Useful Life Estimation of Bearings Based on Nonlinear Dimensional Reduction Combined with Timing Signals
Authors: Zhongmin Wang, Wudong Fan, Hengshan Zhang, Yimin Zhou
Abstract:
In data-driven prognostic methods, the prediction accuracy of the estimation for remaining useful life of bearings mainly depends on the performance of health indicators, which are usually fused some statistical features extracted from vibrating signals. However, the existing health indicators have the following two drawbacks: (1) The differnet ranges of the statistical features have the different contributions to construct the health indicators, the expert knowledge is required to extract the features. (2) When convolutional neural networks are utilized to tackle time-frequency features of signals, the time-series of signals are not considered. To overcome these drawbacks, in this study, the method combining convolutional neural network with gated recurrent unit is proposed to extract the time-frequency image features. The extracted features are utilized to construct health indicator and predict remaining useful life of bearings. First, original signals are converted into time-frequency images by using continuous wavelet transform so as to form the original feature sets. Second, with convolutional and pooling layers of convolutional neural networks, the most sensitive features of time-frequency images are selected from the original feature sets. Finally, these selected features are fed into the gated recurrent unit to construct the health indicator. The results state that the proposed method shows the enhance performance than the related studies which have used the same bearing dataset provided by PRONOSTIA.Keywords: continuous wavelet transform, convolution neural net-work, gated recurrent unit, health indicators, remaining useful life
Procedia PDF Downloads 1335712 A Mega-Analysis of the Predictive Power of Initial Contact within Minimal Social Network
Authors: Cathal Ffrench, Ryan Barrett, Mike Quayle
Abstract:
It is accepted in social psychology that categorization leads to ingroup favoritism, without further thought given to the processes that may co-occur or even precede categorization. These categorizations move away from the conceptualization of the self as a unique social being toward an increasingly collective identity. Subsequently, many individuals derive much of their self-evaluations from these collective identities. The seminal literature on this topic argues that it is primarily categorization that evokes instances of ingroup favoritism. Apropos to these theories, we argue that categorization acts to enhance and further intergroup processes rather than defining them. More accurately, we propose categorization aids initial ingroup contact and this first contact is predictive of subsequent favoritism on individual and collective levels. This analysis focuses on Virtual Interaction APPLication (VIAPPL) based studies, a software interface that builds on the flaws of the original minimal group studies. The VIAPPL allows the exchange of tokens in an intra and inter-group manner. This token exchange is how we classified the first contact. The study involves binary longitudinal analysis to better understand the subsequent exchanges of individuals based on who they first interacted with. Studies were selected on the criteria of evidence of explicit first interactions and two-group designs. Our findings paint a compelling picture in support of a motivated contact hypothesis, which suggests that an individual’s first motivated contact toward another has strong predictive capabilities for future behavior. This contact can lead to habit formation and specific favoritism towards individuals where contact has been established. This has important implications for understanding how group conflict occurs, and how intra-group individual bias can develop.Keywords: categorization, group dynamics, initial contact, minimal social networks, momentary contact
Procedia PDF Downloads 1485711 LGR5 and Downstream Intracellular Signaling Proteins Play Critical Roles in the Cell Proliferation of Neuroblastoma, Meningioma and Pituitary Adenoma
Authors: Jin Hwan Cheong, Mina Hwang, Myung Hoon Han, Je Il Ryu, Young ha Oh, Seong Ho Koh, Wu Duck Won, Byung Jin Ha
Abstract:
Leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5) has been reported to play critical roles in the proliferation of various cancer cells. However, the roles of LGR5 in brain tumors and the specific intracellular signaling proteins directly associated with it remain unknown. Expression of LGR5 was first measured in normal brain tissue, meningioma, and pituitary adenoma of humans. To identify the downstream signaling pathways of LGR5, siRNA-mediated knockdown of LGR5 was performed in SH-SY5Y neuroblastoma cells followed by proteomics analysis with 2-dimensional polyacrylamide gel electrophoresis (2D-PAGE). In addition, the expression of LGR5-associated proteins was evaluated in LGR5-inꠓhibited neuroblastoma cells and in human normal brain, meningioma, and pituitary adenoma tissue. Proteomics analysis showed 12 protein spots were significantly different in expression level (more than two-fold change) and subsequently identified by peptide mass fingerprinting. A protein association network was constructed from the 12 identified proteins altered by LGR5 knockdown. Direct and indirect interactions were identified among the 12 proteins. HSP 90-beta was one of the proteins whose expression was altered by LGR5 knockdown. Likewise, we observed decreased expression of proteins in the hnRNP subfamily following LGR5 knockdown. In addition, we have for the first time identified significantly higher hnRNP family expression in meningioma and pituitary adenoma compared to normal brain tissue. Taken together, LGR5 and its downstream sigꠓnaling play critical roles in neuroblastoma and brain tumors such as meningioma and pituitary adenoma.Keywords: LGR5, neuroblastoma, meningioma, pituitary adenoma, hnRNP
Procedia PDF Downloads 565710 TessPy – Spatial Tessellation Made Easy
Authors: Jonas Hamann, Siavash Saki, Tobias Hagen
Abstract:
