Search results for: statistical monitoring
5996 Application of the Hit or Miss Transform to Detect Dams Monitored for Water Quality Using Remote Sensing in South Africa
Authors: Brighton Chamunorwa
Abstract:
The current remote sensing of water quality procedures does not provide a step representing physical visualisation of the monitored dam. The application of the remote sensing of water quality techniques may benefit from use of mathematical morphology operators for shape identification. Given an input of dam outline, morphological operators such as the hit or miss transform identifies if the water body is present on input remotely sensed images. This study seeks to determine the accuracy of the hit or miss transform to identify dams monitored by the water resources authorities in South Africa on satellite images. To achieve this objective the study download a Landsat image acquired in winter and tested the capability of the hit or miss transform using shapefile boundaries of dams in the crocodile marico catchment. The results of the experiment show that it is possible to detect most dams on the Landsat image after the adjusting the erosion operator to detect pixel matching a percentage similarity of 80% and above. Successfully implementation of the current study contributes towards optimisation of mathematical morphology image operators. Additionally, the effort helps develop remote sensing of water quality monitoring with improved simulation of the conventional procedures.Keywords: hit or miss transform, mathematical morphology, remote sensing, water quality monitoring
Procedia PDF Downloads 1535995 Customer Relationship Management on Social Media Affecting Brand Loyalty of Siam Commercial Bank in Bangkok
Authors: Charawee Butbumrung
Abstract:
The purpose of this research was to study customer relationship management on social media affecting brand loyalty of Siam Commercial Bank in Bangkok. The statistics used in data analysis were frequency, mean, standard deviation, and Pearson’s correlation coefficient based on social science statistic program. The result of the study found that the majority of the respondents were female, 37–47 years old of age, bachelor degree of education and monthly income between 10,001 and 15,000 Baht. In addition, customer relationship management in the overall and by each aspect of formulating, maintaining, and extending the customer relationship had a high score. Furthermore, the result of hypothesis testing showed that the difference of the customer’s age, education, occupation, average monthly income had the difference in brand loyalty with the statistical significance level of 0.05 and customer relationship management had related with brand loyalty in the same direction with the low level of statistical significance 0.05.Keywords: brand loyalty, customer relationship management, Siam Commercial bank, social media
Procedia PDF Downloads 2475994 Weighted Rank Regression with Adaptive Penalty Function
Authors: Kang-Mo Jung
Abstract:
The use of regularization for statistical methods has become popular. The least absolute shrinkage and selection operator (LASSO) framework has become the standard tool for sparse regression. However, it is well known that the LASSO is sensitive to outliers or leverage points. We consider a new robust estimation which is composed of the weighted loss function of the pairwise difference of residuals and the adaptive penalty function regulating the tuning parameter for each variable. Rank regression is resistant to regression outliers, but not to leverage points. By adopting a weighted loss function, the proposed method is robust to leverage points of the predictor variable. Furthermore, the adaptive penalty function gives us good statistical properties in variable selection such as oracle property and consistency. We develop an efficient algorithm to compute the proposed estimator using basic functions in program R. We used an optimal tuning parameter based on the Bayesian information criterion (BIC). Numerical simulation shows that the proposed estimator is effective for analyzing real data set and contaminated data.Keywords: adaptive penalty function, robust penalized regression, variable selection, weighted rank regression
Procedia PDF Downloads 4765993 Hygro-Thermal Modelling of Timber Decks
Authors: Stefania Fortino, Petr Hradil, Timo Avikainen
Abstract:
Timber bridges have an excellent environmental performance, are economical, relatively easy to build and can have a long service life. However, the durability of these bridges is the main problem because of their exposure to outdoor climate conditions. The moisture content accumulated in wood for long periods, in combination with certain temperatures, may cause conditions suitable for timber decay. In addition, moisture content variations affect the structural integrity, serviceability and loading capacity of timber bridges. Therefore, the monitoring of the moisture content in wood is important for the durability of the material but also for the whole superstructure. The measurements obtained by the usual sensor-based techniques provide hygro-thermal data only in specific locations of the wood components. In this context, the monitoring can be assisted by numerical modelling to get more information on the hygro-thermal response of the bridges. This work presents a hygro-thermal model based on a multi-phase moisture transport theory to predict the distribution of moisture content, relative humidity and temperature in wood. Below the fibre saturation point, the multi-phase theory simulates three phenomena in cellular wood during moisture transfer, i.e., the diffusion of water vapour in the pores, the sorption of bound water and the diffusion of bound water in the cell walls. In the multi-phase model, the two water phases are separated, and the coupling between them is defined through a sorption rate. Furthermore, an average between the temperature-dependent adsorption and desorption isotherms is used. In previous works by some of the authors, this approach was found very suitable to study the moisture transport in uncoated and coated stress-laminated timber decks. Compared to previous works, the hygro-thermal fluxes on the external surfaces include the influence of the absorbed solar radiation during the time and consequently, the temperatures on the surfaces exposed to the sun are higher. This affects the whole hygro-thermal response of the timber component. The multi-phase model, implemented in a user subroutine of Abaqus FEM code, provides the distribution of the moisture content, the temperature and the relative humidity in a volume of the timber deck. As a case study, the hygro-thermal data in wood are collected from the ongoing monitoring of the stress-laminated timber deck of Tapiola Bridge in Finland, based on integrated humidity-temperature sensors and the numerical results are found in good agreement with the measurements. The proposed model, used to assist the monitoring, can contribute to reducing the maintenance costs of bridges, as well as the cost of instrumentation, and increase safety.Keywords: moisture content, multi-phase models, solar radiation, timber decks, FEM
Procedia PDF Downloads 1755992 Design of a Mhealth Therapy Management to Maintain Therapy Outcomes after Bariatric Surgery
Authors: A. Dudek, P. Tylec, G. Torbicz, P. Duda, K. Proniewska, P. Major, M. Pedziwiatr
Abstract:
Background: Conservative treatments of obesity, based only on a proper diet and physical activity, without the support of an interdisciplinary team of specialist does not bring satisfactory bariatric results. Long-term maintenance of a proper metabolic results after rapid weight loss due to bariatric surgery requires engagement from patients. Mobile health tool may offer alternative model that enhance participant engagement in keeping the therapy. Objective: We aimed to assess the influence of constant monitoring and subsequent motivational alerts in perioperative period and on post-operative effects in the bariatric patients. As well as the study was designed to identify factors conductive urge to change lifestyle after surgery. Methods: This prospective clinical control study was based on a usage of a designed prototype of bariatric mHealth system. The prepared application comprises central data management with a comprehensible interface dedicated for patients and data transfer module as a physician’s platform. Motivation system of a platform consist of motivational alerts, graphic outcome presentation, and patient communication center. Generated list of patients requiring urgent consultation and possibility of a constant contact with a specialist provide safety zone. 31 patients were enrolled in continuous monitoring program during a 6-month period along with typical follow-up visits. After one year follow-up, all patients were examined. Results: There were 20 active users of the proposed monitoring system during the entire duration of the study. After six months, 24 patients took a part in a control by telephone questionnaires. Among them, 75% confirmed that the application concept was an important element in the treatment. Active users of the application indicated as the most valuable features: motivation to continue treatment (11 users), graphical presentation of weight loss, and other parameters (7 users), the ability to contact a doctor (3 users). The three main drawbacks are technical errors (9 users), tedious questionnaires inside the application (5 users), and time-consuming tasks inside the system (2 users). Conclusions: Constant monitoring and successive motivational alerts to continue treatment is an appropriate tool in the treatment after bariatric surgery, mainly in the early post-operative period. Graphic presentation of data and continuous connection with a clinical staff seemed to be an element of motivation to continue treatment and a sense of security.Keywords: bariatric surgery, mHealth, mobile health tool, obesity
Procedia PDF Downloads 1135991 Assessment of Body Mass Index among Children of Primary School in Behbahan City
Authors: Hosseini Siahi Zohreh, Sana Mohammad Jafar
Abstract:
With increase in fat and over weight in children and its undesirable effects on different organisms of the body and since many of the sicknesses are due to over weight and with losing weight these sicknesses disappear, and on the other hand with mal nutrition and under weight in children other kind of sicknesses such as derogation of body's security system, frequent infection, insufficient growth, shortness, and delay in maturity etc. are some of the signs of being under weight. Therefore recognition of signs of over weight and under weight and their prevalence in children are important. To determine this difficulty we have used the body mass index as screening tool since it is very prevalent and a good and important guide and has very good relation with body fat in children. In this study 2321 students from primary schools in Behbahan have been chosen randomly and evaluated by height and weight and their body mass index have been calculated and then recorded on the BMI percentile diagram which is for age and gender. The following results obtained: The amount of total fat, over weight and slimness are 9.3, 12.1 and 12.32 percent respectively. Therefore 21.4% of the children were over weighted. It did not show any meaningful statistical relation in fat conditions among boys and girls, but there has been a meaningful statistical relation in slimness among boys and girls.Keywords: assessment, students, Behbahan, Body Mass Index
Procedia PDF Downloads 5195990 The Effectiveness of Teaching Emotional Intelligence on Reducing Marital Conflicts and Marital Adjustment in Married Students of Tehran University
Authors: Elham Jafari
Abstract:
The aim of this study was to evaluate the effectiveness of emotional intelligence training on reducing marital conflict and marital adjustment in married students of the University of Tehran. This research is an applied type in terms of purpose and a semi-experimental design of pre-test-post-test type with the control group and with follow-up test in terms of the data collection method. The statistical population of the present study consisted of all married students of the University of Tehran. In this study, 30 married students of the University of Tehran were selected by convenience sampling method as a sample that 15 people in the experimental group and 15 people in the control group were randomly selected. The method of data collection in this research was field and library. The data collection tool in the field section was two questionnaires of marital conflict and marital adjustment. To analyze the collected data, first at the descriptive level, using statistical indicators, the demographic characteristics of the sample were described by SPSS software. In inferential statistics, the statistical method used was the test of analysis of covariance. The results showed that the effect of the independent variable of emotional intelligence on the reduction of marital conflicts is statistically significant. And it can be inferred that emotional intelligence training has reduced the marital conflicts of married students of the University of Tehran in the experimental group compared to the control group. Also, the effect of the independent variable of emotional intelligence on marital adjustment was statistically significant. It can be inferred that emotional intelligence training has adjusted the marital adjustment of married students of the University of Tehran in the experimental group compared to the control group.Keywords: emotional intelligence, marital conflicts, marital compatibility, married students
Procedia PDF Downloads 2515989 A Data Science Pipeline for Algorithmic Trading: A Comparative Study in Applications to Finance and Cryptoeconomics
Authors: Luyao Zhang, Tianyu Wu, Jiayi Li, Carlos-Gustavo Salas-Flores, Saad Lahrichi
Abstract:
Recent advances in AI have made algorithmic trading a central role in finance. However, current research and applications are disconnected information islands. We propose a generally applicable pipeline for designing, programming, and evaluating algorithmic trading of stock and crypto tokens. Moreover, we provide comparative case studies for four conventional algorithms, including moving average crossover, volume-weighted average price, sentiment analysis, and statistical arbitrage. Our study offers a systematic way to program and compare different trading strategies. Moreover, we implement our algorithms by object-oriented programming in Python3, which serves as open-source software for future academic research and applications.Keywords: algorithmic trading, AI for finance, fintech, machine learning, moving average crossover, volume weighted average price, sentiment analysis, statistical arbitrage, pair trading, object-oriented programming, python3
Procedia PDF Downloads 1475988 Smart Sensor Data to Predict Machine Performance with IoT-Based Machine Learning and Artificial Intelligence
Authors: C. J. Rossouw, T. I. van Niekerk
Abstract:
The global manufacturing industry is utilizing the internet and cloud-based services to further explore the anatomy and optimize manufacturing processes in support of the movement into the Fourth Industrial Revolution (4IR). The 4IR from a third world and African perspective is hindered by the fact that many manufacturing systems that were developed in the third industrial revolution are not inherently equipped to utilize the internet and services of the 4IR, hindering the progression of third world manufacturing industries into the 4IR. This research focuses on the development of a non-invasive and cost-effective cyber-physical IoT system that will exploit a machine’s vibration to expose semantic characteristics in the manufacturing process and utilize these results through a real-time cloud-based machine condition monitoring system with the intention to optimize the system. A microcontroller-based IoT sensor was designed to acquire a machine’s mechanical vibration data, process it in real-time, and transmit it to a cloud-based platform via Wi-Fi and the internet. Time-frequency Fourier analysis was applied to the vibration data to form an image representation of the machine’s behaviour. This data was used to train a Convolutional Neural Network (CNN) to learn semantic characteristics in the machine’s behaviour and relate them to a state of operation. The same data was also used to train a Convolutional Autoencoder (CAE) to detect anomalies in the data. Real-time edge-based artificial intelligence was achieved by deploying the CNN and CAE on the sensor to analyse the vibration. A cloud platform was deployed to visualize the vibration data and the results of the CNN and CAE in real-time. The cyber-physical IoT system was deployed on a semi-automated metal granulation machine with a set of trained machine learning models. Using a single sensor, the system was able to accurately visualize three states of the machine’s operation in real-time. The system was also able to detect a variance in the material being granulated. The research demonstrates how non-IoT manufacturing systems can be equipped with edge-based artificial intelligence to establish a remote machine condition monitoring system.Keywords: IoT, cyber-physical systems, artificial intelligence, manufacturing, vibration analytics, continuous machine condition monitoring
Procedia PDF Downloads 885987 Assessment of the Spatio-Temporal Distribution of Pteridium aquilinum (Bracken Fern) Invasion on the Grassland Plateau in Nyika National Park
Authors: Andrew Kanzunguze, Lusayo Mwabumba, Jason K. Gilbertson, Dominic B. Gondwe, George Z. Nxumayo
Abstract:
Knowledge about the spatio-temporal distribution of invasive plants in protected areas provides a base from which hypotheses explaining proliferation of plant invasions can be made alongside development of relevant invasive plant monitoring programs. The aim of this study was to investigate the spatio-temporal distribution of bracken fern on the grassland plateau of Nyika National Park over the past 30 years (1986-2016) as well as to determine the current extent of the invasion. Remote sensing, machine learning, and statistical modelling techniques (object-based image analysis, image classification and linear regression analysis) in geographical information systems were used to determine both the spatial and temporal distribution of bracken fern in the study area. Results have revealed that bracken fern has been increasing coverage on the Nyika plateau at an estimated annual rate of 87.3 hectares since 1986. This translates to an estimated net increase of 2,573.1 hectares, which was recorded from 1,788.1 hectares (1986) to 4,361.9 hectares (2016). As of 2017 bracken fern covered 20,940.7 hectares, approximately 14.3% of the entire grassland plateau. Additionally, it was observed that the fern was distributed most densely around Chelinda camp (on the central plateau) as well as in forest verges and roadsides across the plateau. Based on these results it is recommended that Ecological Niche Modelling approaches be employed to (i) isolate the most important factors influencing bracken fern proliferation as well as (ii) identify and prioritize areas requiring immediate control interventions so as to minimize bracken fern proliferation in Nyika National Park.Keywords: bracken fern, image classification, Landsat-8, Nyika National Park, spatio-temporal distribution
Procedia PDF Downloads 1805986 Comparison of On-Site Stormwater Detention Real Performance and Theoretical Simulations
Authors: Pedro P. Drumond, Priscilla M. Moura, Marcia M. L. P. Coelho
Abstract:
The purpose of On-site Stormwater Detention (OSD) system is to promote the detention of addition stormwater runoff caused by impervious areas, in order to maintain the peak flow the same as the pre-urbanization condition. In recent decades, these systems have been built in many cities around the world. However, its real efficiency continues to be unknown due to the lack of research, especially with regard to monitoring its real performance. Thus, this study aims to compare the water level monitoring data of an OSD built in Belo Horizonte/Brazil with the results of theoretical methods simulations, usually adopted in OSD design. There were made two theoretical simulations, one using the Rational Method and Modified Puls method and another using the Soil Conservation Service (SCS) method and Modified Puls method. The monitoring data were obtained with a water level sensor, installed inside the reservoir and connected to a data logger. The comparison of OSD performance was made for 48 rainfall events recorded from April/2015 to March/2017. The comparison of maximum water levels in the OSD showed that the results of the simulations with Rational/Puls and SCS/Puls methods were, on average 33% and 73%, respectively, lower than those monitored. The Rational/Puls results were significantly higher than the SCS/Puls results, only in the events with greater frequency. In the events with average recurrence interval of 5, 10 and 200 years, the maximum water heights were similar in both simulations. Also, the results showed that the duration of rainfall events was close to the duration of monitored hydrograph. The rising time and recession time of the hydrographs calculated with the Rational Method represented better the monitored hydrograph than SCS Method. The comparison indicates that the real discharge coefficient value could be higher than 0.61, adopted in Puls simulations. New researches evaluating OSD real performance should be developed. In order to verify the peak flow damping efficiency and the value of the discharge coefficient is necessary to monitor the inflow and outflow of an OSD, in addition to monitor the water level inside it.Keywords: best management practices, on-site stormwater detention, source control, urban drainage
Procedia PDF Downloads 1885985 Image Encryption Using Eureqa to Generate an Automated Mathematical Key
Authors: Halima Adel Halim Shnishah, David Mulvaney
Abstract:
Applying traditional symmetric cryptography algorithms while computing encryption and decryption provides immunity to secret keys against different attacks. One of the popular techniques generating automated secret keys is evolutionary computing by using Eureqa API tool, which got attention in 2013. In this paper, we are generating automated secret keys for image encryption and decryption using Eureqa API (tool which is used in evolutionary computing technique). Eureqa API models pseudo-random input data obtained from a suitable source to generate secret keys. The validation of generated secret keys is investigated by performing various statistical tests (histogram, chi-square, correlation of two adjacent pixels, correlation between original and encrypted images, entropy and key sensitivity). Experimental results obtained from methods including histogram analysis, correlation coefficient, entropy and key sensitivity, show that the proposed image encryption algorithms are secure and reliable, with the potential to be adapted for secure image communication applications.Keywords: image encryption algorithms, Eureqa, statistical measurements, automated key generation