Discretization of urban areas is a crucial aspect in many spatial analyses. The process of discretization of space into subspaces without overlaps and gaps is called tessellation. It helps understanding spatial space and provides a framework for analyzing geospatial data. Tessellation methods can be divided into two groups: regular tessellations and irregular tessellations. While regular tessellation methods, like squares-grids or hexagons-grids, are suitable for addressing pure geometry problems, they cannot take the unique characteristics of different subareas into account. However, irregular tessellation methods allow the border between the subareas to be defined more realistically based on urban features like a road network or Points of Interest (POI). Even though Python is one of the most used programming languages when it comes to spatial analysis, there is currently no library that combines different tessellation methods to enable users and researchers to compare different techniques. To close this gap, we are proposing TessPy, an open-source Python package, which combines all above-mentioned tessellation methods and makes them easily accessible to everyone. The core functions of TessPy represent the five different tessellation methods: squares, hexagons, adaptive squares, Voronoi polygons, and city blocks. By using regular methods, users can set the resolution of the tessellation which defines the finesse of the discretization and the desired number of tiles. Irregular tessellation methods allow users to define which spatial data to consider (e.g., amenity, building, office) and how fine the tessellation should be. The spatial data used is open-source and provided by OpenStreetMap. This data can be easily extracted and used for further analyses. Besides the methodology of the different techniques, the state-of-the-art, including examples and future work, will be discussed. All dependencies can be installed using conda or pip; however, the former is more recommended.Keywords: geospatial data science, geospatial data analysis, tessellations, urban studies
Procedia PDF Downloads 1285709 Importance of Human Resources Training in an Information Age
Authors: A. Serap Fırat
Abstract:
The aim of this study is to display conceptually the relationship and interaction between matter of human resources training and the information age. Fast development from industrial community to an information community has occurred and organizations have been seeking ways to overcome this change. Human resources policy and human capital with enhanced competence will have direct impact on work performance; therefore, this paper deals with the increased importance of human resource management due to the fact that it nurtures human capital. Researching and scanning are used as a method in this study. Both local and foreign literature and expert views are employed -as much as one could be- in the making of the theoretical framework of this study.Keywords: human resources, information age, education, organization, occupation
Procedia PDF Downloads 3725708 The Overseas Promotion of National Identity by France and Japan for Global Outreach: A Comparative and Discursive Analysis of Their Narratives on Public Diplomacy since the End of the Cold War
Authors: Natsuko D'Aprile
Abstract:
The construction of Nation-States is a historical process that produces a type of national identity and culture that States nowadays mobilise for global outreach. National culture, as a set of norms and values influencing individuals’ actions and decisions, produces a type of policy making of various strategies that impact how a Nation is promoted overseas. The 1990s were marked by a resurgence of the debates on national identity. This period is believed to have paved the way for nationalism and witnessed increased attention to analytical approaches to identity. Public diplomacy is a concrete example of how national culture is mobilised to project a favourable image of a Nation abroad, especially in the narratives on national identity mobilised by diplomatic actors. Public diplomacy is understood as providing tools for States to build and project strategic narratives that represent events and identities in an attempt to influence domestic and foreign audiences, be they domestic or foreign. France and Japan received little attention on the matter. This research hence aims to investigate how France and Japan have mobilised narratives on national identity since the 1990s in the context of their public diplomacy. To understand how identities are framed, qualitative and quantitative discourse analysis has been performed on a corpus of various speeches held by French and Japanese political actors in which they present their diplomacy goals, as well as official documents provided by both Ministries of Foreign Affairs. This analysis showed that the French discourse integrates a narrative on France’s universal vocation, relying on the expression of a Nation whose model is worldly applicable and has the legitimacy to influence international decisions. The Japanese discourse does not concretely emphasise Japanese or Asian values, except for some narratives integrating Confucian and Shintō values. It rather revolves around the need for Japan to ensure its citizens’ security and prosperity, hence the need for the Government to contribute to peace in the Asia-Pacific region and the world.Keywords: comparative politics, culture, discourse analysis, narratives, public diplomacy
Procedia PDF Downloads 805707 Human-Centred Data Analysis Method for Future Design of Residential Spaces: Coliving Case Study
Authors: Alicia Regodon Puyalto, Alfonso Garcia-Santos
Abstract:
This article presents a method to analyze the use of indoor spaces based on data analytics obtained from inbuilt digital devices. The study uses the data generated by the in-place devices, such as smart locks, Wi-Fi routers, and electrical sensors, to gain additional insights on space occupancy, user behaviour, and comfort. Those devices, originally installed to facilitate remote operations, report data through the internet that the research uses to analyze information on human real-time use of spaces. Using an in-place Internet of Things (IoT) network enables a faster, more affordable, seamless, and scalable solution to analyze building interior spaces without incorporating external data collection systems such as sensors. The methodology is applied to a real case study of coliving, a residential building of 3000m², 7 floors, and 80 users in the centre of Madrid. The case study applies the method to classify IoT devices, assess, clean, and analyze collected data based on the analysis framework. The information is collected remotely, through the different platforms devices' platforms; the first step is to curate the data, understand what insights can be provided from each device according to the objectives of the study, this generates an analysis framework to be escalated for future building assessment even beyond the residential sector. The method will adjust the parameters to be analyzed tailored to the dataset available in the IoT of each building. The research demonstrates how human-centered data analytics can improve the future spatial design of indoor spaces.Keywords: in-place devices, IoT, human-centred data-analytics, spatial design
Procedia PDF Downloads 1975706 Application of Electronic Nose Systems in Medical and Food Industries
Authors: Khaldon Lweesy, Feryal Alskafi, Rabaa Hammad, Shaker Khanfar, Yara Alsukhni
Abstract:
Electronic noses are devices designed to emulate the humane sense of smell by characterizing and differentiating odor profiles. In this study, we build a low-cost e-nose using an array module containing four different types of metal oxide semiconductor gas sensors. We used this system to create a profile for a meat specimen over three days. Then using a pattern recognition software, we correlated the odor of the specimen to its age. It is a simple, fast detection method that is both non-expensive and non-destructive. The results support the usage of this technology in food control management.Keywords: e-nose, low cost, odor detection, food safety
Procedia PDF Downloads 1415705 Red-Tide Detection and Prediction Using MODIS Data in the Arabian Gulf of Qatar
Authors: Yasir E. Mohieldeen
Abstract:
Qatar is one of the most water scarce countries in the World. In 2014, the average per capita rainfall was less than 29 m3/y/ca, while the global average is 6,000 m3/y/ca. However, the per capita water consumption in Qatar is among the highest in the World: more than 500 liters per person per day, whereas the global average is 160 liters per person per day. Since the early 2000s, Qatar has been relying heavily on desalinated water from the Arabian Gulf as the main source of fresh water. In 2009, about 99.9% of the total potable water produced was desalinated. Reliance on desalinated water makes Qatar very vulnerable to water related natural disasters, such as the red-tide phenomenon. Qatar’s strategic water reserve lasts for only 7 days. In case of red-tide outbreak, the country would not be able to desalinate water for days, let alone the months that this disaster would bring about (as it clogs the desalination equipment). The 2008-09 red-tide outbreak, for instance, lasted for more than eight months and forced the closure of desalination plants in the region for weeks. This study aims at identifying favorite conditions for red-tide outbreaks, using satellite data along with in-situ measurements. This identification would allow the prediction of these outbreaks and their hotspots. Prediction and monitoring of outbreaks are crucial to water security in the country, as different measures could be put in place in advance to prevent an outbreak and mitigate its impact if it happened. Red-tide outbreaks are detected using different algorithms for chlorophyll concentration in the Gulf waters. Vegetation indices, such as Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) were used along with Surface Algae Bloom Index (SABI) to detect known outbreaks. MODIS (or Moderate Resolution Imaging Spectroradiometer) bands are used to calculate these indices. A red-tide outbreaks atlas in the Arabian Gulf is being produced. Prediction of red-tide outbreaks ahead of their occurrences would give critical information on possible water-shortage in the country. Detecting known outbreaks in the past few decades and related parameters (e.g. water salinity, water surface temperature, nutrition, sandstorms, … etc) enables the identification of favorite conditions of red-tide outbreak that are key to the prediction of these outbreaks.Keywords: Arabian Gulf, MODIS, red-tide detection, strategic water reserve, water desalination
Procedia PDF Downloads 1075704 Review of Health Disparities in Migrants Attending the Emergency Department with Acute Mental Health Presentations
Authors: Jacqueline Eleonora Ek, Michael Spiteri, Chris Giordimaina, Pierre Agius
Abstract:
Background: Malta is known for being a key player as a frontline country with regard to irregular immigration from Africa to Europe. Every year the island experiences an influx of migrants as boat movement across the Mediterranean continues to be a humanitarian challenge. Irregular immigration and applying for asylum is both a lengthy and mentally demanding process. Those doing so are often faced with multiple challenges, which can adversely affect their mental health. Between January and August 2020, Malta disembarked 2 162 people rescued at sea, 463 of them between July & August. Given the small size of the Maltese islands, this regulation places a disproportionately large burden on the country, creating a backlog in the processing of asylum applications resulting in increased time periods of detention. These delays reverberate throughout multiple management pathways resulting in prolonged periods of detention and challenging access to health services. Objectives: To better understand the spatial dimensions of this humanitarian crisis, this study aims to assess disparities in the acute medical management of migrants presenting to the emergency department (ED) with acute mental health presentations as compared to that of local and non-local residents. Method: In this retrospective study, 17795 consecutive ED attendances were reviewed to look for acute mental health presentations. These were further evaluated to assess discrepancies in transportation routes to hospital, nature of presenting complaint, effects of language barriers, use of CT brain, treatment given at ED, availability of psychiatric reviews, and final admission/discharge plans. Results: Of the ED attendances, 92.3% were local residents, and 7.7% were non-locals. Of the non-locals, 13.8% were migrants, and 86.2% were other-non-locals. Acute mental health presentations were seen in 1% of local residents; this increased to 20.6% in migrants. 56.4% of migrants attended with deliberate self-harm; this was lower in local residents, 28.9%. Contrastingly, in local residents, the most common presenting complaint was suicidal thought/ low mood 37.3%, the incidence was similar in migrants at 33.3%. The main differences included 12.8% of migrants presenting with refused oral intake while only 0.6% of local residents presented with the same complaints. 7.7% of migrants presented with a reduced level of consciousness, no local residents presented with this same issue. Physicians documented a language barrier in 74.4% of migrants. 25.6% were noted to be completely uncommunicative. Further investigations included the use of a CT scan in 12% of local residents and in 35.9% of migrants. The most common treatment administered to migrants was supportive fluids 15.4%, the most common in local residents was benzodiazepines 15.1%. Voluntary psychiatric admissions were seen in 33.3% of migrants and 24.7% of locals. Involuntary admissions were seen in 23% of migrants and 13.3% of locals. Conclusion: Results showed multiple disparities in health management. A meeting was held between entities responsible for migrant health in Malta, including the emergency department, primary health care, migrant detention services, and Malta Red Cross. Currently, national quality-improvement initiatives are underway to form new pathways to improve patient-centered care. These include an interpreter unit, centralized handover sheets, and a dedicated migrant health service.Keywords: emergency department, communication, health, migration