Procedia PDF Downloads 4845984 A Targeted Maximum Likelihood Estimation for a Non-Binary Causal Variable: An Application
Authors: Mohamed Raouf Benmakrelouf, Joseph Rynkiewicz
Abstract:
Targeted maximum likelihood estimation (TMLE) is well-established method for causal effect estimation with desirable statistical properties. TMLE is a doubly robust maximum likelihood based approach that includes a secondary targeting step that optimizes the target statistical parameter. A causal interpretation of the statistical parameter requires assumptions of the Rubin causal framework. The causal effect of binary variable, E, on outcomes, Y, is defined in terms of comparisons between two potential outcomes as E[YE=1 − YE=0]. Our aim in this paper is to present an adaptation of TMLE methodology to estimate the causal effect of a non-binary categorical variable, providing a large application. We propose coding on the initial data in order to operate a binarization of the interest variable. For each category, we get a transformation of the non-binary interest variable into a binary variable, taking value 1 to indicate the presence of category (or group of categories) for an individual, 0 otherwise. Such a dummy variable makes it possible to have a pair of potential outcomes and oppose a category (or a group of categories) to another category (or a group of categories). Let E be a non-binary interest variable. We propose a complete disjunctive coding of our variable E. We transform the initial variable to obtain a set of binary vectors (dummy variables), E = (Ee : e ∈ {1, ..., |E|}), where each vector (variable), Ee, takes the value of 0 when its category is not present, and the value of 1 when its category is present, which allows to compute a pairwise-TMLE comparing difference in the outcome between one category and all remaining categories. In order to illustrate the application of our strategy, first, we present the implementation of TMLE to estimate the causal effect of non-binary variable on outcome using simulated data. Secondly, we apply our TMLE adaptation to survey data from the French Political Barometer (CEVIPOF), to estimate the causal effect of education level (A five-level variable) on a potential vote in favor of the French extreme right candidate Jean-Marie Le Pen. Counterfactual reasoning requires us to consider some causal questions (additional causal assumptions). Leading to different coding of E, as a set of binary vectors, E = (Ee : e ∈ {2, ..., |E|}), where each vector (variable), Ee, takes the value of 0 when the first category (reference category) is present, and the value of 1 when its category is present, which allows to apply a pairwise-TMLE comparing difference in the outcome between the first level (fixed) and each remaining level. We confirmed that the increase in the level of education decreases the voting rate for the extreme right party.Keywords: statistical inference, causal inference, super learning, targeted maximum likelihood estimation
Procedia PDF Downloads 1035983 Detection of Hepatitis B by the Use of Artifical Intelegence
Authors: Shizra Waris, Bilal Shoaib, Munib Ahmad
Abstract:
Background; The using of clinical decision support systems (CDSSs) may recover unceasing disease organization, which requires regular visits to multiple health professionals, treatment monitoring, disease control, and patient behavior modification. The objective of this survey is to determine if these CDSSs improve the processes of unceasing care including diagnosis, treatment, and monitoring of diseases. Though artificial intelligence is not a new idea it has been widely documented as a new technology in computer science. Numerous areas such as education business, medical and developed have made use of artificial intelligence Methods: The survey covers articles extracted from relevant databases. It uses search terms related to information technology and viral hepatitis which are published between 2000 and 2016. Results: Overall, 80% of studies asserted the profit provided by information technology (IT); 75% of learning asserted the benefits concerned with medical domain;25% of studies do not clearly define the added benefits due IT. The CDSS current state requires many improvements to hold up the management of liver diseases such as HCV, liver fibrosis, and cirrhosis. Conclusion: We concluded that the planned model gives earlier and more correct calculation of hepatitis B and it works as promising tool for calculating of custom hepatitis B from the clinical laboratory data.Keywords: detection, hapataties, observation, disesese
Procedia PDF Downloads 1575982 Monitoring Large-Coverage Forest Canopy Height by Integrating LiDAR and Sentinel-2 Images
Authors: Xiaobo Liu, Rakesh Mishra, Yun Zhang
Abstract:
Continuous monitoring of forest canopy height with large coverage is essential for obtaining forest carbon stocks and emissions, quantifying biomass estimation, analyzing vegetation coverage, and determining biodiversity. LiDAR can be used to collect accurate woody vegetation structure such as canopy height. However, LiDAR’s coverage is usually limited because of its high cost and limited maneuverability, which constrains its use for dynamic and large area forest canopy monitoring. On the other hand, optical satellite images, like Sentinel-2, have the ability to cover large forest areas with a high repeat rate, but they do not have height information. Hence, exploring the solution of integrating LiDAR data and Sentinel-2 images to enlarge the coverage of forest canopy height prediction and increase the prediction repeat rate has been an active research topic in the environmental remote sensing community. In this study, we explore the potential of training a Random Forest Regression (RFR) model and a Convolutional Neural Network (CNN) model, respectively, to develop two predictive models for predicting and validating the forest canopy height of the Acadia Forest in New Brunswick, Canada, with a 10m ground sampling distance (GSD), for the year 2018 and 2021. Two 10m airborne LiDAR-derived canopy height models, one for 2018 and one for 2021, are used as ground truth to train and validate the RFR and CNN predictive models. To evaluate the prediction performance of the trained RFR and CNN models, two new predicted canopy height maps (CHMs), one for 2018 and one for 2021, are generated using the trained RFR and CNN models and 10m Sentinel-2 images of 2018 and 2021, respectively. The two 10m predicted CHMs from Sentinel-2 images are then compared with the two 10m airborne LiDAR-derived canopy height models for accuracy assessment. The validation results show that the mean absolute error (MAE) for year 2018 of the RFR model is 2.93m, CNN model is 1.71m; while the MAE for year 2021 of the RFR model is 3.35m, and the CNN model is 3.78m. These demonstrate the feasibility of using the RFR and CNN models developed in this research for predicting large-coverage forest canopy height at 10m spatial resolution and a high revisit rate.Keywords: remote sensing, forest canopy height, LiDAR, Sentinel-2, artificial intelligence, random forest regression, convolutional neural network
Procedia PDF Downloads 925981 Exercise and Aging Process Related to Oxidative Stress
Authors: B. Dejanova, S. Petrovska, L. Todorovska, J. Pluncevic, S. Mancevska, V. Antevska, E. Sivevska, I. Karagjozova
Abstract:
Introduction: Aging process is mainly related to endothelial function which may be impaired by oxidative stress (OS). Exercise is known to be beneficial to aging process, which may improve health and prevent appearance of chronic diseases in elderly. The aim of the study was to investigate the OS markers related to exercise. Methods: A number of 80 subjects (healthy volunteers) were examined (38 male and 32 female), divided in 3 age groups: group I ≤ 30 years (n=24); group II – 31-50 years (n=24); group III - ≥ 51 year (n=32). Each group was divided to subgroups of sedentary subjects (SS) and subjects who exercise (SE). Group I: SS (n=11), SE (n=13); group II: SS (n=13), SE (n=10); group III: SS (n=23) SE (n=9). Lipid peroxidation (LP) as a fluorimetric method with thiobarbituric acid was used to estimate OS. Antioxidative status was determined by cell antioxidants such as enzymes - superoxide dismutase (SOD), glutathione peroxidase (GPx) and glucose 6 phosphate (G-6-PD); and by extra cell antioxidants such as glutathione reductase (GR), nitric oxide (NO) and total antioxidant capacity (TAC). Results: Increased values of LP were noticed along the aging process: group I – 3.30±0.3 µmol/L; group II – 3.91±0.2 µmol/L; group III – 3.94±0.8 µmol/L (p<0.05), while no statistical significance was found between male and female subjects. Statistical significance for OS was not found between SS and SE in group I as it was found in group II (p<0.05) and in group III (p<0.01). No statistical significance was found for all cell antioxidants and GR within the groups, while NO and TAC showed lower values in SS compared to SE in II (p<0.05) and in group III (p<0.05). Discussion and conclusion: Aging process showed increased OS which may be either due to impaired function of scavengers of free radicals or due to their enormous production. Well balanced exercise might be one of the factors that keep the integrity of blood vessel endothelium which slows down the aging process. Possible mechanism of exercise beneficial influence is shear stress by upregulation of genes coding for nitric oxide bioavailability. Thus, due to obtained results we may conclude that OS is found to be diminished in the subject groups who perform exercise.Keywords: oxidative stress, aging process, exercise, endothelial function
Procedia PDF Downloads 3875980 Open Source Cloud Managed Enterprise WiFi
Authors: James Skon, Irina Beshentseva, Michelle Polak
Abstract:
Wifi solutions come in two major classes. Small Office/Home Office (SOHO) WiFi, characterized by inexpensive WiFi routers, with one or two service set identifiers (SSIDs), and a single shared passphrase. These access points provide no significant user management or monitoring, and no aggregation of monitoring and control for multiple routers. The other solution class is managed enterprise WiFi solutions, which involve expensive Access Points (APs), along with (also costly) local or cloud based management components. These solutions typically provide portal based login, per user virtual local area networks (VLANs), and sophisticated monitoring and control across a large group of APs. The cost for deploying and managing such managed enterprise solutions is typically about 10 fold that of inexpensive consumer APs. Low revenue organizations, such as schools, non-profits, non-government organizations (NGO's), small businesses, and even homes cannot easily afford quality enterprise WiFi solutions, though they may need to provide quality WiFi access to their population. Using available lower cost Wifi solutions can significantly reduce their ability to provide reliable, secure network access. This project explored and created a new approach for providing secured managed enterprise WiFi based on low cost hardware combined with both new and existing (but modified) open source software. The solution provides a cloud based management interface which allows organizations to aggregate the configuration and management of small, medium and large WiFi solutions. It utilizes a novel approach for user management, giving each user a unique passphrase. It provides unlimited SSID's across an unlimited number of WiFI zones, and the ability to place each user (and all their devices) on their own VLAN. With proper configuration it can even provide user local services. It also allows for users' usage and quality of service to be monitored, and for users to be added, enabled, and disabled at will. As inferred above, the ultimate goal is to free organizations with limited resources from the expense of a commercial enterprise WiFi, while providing them with most of the qualities of such a more expensive managed solution at a fraction of the cost.Keywords: wifi, enterprise, cloud, managed
Procedia PDF Downloads 975979 Prospective Cohort Study on Sequential Use of Catheter with Misoprostol vs Misoprostol Alone for Second Trimester Medical Abortion
Authors: Hanna Teklu Gebregziabher
Abstract:
Background: A variety of techniques for medical termination of second-trimester pregnancy can be used, but there is no consensus about which is the best. Even though most evidence suggests the combined use of intracervical Foley catheter and vaginal misoprostol is safe, effective, and acceptable method for termination of second-trimester pregnancy, which is comparable to mifepristone-misoprostol combination regimen with lower cost and no additional maternal risks. The use of mifepristone and misoprostol alone with no other procedure is still the most common procedure in different institutions for 2nd-trimester pregnancy. Methods: A cross-sectional comparative prospective study design is employed on women who were admitted for 2nd-trimester medical abortion and medical abortion failed or if there was no change in cervical status after 24 hours of 1st dose of misoprostol. The study was conducted at St. Paulose Hospital Millennium Medical College. A sample of 44 participants in each arm was necessary to give a two-tailed test, a type 1 error of 5%, 80% statistical power, and a 1:1 ratio among groups. Thus, a total of 94 cases, 47 from each arm, were recruited. Data was entered and cleaned by using Epi-info and analyzed using SPSS version 29.0 statistical software and was presented in descriptive and tabular forms. Different variables were cross-tabulated and compared for significant differences and statistical analysis using the chi-square test and independent t-test, to conclude. Result: There was a significant difference between the two groups on induction to expulsion time and number of doses used. The mean ± SD of induction to expulsion time for those used misoprostol alone was 48.09 ± 11.86 and those who used trans-cervical catheter sequentially with misoprostol were 36.7 ±6.772. Conclusion: The use of a trans-cervical Foley catheter in conjunction with misoprostol in a sequential manner is a more effective, safe, and easily accessible procedure. In addition, the cost of utilizing the catheter is less compared to the cost of misoprostol and is readily available. As a good substitute, we advised using Trans-cervical Catether even for medical abortions performed in the second trimester.Keywords: second trimester, medical abortion, catheter, misoprostol
Procedia PDF Downloads 465978 Contactless Heart Rate Measurement System based on FMCW Radar and LSTM for Automotive Applications
Authors: Asma Omri, Iheb Sifaoui, Sofiane Sayahi, Hichem Besbes
Abstract:
Future vehicle systems demand advanced capabilities, notably in-cabin life detection and driver monitoring systems, with a particular emphasis on drowsiness detection. To meet these requirements, several techniques employ artificial intelligence methods based on real-time vital sign measurements. In parallel, Frequency-Modulated Continuous-Wave (FMCW) radar technology has garnered considerable attention in the domains of healthcare and biomedical engineering for non-invasive vital sign monitoring. FMCW radar offers a multitude of advantages, including its non-intrusive nature, continuous monitoring capacity, and its ability to penetrate through clothing. In this paper, we propose a system utilizing the AWR6843AOP radar from Texas Instruments (TI) to extract precise vital sign information. The radar allows us to estimate Ballistocardiogram (BCG) signals, which capture the mechanical movements of the body, particularly the ballistic forces generated by heartbeats and respiration. These signals are rich sources of information about the cardiac cycle, rendering them suitable for heart rate estimation. The process begins with real-time subject positioning, followed by clutter removal, computation of Doppler phase differences, and the use of various filtering methods to accurately capture subtle physiological movements. To address the challenges associated with FMCW radar-based vital sign monitoring, including motion artifacts due to subjects' movement or radar micro-vibrations, Long Short-Term Memory (LSTM) networks are implemented. LSTM's adaptability to different heart rate patterns and ability to handle real-time data make it suitable for continuous monitoring applications. Several crucial steps were taken, including feature extraction (involving amplitude, time intervals, and signal morphology), sequence modeling, heart rate estimation through the analysis of detected cardiac cycles and their temporal relationships, and performance evaluation using metrics such as Root Mean Square Error (RMSE) and correlation with reference heart rate measurements. For dataset construction and LSTM training, a comprehensive data collection system was established, integrating the AWR6843AOP radar, a Heart Rate Belt, and a smart watch for ground truth measurements. Rigorous synchronization of these devices ensured data accuracy. Twenty participants engaged in various scenarios, encompassing indoor and real-world conditions within a moving vehicle equipped with the radar system. Static and dynamic subject’s conditions were considered. The heart rate estimation through LSTM outperforms traditional signal processing techniques that rely on filtering, Fast Fourier Transform (FFT), and thresholding. It delivers an average accuracy of approximately 91% with an RMSE of 1.01 beat per minute (bpm). In conclusion, this paper underscores the promising potential of FMCW radar technology integrated with artificial intelligence algorithms in the context of automotive applications. This innovation not only enhances road safety but also paves the way for its integration into the automotive ecosystem to improve driver well-being and overall vehicular safety.Keywords: ballistocardiogram, FMCW Radar, vital sign monitoring, LSTM
Procedia PDF Downloads 725977 Simulation of Wind Generator with Fixed Wind Turbine under Matlab-Simulink
Authors: Mahdi Motahari, Mojtaba Farzaneh, Armin Parsian Nejad
Abstract:
The rapidly growing wind industry is highly expressing the need for education and training worldwide, particularly on the system level. Modelling and simulating wind generator system using Matlab-Simulink provides expert help in understanding wind systems engineering and system design. Working under Matlab-Simulink we present the integration of the developed WECS model with public electrical grid. A test of the calculated power and Cp related to the experimental equivalent data, using statistical analysis is performed. The statistical indicators of accuracy show better results of the presented method with RMSE: 21%, 22%, MBE : 0.77%, 0.12 % and MAE :3%, 4%.On the other hand we study its behavior when integrated in whole power system. Three level of wind speeds have been chosen: low with 5m/s as the mean value, medium with 8m/s as the mean value and high speed with 12m/s as the mean value. These allowed predicting and supervising the active power produced by the system, characterized respectively by the middle powers of -150 kW, -250kW and -480 kW which will be injected directly into the public electrical grid and the reactive power, characterized respectively by the middle powers of 60 kW, 180 kW and 320 kW and will be consumed by the wind generator.Keywords: modelling, simulation, wind generator, fixed speed wind turbine, Matlab-Simulink
Procedia PDF Downloads 6285976 Nonparametric Path Analysis with Truncated Spline Approach in Modeling Rural Poverty in Indonesia
Authors: Usriatur Rohma, Adji Achmad Rinaldo Fernandes
Abstract:
Nonparametric path analysis is a statistical method that does not rely on the assumption that the curve is known. The purpose of this study is to determine the best nonparametric truncated spline path function between linear and quadratic polynomial degrees with 1, 2, and 3-knot points and to determine the significance of estimating the best nonparametric truncated spline path function in the model of the effect of population migration and agricultural economic growth on rural poverty through the variable unemployment rate using the t-test statistic at the jackknife resampling stage. The data used in this study are secondary data obtained from statistical publications. The results showed that the best model of nonparametric truncated spline path analysis is quadratic polynomial degree with 3-knot points. In addition, the significance of the best-truncated spline nonparametric path function estimation using jackknife resampling shows that all exogenous variables have a significant influence on the endogenous variables.Keywords: nonparametric path analysis, truncated spline, linear, quadratic, rural poverty, jackknife resampling
Procedia PDF Downloads 475975 Parameter Estimation for the Oral Minimal Model and Parameter Distinctions Between Obese and Non-obese Type 2 Diabetes
Authors: Manoja Rajalakshmi Aravindakshana, Devleena Ghosha, Chittaranjan Mandala, K. V. Venkateshb, Jit Sarkarc, Partha Chakrabartic, Sujay K. Maity
Abstract:
Oral Glucose Tolerance Test (OGTT) is the primary test used to diagnose type 2 diabetes mellitus (T2DM) in a clinical setting. Analysis of OGTT data using the Oral Minimal Model (OMM) along with the rate of appearance of ingested glucose (Ra) is performed to study differences in model parameters for control and T2DM groups. The differentiation of parameters of the model gives insight into the behaviour and physiology of T2DM. The model is also studied to find parameter differences among obese and non-obese T2DM subjects and the sensitive parameters were co-related to the known physiological findings. Sensitivity analysis is performed to understand changes in parameter values with model output and to support the findings, appropriate statistical tests are done. This seems to be the first preliminary application of the OMM with obesity as a distinguishing factor in understanding T2DM from estimated parameters of insulin-glucose model and relating the statistical differences in parameters to diabetes pathophysiology.Keywords: oral minimal model, OGTT, obese and non-obese T2DM, mathematical modeling, parameter estimation
Procedia PDF Downloads 925974 An Application of Sinc Function to Approximate Quadrature Integrals in Generalized Linear Mixed Models
Authors: Altaf H. Khan, Frank Stenger, Mohammed A. Hussein, Reaz A. Chaudhuri, Sameera Asif
Abstract:
This paper discusses a novel approach to approximate quadrature integrals that arise in the estimation of likelihood parameters for the generalized linear mixed models (GLMM) as well as Bayesian methodology also requires computation of multidimensional integrals with respect to the posterior distributions in which computation are not only tedious and cumbersome rather in some situations impossible to find solutions because of singularities, irregular domains, etc. An attempt has been made in this work to apply Sinc function based quadrature rules to approximate intractable integrals, as there are several advantages of using Sinc based methods, for example: order of convergence is exponential, works very well in the neighborhood of singularities, in general quite stable and provide high accurate and double precisions estimates. The Sinc function based approach seems to be utilized first time in statistical domain to our knowledge, and it's viability and future scopes have been discussed to apply in the estimation of parameters for GLMM models as well as some other statistical areas.Keywords: generalized linear mixed model, likelihood parameters, qudarature, Sinc function