Procedia PDF Downloads 1145703 A Traditional Settlement in a Modernized City: Yanbu, Saudi Arabia
Authors: Hisham Mortada
Abstract:
Transition in the urban configuration of Arab cities has never been as radical and visible as it has been since the turn of the last century. The emergence of new cities near historical settlements of Arabia has spawned a series of developments in and around the old city precincts. New developments are based on advanced technology and conform to globally prevalent standards of city planning, superseding the vernacular arrangements based on traditional norms that guided so-called ‘city planning’. Evidence to this fact are the extant Arab buildings present at the urban core of modern cities, which inform us about intricate spatial organization. Organization that subscribed to multiple norms such as, satisfying gender segregation and socialization, economic sustainability, and ensuring security and environmental coherence etc., within settlement compounds. Several participating factors achieved harmony in such an inclusive city—an organization that was challenged and apparently replaced by the new planning order in the face of growing needs of globalized, economy-centric and high-tech models of development. Communities found it difficult to acclimatize with the new western planning models that were implemented at a very large scale throughout the Kingdom, which later experienced spatial re-structuring to suit users’ needs. A closer look the ancient city of Yanbu, now flanked with such new developments, allows us to differentiate and track the beginnings of this unprecedented transition in settlement formations. This paper aims to elaborate the Arabian context offered to both the ‘traditional’ and ‘modern’ planning approaches, in order to understand challenges and solutions offered by both at different times. In the process it will also establish the inconsistencies and conflicts that arose with the shift in planning paradigm, from traditional-'cultural norms’, to modern-'physical planning', in the Arabian context. Thus, by distinguishing the two divergent planning philosophies, their impact of the Arabian morphology, relevance to lifestyle and suitability to the biophysical environment, it concludes with a perspective on sustainability particularly for in case of Yanbu.Keywords: Yanbu, traditional architecture, Hijaz, coral building, Saudi Arabia
Procedia PDF Downloads 3215702 Pilot Scale Investigation on the Removal of Pollutants from Secondary Effluent to Meet Botswana Irrigation Standards Using Roughing and Slow Sand Filters
Authors: Moatlhodi Wise Letshwenyo, Lesedi Lebogang
Abstract:
Botswana is an arid country that needs to start reusing wastewater as part of its water security plan. Pilot scale slow sand filtration in combination with roughing filter was investigated for the treatment of effluent from Botswana International University of Science and Technology to meet Botswana irrigation standards. The system was operated at hydraulic loading rates of 0.04 m/hr and 0.12 m/hr. The results show that the system was able to reduce turbidity from 262 Nephelometric Turbidity Units to a range between 18 and 0 Nephelometric Turbidity Units which was below 30 Nephelometric Turbidity Units threshold limit. The overall efficacy ranged between 61% and 100%. Suspended solids, Biochemical Oxygen Demand, and Chemical Oxygen Demand removal efficiency averaged 42.6%, 45.5%, and 77% respectively and all within irrigation standards. Other physio-chemical parameters were within irrigation standards except for bicarbonate ion which averaged 297.7±44 mg L-1 in the influent and 196.22±50 mg L-1 in the effluent which was above the limit of 92 mg L-1, therefore averaging a reduction of 34.1% by the system. Total coliforms, fecal coliforms, and Escherichia coli in the effluent were initially averaging 1.1 log counts, 0.5 log counts, and 1.3 log counts respectively compared to corresponding influent log counts of 3.4, 2.7 and 4.1, respectively. As time passed, it was observed that only roughing filter was able to reach reductions of 97.5%, 86% and 100% respectively for faecal coliforms, Escherichia coli, and total coliforms. These organism numbers were observed to have increased in slow sand filter effluent suggesting multiplication in the tank. Water quality index value of 22.79 for the physio-chemical parameters suggests that the effluent is of excellent quality and can be used for irrigation purposes. However, the water quality index value for the microbial parameters (1820) renders the quality unsuitable for irrigation. It is concluded that slow sand filtration in combination with roughing filter is a viable option for the treatment of secondary effluent for reuse purposes. However, further studies should be conducted especially for the removal of microbial parameters using the system.Keywords: irrigation, slow sand filter, turbidity, wastewater reuse
Procedia PDF Downloads 1535701 Ground Short Circuit Contributions of a MV Distribution Line Equipped with PWMSC
Authors: Mohamed Zellagui, Heba Ahmed Hassan
Abstract:
This paper proposes a new approach for the calculation of short-circuit parameters in the presence of Pulse Width Modulated based Series Compensator (PWMSC). PWMSC is a newly Flexible Alternating Current Transmission System (FACTS) device that can modulate the impedance of a transmission line through applying a variation to the duty cycle (D) of a train of pulses with fixed frequency. This results in an improvement of the system performance as it provides virtual compensation of distribution line impedance by injecting controllable apparent reactance in series with the distribution line. This controllable reactance can operate in both capacitive and inductive modes and this makes PWMSC highly effective in controlling the power flow and increasing system stability in the system. The purpose of this work is to study the impact of fault resistance (RF) which varies between 0 to 30 Ω on the fault current calculations in case of a ground fault and a fixed fault location. The case study is for a medium voltage (MV) Algerian distribution line which is compensated by PWMSC in the 30 kV Algerian distribution power network. The analysis is based on symmetrical components method which involves the calculations of symmetrical components of currents and voltages, without and with PWMSC in both cases of maximum and minimum duty cycle value for capacitive and inductive modes. The paper presents simulation results which are verified by the theoretical analysis.Keywords: pulse width modulated series compensator (pwmsc), duty cycle, distribution line, short-circuit calculations, ground fault, symmetrical components method
Procedia PDF Downloads 5005700 Linking Adaptation to Climate Change and Sustainable Development: The Case of ClimAdaPT.Local in Portugal
Authors: A. F. Alves, L. Schmidt, J. Ferrao
Abstract:
Portugal is one of the more vulnerable European countries to the impacts of climate change. These include: temperature increase; coastal sea level rise; desertification and drought in the countryside; and frequent and intense extreme weather events. Hence, adaptation strategies to climate change are of great importance. This is what was addressed by ClimAdaPT.Local. This policy-oriented project had the main goal of developing 26 Municipal Adaptation Strategies for Climate Change, through the identification of local specific present and future vulnerabilities, the training of municipal officials, and the engagement of local communities. It is intended to be replicated throughout the whole territory and to stimulate the creation of a national network of local adaptation in Portugal. Supported by methodologies and tools specifically developed for this project, our paper is based on the surveys, training and stakeholder engagement workshops implemented at municipal level. In an 'adaptation-as-learning' process, these tools functioned as a social-learning platform and an exercise in knowledge and policy co-production. The results allowed us to explore the nature of local vulnerabilities and the exposure of gaps in the context of reappraisal of both future climate change adaptation opportunities and possible dysfunctionalities in the governance arrangements of municipal Portugal. Development issues are highlighted when we address the sectors and social groups that are both more sensitive and more vulnerable to the impacts of climate change. We argue that a pluralistic dialogue and a common framing can be established between them, with great potential for transformational adaptation. Observed climate change, present-day climate variability and future expectations of change are great societal challenges which should be understood in the context of the sustainable development agenda.Keywords: adaptation, ClimAdaPT.Local, climate change, Portugal, sustainable development
Procedia PDF Downloads 1965699 Model Driven Architecture Methodologies: A Review
Authors: Arslan Murtaza
Abstract:
Model Driven Architecture (MDA) is technique presented by OMG (Object Management Group) for software development in which different models are proposed and converted them into code. The main plan is to identify task by using PIM (Platform Independent Model) and transform it into PSM (Platform Specific Model) and then converted into code. In this review paper describes some challenges and issues that are faced in MDA, type and transformation of models (e.g. CIM, PIM and PSM), and evaluation of MDA-based methodologies.Keywords: OMG, model driven rrchitecture (MDA), computation independent model (CIM), platform independent model (PIM), platform specific model(PSM), MDA-based methodologies
Procedia PDF Downloads 4595698 A Corpus-Linguistic Analysis of Online Iranian News Coverage on Syrian Revolution
Authors: Amaal Ali Al-Gamde
Abstract:
The Syrian revolution is a major issue in the Middle East, which draws in world powers and receives a great focus in international mass media since 2011. The heavy global reliance on cyber news and digital sources plays a key role in conveying a sense of bias to a wide range of online readers. Thus, based on the assumption that media discourse possesses ideological implications, this study investigates the representation of Syrian revolution in online media. The paper explores the discursive constructions of anti and pro-government powers in Syrian revolution in 1000,000-word corpus of Fars online reports (an Iranian news agency), issued between 2013 and 2015. Taking a corpus assisted discourse analysis approach, the analysis investigates three types of lexicosemantic relations, the semantic macrostructures within which the two social actors are framed, the lexical collocations characterizing the news discourse and the discourse prosodies they tell about the two sides of the conflict. The study utilizes computer-based approaches, sketch engine and AntConc software to minimize the bias of the subjective analysis. The analysis moves from the insights of lexical frequencies and keyness scores to examine themes and the collocational patterns. The findings reveal the Fars agency’s ideological mode of representations in reporting events of Syrian revolution in two ways. The first is by stereotyping the opposition groups under the umbrella of terrorism, using words such as (law breakers, foreign-backed groups, militant groups, terrorists) to legitimize the atrocities of security forces against protesters and enhance horror among civilians. The second is through emphasizing the power of the government and depicting it as the defender of the Arab land by foregrounding the discourse of international conspiracy against Syria. The paper concludes discussing the potential importance of triangulating corpus linguistic tools with critical discourse analysis to elucidate more about discourses and reality.Keywords: discourse prosody, ideology, keyness, semantic macrostructure
Procedia PDF Downloads 1315697 Multifunctional Epoxy/Carbon Laminates Containing Carbon Nanotubes-Confined Paraffin for Thermal Energy Storage
Authors: Giulia Fredi, Andrea Dorigato, Luca Fambri, Alessandro Pegoretti
Abstract:
Thermal energy storage (TES) is the storage of heat for later use, thus filling the gap between energy request and supply. The most widely used materials for TES are the organic solid-liquid phase change materials (PCMs), such as paraffin. These materials store/release a high amount of latent heat thanks to their high specific melting enthalpy, operate in a narrow temperature range and have a tunable working temperature. However, they suffer from a low thermal conductivity and need to be confined to prevent leakage. These two issues can be tackled by confining PCMs with carbon nanotubes (CNTs). TES applications include the buildings industry, solar thermal energy collection and thermal management of electronics. In most cases, TES systems are an additional component to be added to the main structure, but if weight and volume savings are key issues, it would be advantageous to embed the TES functionality directly in the structure. Such multifunctional materials could be employed in the automotive industry, where the diffusion of lightweight structures could complicate the thermal management of the cockpit environment or of other temperature sensitive components. This work aims to produce epoxy/carbon structural laminates containing CNT-stabilized paraffin. CNTs were added to molten paraffin in a fraction of 10 wt%, as this was the minimum amount at which no leakage was detected above the melting temperature (45°C). The paraffin/CNT blend was cryogenically milled to obtain particles with an average size of 50 µm. They were added in various percentages (20, 30 and 40 wt%) to an epoxy/hardener formulation, which was used as a matrix to produce laminates through a wet layup technique, by stacking five plies of a plain carbon fiber fabric. The samples were characterized microstructurally, thermally and mechanically. Differential scanning calorimetry (DSC) tests showed that the paraffin kept its ability to melt and crystallize also in the laminates, and the melting enthalpy was almost proportional to the paraffin weight fraction. These thermal properties were retained after fifty heating/cooling cycles. Laser flash analysis showed that the thermal conductivity through the thickness increased with an increase of the PCM, due to the presence of CNTs. The ability of the developed laminates to contribute to the thermal management was also assessed by monitoring their cooling rates through a thermal camera. Three-point bending tests showed that the flexural modulus was only slightly impaired by the presence of the paraffin/CNT particles, while a more sensible decrease of the stress and strain at break and the interlaminar shear strength was detected. Optical and scanning electron microscope images revealed that these could be attributed to the preferential location of the PCM in the interlaminar region. These results demonstrated the feasibility of multifunctional structural TES composites and highlighted that the PCM size and distribution affect the mechanical properties. In this perspective, this group is working on the encapsulation of paraffin in a sol-gel derived organosilica shell. Submicron spheres have been produced, and the current activity focuses on the optimization of the synthesis parameters to increase the emulsion efficiency.Keywords: carbon fibers, carbon nanotubes, lightweight materials, multifunctional composites, thermal energy storage
Procedia PDF Downloads 1605696 Comparative Analysis of Data Gathering Protocols with Multiple Mobile Elements for Wireless Sensor Network
Authors: Bhat Geetalaxmi Jairam, D. V. Ashoka
Abstract:
Wireless Sensor Networks are used in many applications to collect sensed data from different sources. Sensed data has to be delivered through sensors wireless interface using multi-hop communication towards the sink. The data collection in wireless sensor networks consumes energy. Energy consumption is the major constraints in WSN .Reducing the energy consumption while increasing the amount of generated data is a great challenge. In this paper, we have implemented two data gathering protocols with multiple mobile sinks/elements to collect data from sensor nodes. First, is Energy-Efficient Data Gathering with Tour Length-Constrained Mobile Elements in Wireless Sensor Networks (EEDG), in which mobile sinks uses vehicle routing protocol to collect data. Second is An Intelligent Agent-based Routing Structure for Mobile Sinks in WSNs (IAR), in which mobile sinks uses prim’s algorithm to collect data. Authors have implemented concepts which are common to both protocols like deployment of mobile sinks, generating visiting schedule, collecting data from the cluster member. Authors have compared the performance of both protocols by taking statistics based on performance parameters like Delay, Packet Drop, Packet Delivery Ratio, Energy Available, Control Overhead. Authors have concluded this paper by proving EEDG is more efficient than IAR protocol but with few limitations which include unaddressed issues likes Redundancy removal, Idle listening, Mobile Sink’s pause/wait state at the node. In future work, we plan to concentrate more on these limitations to avail a new energy efficient protocol which will help in improving the life time of the WSN.Keywords: aggregation, consumption, data gathering, efficiency
Procedia PDF Downloads 4975695 Neural Network-based Risk Detection for Dyslexia and Dysgraphia in Sinhala Language Speaking Children
Authors: Budhvin T. Withana, Sulochana Rupasinghe
Abstract:
The problem of Dyslexia and Dysgraphia, two learning disabilities that affect reading and writing abilities, respectively, is a major concern for the educational system. Due to the complexity and uniqueness of the Sinhala language, these conditions are especially difficult for children who speak it. The traditional risk detection methods for Dyslexia and Dysgraphia frequently rely on subjective assessments, making it difficult to cover a wide range of risk detection and time-consuming. As a result, diagnoses may be delayed and opportunities for early intervention may be lost. The project was approached by developing a hybrid model that utilized various deep learning techniques for detecting risk of Dyslexia and Dysgraphia. Specifically, Resnet50, VGG16 and YOLOv8 were integrated to detect the handwriting issues, and their outputs were fed into an MLP model along with several other input data. The hyperparameters of the MLP model were fine-tuned using Grid Search CV, which allowed for the optimal values to be identified for the model. This approach proved to be effective in accurately predicting the risk of Dyslexia and Dysgraphia, providing a valuable tool for early detection and intervention of these conditions. The Resnet50 model achieved an accuracy of 0.9804 on the training data and 0.9653 on the validation data. The VGG16 model achieved an accuracy of 0.9991 on the training data and 0.9891 on the validation data. The MLP model achieved an impressive training accuracy of 0.99918 and a testing accuracy of 0.99223, with a loss of 0.01371. These results demonstrate that the proposed hybrid model achieved a high level of accuracy in predicting the risk of Dyslexia and Dysgraphia.Keywords: neural networks, risk detection system, Dyslexia, Dysgraphia, deep learning, learning disabilities, data science
Procedia PDF Downloads 1155694 Chaotic Dynamics of Cost Overruns in Oil and Gas Megaprojects: A Review
Authors: O. J. Olaniran, P. E. D. Love, D. J. Edwards, O. Olatunji, J. Matthews
Abstract:
Cost overruns are a persistent problem in oil and gas megaprojects. Whilst the extant literature is filled with studies on incidents and causes of cost overruns, underlying theories to explain their emergence in oil and gas megaprojects are few. Yet, a way to contain the syndrome of cost overruns is to understand the bases of ‘how and why’ they occur. Such knowledge will also help to develop pragmatic techniques for better overall management of oil and gas megaprojects. The aim of this paper is to explain the development of cost overruns in hydrocarbon megaprojects through the perspective of chaos theory. The underlying principles of chaos theory and its implications for cost overruns are examined and practical recommendations proposed. In addition, directions for future research in this fertile area provided.Keywords: chaos theory, oil and gas, cost overruns, megaprojects
Procedia PDF Downloads 5595693 Learning Curve Effect on Materials Procurement Schedule of Multiple Sister Ships
Authors: Vijaya Dixit Aasheesh Dixit
Abstract:
Shipbuilding industry operates in Engineer Procure Construct (EPC) context. Product mix of a shipyard comprises of various types of ships like bulk carriers, tankers, barges, coast guard vessels, sub-marines etc. Each order is unique based on the type of ship and customized requirements, which are engineered into the product right from design stage. Thus, to execute every new project, a shipyard needs to upgrade its production expertise. As a result, over the long run, holistic learning occurs across different types of projects which contributes to the knowledge base of the shipyard. Simultaneously, in the short term, during execution of a project comprising of multiple sister ships, repetition of similar tasks leads to learning at activity level. This research aims to capture above learnings of a shipyard and incorporate learning curve effect in project scheduling and materials procurement to improve project performance. Extant literature provides support for the existence of such learnings in an organization. In shipbuilding, there are sequences of similar activities which are expected to exhibit learning curve behavior. For example, the nearly identical structural sub-blocks which are successively fabricated, erected, and outfitted with piping and electrical systems. Learning curve representation can model not only a decrease in mean completion time of an activity, but also a decrease in uncertainty of activity duration. Sister ships have similar material requirements. The same supplier base supplies materials for all the sister ships within a project. On one hand, this provides an opportunity to reduce transportation cost by batching the order quantities of multiple ships. On the other hand, it increases the inventory holding cost at shipyard and the risk of obsolescence. Further, due to learning curve effect the production scheduled of each consequent ship gets compressed. Thus, the material requirement schedule of every next ship differs from its previous ship. As more and more ships get constructed, compressed production schedules increase the possibility of batching the orders of sister ships. This work aims at integrating materials management with project scheduling of long duration projects for manufacturing of multiple sister ships. It incorporates the learning curve effect on progressively compressing material requirement schedules and addresses the above trade-off of transportation cost and inventory holding and shortage costs while satisfying budget constraints of various stages of the project. The activity durations and lead time of items are not crisp and are available in the form of probabilistic distribution. A Stochastic Mixed Integer Programming (SMIP) model is formulated which is solved using evolutionary algorithm. Its output provides ordering dates of items and degree of order batching for all types of items. Sensitivity analysis determines the threshold number of sister ships required in a project to leverage the advantage of learning curve effect in materials management decisions. This analysis will help materials managers to gain insights about the scenarios: when and to what degree is it beneficial to treat a multiple ship project as an integrated one by batching the order quantities and when and to what degree to practice distinctive procurement for individual ship.Keywords: learning curve, materials management, shipbuilding, sister ships
Procedia PDF Downloads 5025692 Geo-Visualization of Crimes against Children: An India Level Study 2001-2012
Authors: Ritvik Chauhan, Vijay Kumar Baraik
Abstract:
Crime is a rare event on earth surface. It is not simple but a complex event occurring in a spatio- temporal environment. Crime is one of the most serious security threats to human environments as it may result in harm to the individuals through the loss of property, physical and psychological injuries. The conventional studies done on different nature crime was mostly related to laws, psychological, social and political themes. The geographical areas are heterogeneous in their environmental conditions, associations between structural conditions, social organization which contributing specific crimes. The crime pattern analysis is made through theories in which criminal events occurs in persistent, identifiable patterns in a particular space and time. It will be the combined analysis of spatial factors and rational factors to the crime. In this study, we are analyzing the combined factors for the origin of crime against children. Children have always been vulnerable to victimization more because they are silent victims both physically and mentally to crimes and they even not realize what is happening with them. Their trusting nature and innocence always misused by criminals to perform crimes. The nature of crime against children is changed in past years like child rape, kidnapping &abduction, selling & buying of girls, foeticide, infanticide, prostitution, child marriage etc turned to more cruel and inhuman. This study will focus on understanding the space-time pattern of crime against children during the period 2001-2012. It also makes an attempt to explore and ascertain the association of crimes categorised against children, its rates with various geographical and socio-demographic factors through causal analysis using selected indicators (child sex-ratio, education, literacy rate, employment, income, etc.) obtained from the Census of India and other government sources. The outcome of study will help identifying the high crime regions with specified nature of crimes. It will also review the existing efforts and exploring the new plausible measure for tracking, monitoring and minimization of crime rate to meet the end goal of protecting the children from crimes committed against them.Keywords: crime against children, geographic profiling, spatio-temporal analysis, hotspot