Procedia PDF Downloads 3955973 Mapping of Urban Green Spaces Towards a Balanced Planning in a Coastal Landscape
Authors: Rania Ajmi, Faiza Allouche Khebour, Aude Nuscia Taibi, Sirine Essasi
Abstract:
Urban green spaces (UGS) as an important contributor can be a significant part of sustainable development. A spatial method was employed to assess and map the spatial distribution of UGS in five districts in Sousse, Tunisia. Ecological management of UGS is an essential factor for the sustainable development of the city; hence the municipality of Sousse has decided to support the districts according to different green spaces characters. And to implement this policy, (1) a new GIS web application was developed, (2) then the implementation of the various green spaces was carried out, (3) a spatial mapping of UGS using Quantum GIS was realized, and (4) finally a data processing and statistical analysis with RStudio programming language was executed. The intersection of the results of the spatial and statistical analyzes highlighted the presence of an imbalance in terms of the spatial UGS distribution in the study area. The discontinuity between the coast and the city's green spaces was not designed in a spirit of network and connection, hence the lack of a greenway that connects these spaces to the city. Finally, this GIS support will be used to assess and monitor green spaces in the city of Sousse by decision-makers and will contribute to improve the well-being of the local population.Keywords: distributions, GIS, green space, imbalance, spatial analysis
Procedia PDF Downloads 2045972 SEAWIZARD-Multiplex AI-Enabled Graphene Based Lab-On-Chip Sensing Platform for Heavy Metal Ions Monitoring on Marine Water
Authors: M. Moreno, M. Alique, D. Otero, C. Delgado, P. Lacharmoise, L. Gracia, L. Pires, A. Moya
Abstract:
Marine environments are increasingly threatened by heavy metal contamination, including mercury (Hg), lead (Pb), and cadmium (Cd), posing significant risks to ecosystems and human health. Traditional monitoring techniques often fail to provide the spatial and temporal resolution needed for real-time detection of these contaminants, especially in remote or harsh environments. SEAWIZARD addresses these challenges by leveraging the flexibility, adaptability, and cost-effectiveness of printed electronics, with the integration of microfluidics to develop a compact, portable, and reusable sensor platform designed specifically for real-time monitoring of heavy metal ions in seawater. The SEAWIZARD sensor is a multiparametric Lab-on-Chip (LoC) device, a miniaturized system that integrates several laboratory functions into a single chip, drastically reducing sample volumes and improving adaptability. This platform integrates three printed graphene electrodes for the simultaneous detection of Hg, Cd and Pb via square wave voltammetry. These electrodes share the reference and the counter electrodes to improve space efficiency. Additionally, it integrates printed pH and temperature sensors to correct environmental interferences that may impact the accuracy of metal detection. The pH sensor is based on a carbon electrode with iridium oxide electrodeposited while the temperature sensor is graphene based. A protective dielectric layer is printed on top of the sensor to safeguard it in harsh marine conditions. The use of flexible polyethylene terephthalate (PET) as the substrate enables the sensor to conform to various surfaces and operate in challenging environments. One of the key innovations of SEAWIZARD is its integrated microfluidic layer, fabricated from cyclic olefin copolymer (COC). This microfluidic component allows a controlled flow of seawater over the sensing area, allowing for significant improved detection limits compared to direct water sampling. The system’s dual-channel design separates the detection of heavy metals from the measurement of pH and temperature, ensuring that each parameter is measured under optimal conditions. In addition, the temperature sensor is finely tuned with a serpentine-shaped microfluidic channel to ensure precise thermal measurements. SEAWIZARD also incorporates custom electronics that allow for wireless data transmission via Bluetooth, facilitating rapid data collection and user interface integration. Embedded artificial intelligence further enhances the platform by providing an automated alarm system, capable of detecting predefined metal concentration thresholds and issuing warnings when limits are exceeded. This predictive feature enables early warnings of potential environmental disasters, such as industrial spills or toxic levels of heavy metal pollutants, making SEAWIZARD not just a detection tool, but a comprehensive monitoring and early intervention system. In conclusion, SEAWIZARD represents a significant advancement in printed electronics applied to environmental sensing. By combining flexible, low-cost materials with advanced microfluidics, custom electronics, and AI-driven intelligence, SEAWIZARD offers a highly adaptable and scalable solution for real-time, high-resolution monitoring of heavy metals in marine environments. Its compact and portable design makes it an accessible, user-friendly tool with the potential to transform water quality monitoring practices and provide critical data to protect marine ecosystems from contamination-related risks.Keywords: lab-on-chip, printed electronics, real-time monitoring, microfluidics, heavy metal contamination
Procedia PDF Downloads 315971 The Comparation of Limits of Detection of Lateral Flow Immunochromatographic Strips of Different Types of Mycotoxins
Authors: Xinyi Zhao, Furong Tian
Abstract:
Mycotoxins are secondary metabolic products of fungi. These are poisonous, carcinogens and mutagens in nature and pose a serious health threat to both humans and animals, causing severe illnesses and even deaths. The rapid, simple and cheap detection methods of mycotoxins are of immense importance and in great demand in the food and beverage industry as well as in agriculture and environmental monitoring. Lateral flow immunochromatographic strips (ICSTs) have been widely used in food safety, environment monitoring. Forty-six papers were identified and reviewed on Google Scholar and Scopus for their limit of detection and nanomaterial on Lateral flow immunochromatographic strips on different types of mycotoxins. The papers were dated 2001-2021. Twenty five papers were compared to identify the lowest limit of detection of among different mycotoxins (Aflatoxin B1: 10, Zearalenone:5, Fumonisin B1: 5, Trichothecene-A: 5). Most of these highly sensitive strips are competitive. Sandwich structure are usually used in large scale detection. In conclusion, the mycotoxin receives that most researches is aflatoxin B1 and its limit of detection is the lowest. Gold-nanopaticle based immunochromatographic test strips has the lowest limit of detection. Five papers involve smartphone detection and they all detect aflatoxin B1 with gold nanoparticles. In these papers, quantitative concentration results can be obtained when the user uploads the photograph of test lines using the smartphone application.Keywords: aflatoxin B1, limit of detection, gold nanoparticle, lateral flow immunochromatographic strips, mycotoxins
Procedia PDF Downloads 1955970 Effects of a Student-Centered Approach to Assessment on Students' Attitudes towards 'Applied Statistics' Course
Authors: Anduela Lile
Abstract:
The purpose of this cross sectional study was to investigate the effectiveness of teaching and learning Statistics from a student centered perspective in higher education institutions. Statistics education has emphasized the application of tangible and interesting examples in order to motivate students learning about statistical concepts. Participants in this study were 112 bachelor students enrolled in the ‘Applied Statistics’ course in Sports University of Tirana. Experimental group students received a student-centered teaching approach; Control group students received an instructor-centered teaching approach. This study found student-centered approach student group had statistically significantly higher assessments scores (52.1 ± 18.9) at the end of the evaluation compared to instructor-centered approach student group (61.8 ± 16.4), (t (108) = 2.848, p = 0.005). Results concluded that student-centered perspective can improve student positive attitude to statistical methods and to motivate project work. Therefore, findings of this study may be very useful to the higher education institutions to establish their learning strategies especially for courses related to Statistics.Keywords: student-centered, instructor-centered, course assessment, learning outcomes, applied statistics
Procedia PDF Downloads 2805969 Feasibility Study for the Implementation of a Condition-Based Maintenance System in the UH-60 Helicopters
Authors: Santos Cabrera, Halbert Yesid, Moncada Nino, Alvaro Fernando, Rincon Cuta, Yeisson Alexis
Abstract:
The present work evaluates the feasibility of implementing a health and use monitoring system (HUMS), based on vibration analysis as a condition-based maintenance program for the UH60L 'Blackhawk' helicopters. The mixed approach used consists of contributions from national and international experts, the analysis of data extracted from the software (Meridium), the correlation of variables derived from the diagnosis of availability, the development, and application of the HUMS system, the evaluation of the latter through of the use of instruments designed for the collection of information using the DELPHI method and data capture with the device installed in the helicopter studied. The results obtained in the investigation reflect the context of maintenance in aerial operations, a reduction of operation and maintenance costs of over 2%, better use of human resources, improvement in availability (5%), and fulfillment of the aircraft’s security standards, enabling the implementation of the monitoring system (HUMS) in the condition-based maintenance program. New elements are added to the study of maintenance based on condition -specifically, in the determination of viability based on qualitative and quantitative data according to the methodology. The use of condition-based maintenance will allow organizations to adjust and reconfigure their strategic, logistical, and maintenance capabilities, aligning them with their strategic objectives of responding quickly and adequately to changes in the environment and operational requirements.Keywords: air transportation sustainability, HUMS, maintenance based condition, maintenance blackhawk capability
Procedia PDF Downloads 1575968 Surface Quality Improvement of Abrasive Waterjet Cutting for Spacecraft Structure
Authors: Tarek M. Ahmed, Ahmed S. El Mesalamy, Amro M. Youssef, Tawfik T. El Midany
Abstract:
Abrasive waterjet (AWJ) machining is considered as one of the most powerful cutting processes. It can be used for cutting heat sensitive, hard and reflective materials. Aluminum 2024 is a high-strength alloy which is widely used in aerospace and aviation industries. This paper aims to improve aluminum alloy and to investigate the effect of AWJ control parameters on surface geometry quality. Design of experiments (DoE) is used for establishing an experimental matrix. Statistical modeling is used to present a relation between the cutting parameters (pressure, speed, and distance between the nozzle and cut surface) and responses (taper angle and surface roughness). The results revealed a tangible improvement in productivity by using AWJ processing. The taper kerf angle can be improved by decreasing standoff distance and speed and increasing water pressure. While decreasing (cutting speed, pressure and distance between the nozzle and cut surface) improve the surface roughness in the operating window of cutting parameters.Keywords: abrasive waterjet machining, machining of aluminum alloy, non-traditional cutting, statistical modeling
Procedia PDF Downloads 2505967 Prevalence of Breast Cancer Molecular Subtypes at a Tertiary Cancer Institute
Authors: Nahush Modak, Meena Pangarkar, Anand Pathak, Ankita Tamhane
Abstract:
Background: Breast cancer is the prominent cause of cancer and mortality among women. This study was done to show the statistical analysis of a cohort of over 250 patients detected with breast cancer diagnosed by oncologists using Immunohistochemistry (IHC). IHC was performed by using ER; PR; HER2; Ki-67 antibodies. Materials and methods: Formalin fixed Paraffin embedded tissue samples were obtained by surgical manner and standard protocol was followed for fixation, grossing, tissue processing, embedding, cutting and IHC. The Ventana Benchmark XT machine was used for automated IHC of the samples. Antibodies used were supplied by F. Hoffmann-La Roche Ltd. Statistical analysis was performed by using SPSS for windows. Statistical tests performed were chi-squared test and Correlation tests with p<.01. The raw data was collected and provided by National Cancer Insitute, Jamtha, India. Result: Luminal B was the most prevailing molecular subtype of Breast cancer at our institute. Chi squared test of homogeneity was performed to find equality in distribution and Luminal B was the most prevalent molecular subtype. The worse prognostic indicator for breast cancer depends upon expression of Ki-67 and her2 protein in cancerous cells. Our study was done at p <.01 and significant dependence was observed. There exists no dependence of age on molecular subtype of breast cancer. Similarly, age is an independent variable while considering Ki-67 expression. Chi square test performed on Human epidermal growth factor receptor 2 (HER2) statuses of patients and strong dependence was observed in percentage of Ki-67 expression and Her2 (+/-) character which shows that, value of Ki depends upon Her2 expression in cancerous cells (p<.01). Surprisingly, dependence was observed in case of Ki-67 and Pr, at p <.01. This shows that Progesterone receptor proteins (PR) are over-expressed when there is an elevation in expression of Ki-67 protein. Conclusion: We conclude from that Luminal B is the most prevalent molecular subtype at National Cancer Institute, Jamtha, India. There was found no significant correlation between age and Ki-67 expression in any molecular subtype. And no dependence or correlation exists between patients’ age and molecular subtype. We also found that, when the diagnosis is Luminal A, out of the cohort of 257 patients, no patient shows >14% Ki-67 value. Statistically, extremely significant values were observed for dependence of PR+Her2- and PR-Her2+ scores on Ki-67 expression. (p<.01). Her2 is an important prognostic factor in breast cancer. Chi squared test for Her2 and Ki-67 shows that the expression of Ki depends upon Her2 statuses. Moreover, Ki-67 cannot be used as a standalone prognostic factor for determining breast cancer.Keywords: breast cancer molecular subtypes , correlation, immunohistochemistry, Ki-67 and HR, statistical analysis
Procedia PDF Downloads 123