Procedia PDF Downloads 2115691 Multivariate Data Analysis for Automatic Atrial Fibrillation Detection
Authors: Zouhair Haddi, Stephane Delliaux, Jean-Francois Pons, Ismail Kechaf, Jean-Claude De Haro, Mustapha Ouladsine
Abstract:
Atrial fibrillation (AF) has been considered as the most common cardiac arrhythmia, and a major public health burden associated with significant morbidity and mortality. Nowadays, telemedical approaches targeting cardiac outpatients situate AF among the most challenged medical issues. The automatic, early, and fast AF detection is still a major concern for the healthcare professional. Several algorithms based on univariate analysis have been developed to detect atrial fibrillation. However, the published results do not show satisfactory classification accuracy. This work was aimed at resolving this shortcoming by proposing multivariate data analysis methods for automatic AF detection. Four publicly-accessible sets of clinical data (AF Termination Challenge Database, MIT-BIH AF, Normal Sinus Rhythm RR Interval Database, and MIT-BIH Normal Sinus Rhythm Databases) were used for assessment. All time series were segmented in 1 min RR intervals window and then four specific features were calculated. Two pattern recognition methods, i.e., Principal Component Analysis (PCA) and Learning Vector Quantization (LVQ) neural network were used to develop classification models. PCA, as a feature reduction method, was employed to find important features to discriminate between AF and Normal Sinus Rhythm. Despite its very simple structure, the results show that the LVQ model performs better on the analyzed databases than do existing algorithms, with high sensitivity and specificity (99.19% and 99.39%, respectively). The proposed AF detection holds several interesting properties, and can be implemented with just a few arithmetical operations which make it a suitable choice for telecare applications.Keywords: atrial fibrillation, multivariate data analysis, automatic detection, telemedicine
Procedia PDF Downloads 2685690 Cognitive Science Based Scheduling in Grid Environment
Authors: N. D. Iswarya, M. A. Maluk Mohamed, N. Vijaya
Abstract:
Grid is infrastructure that allows the deployment of distributed data in large size from multiple locations to reach a common goal. Scheduling data intensive applications becomes challenging as the size of data sets are very huge in size. Only two solutions exist in order to tackle this challenging issue. First, computation which requires huge data sets to be processed can be transferred to the data site. Second, the required data sets can be transferred to the computation site. In the former scenario, the computation cannot be transferred since the servers are storage/data servers with little or no computational capability. Hence, the second scenario can be considered for further exploration. During scheduling, transferring huge data sets from one site to another site requires more network bandwidth. In order to mitigate this issue, this work focuses on incorporating cognitive science in scheduling. Cognitive Science is the study of human brain and its related activities. Current researches are mainly focused on to incorporate cognitive science in various computational modeling techniques. In this work, the problem solving approach of human brain is studied and incorporated during the data intensive scheduling in grid environments. Here, a cognitive engine is designed and deployed in various grid sites. The intelligent agents present in CE will help in analyzing the request and creating the knowledge base. Depending upon the link capacity, decision will be taken whether to transfer data sets or to partition the data sets. Prediction of next request is made by the agents to serve the requesting site with data sets in advance. This will reduce the data availability time and data transfer time. Replica catalog and Meta data catalog created by the agents assist in decision making process.Keywords: data grid, grid workflow scheduling, cognitive artificial intelligence
Procedia PDF Downloads 3945689 Hardships Faced by Entrepreneurs in Marketing Projects for Acquiring Business Loans
Authors: Sudipto Sarkar
Abstract:
Capital is the primary fuel for starting and running a business. Since capital is crucial for every business, entrepreneurs must successfully acquire adequate capital for executing their projects. Sources for the necessary capital for entrepreneurs include their own personal funds from existing bank accounts, or lines of credit or loans from banks or financial institutions, or equity funding from investors. The most commonly selected source of capital is a bank loan. However, acquiring a loan by any entrepreneur requires adhering to strict guidelines, conditions and norms. Because not only they have to show evidence for viability of the project, but also the means to return the acquired loan. On the bank’s part, it requires that every loan officer performs a thorough credit appraisal of the prospective borrowers and makes decisions about whether or not to lend money, how much to lend, and what conditions should be attached to it. Moreover, these credit decisions in general were often based on biases, analytical techniques, or prior experience. A loan can either turn out to be good or poor, irrespective of what type of credit decisions were followed. However, based on prior experience, the loan officers seem to differentiate between a good and a bad loan by examining the borrower’s credit history, pattern of borrowing, volume of borrowing, frequency of borrowing, and reasons for borrowing. As per an article written by Maureen Wallenfang on postcrescent.com dated May 10, 2010, it is observed that borrowers with good credit, solid business plans and adequate collateral security were able to procure loans very easily in the Fox Valley region. Since loans are required to run businesses, and also with the propensity of loans to become bad, loan officers tend to be very critical and cautious before approving and disbursing the loans. The pressure to be critical and cautious, at least partly, is a result of increased scrutiny by the Securities and Exchange Commission. As per Wall Street Journal (Sidel & Eaglesham, March, 3 2011, online), the Securities and Exchange Commission scrutinized banks that have restructured troubled loans in order to make them appear healthier than they really are. Therefore, loan officers’ loan criteria are of immense importance for entrepreneurs and banks alike.Keywords: entrepreneur, loans, marketing, banks
Procedia PDF Downloads 258