Search results for: samurai design
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12559

Search results for: samurai design

11599 From Vertigo to Verticality: An Example of Phenomenological Design in Architecture

Authors: E. Osorio Schmied

Abstract:

Architects commonly attempt a depiction of organic forms when their works are inspired by nature, regardless of the building site. Nevertheless it is also possible to try matching structures with natural scenery, by applying a phenomenological approach in terms of spatial operations, regarding perceptions from nature through architectural aspects such as protection, views, and orientation. This method acknowledges a relationship between place and space, where intentions towards tangible facts then become design statements. Although spaces resulting from such a process may present an effective response to the environment, they can also offer further outcomes beyond the realm of form. The hypothesis is that, in addition to recognising a bond between architecture and nature, it is also plausible to associate such perceptions with the inner ambient of buildings, by analysing features such as daylight. The case study of a single-family house in a rainforest near Valdivia, Chilean Patagonia is presented, with the intention of addressing the above notions through a discussion of the actual effects of inhabiting a place by way of a series of insights, including a revision of diagrams and photographs that assist in understanding the implications of this design practice. In addition, figures based on post-occupancy behaviour and daylighting performance relate both architectural and environmental issues to a decision-making process motivated by the observation of nature.

Keywords: architecture, design statements, nature, perception

Procedia PDF Downloads 345
11598 Integration of Constraints Related to Composite Materials in the Design of Industrial Products

Authors: A. Boumedine, K. Benfriha, S. Lecheb

Abstract:

Manufacturing methods for products and structures made of composite materials reduce the number of parts and integrate technical functions, this advantage of composite materials leads to a lot of innovation but also to a reduction of costs and a gain in quality. A material has attributes: its density, it’s resistance, it’s cost, it’s resistance to corrosion. For the design of a product, a certain profile of these attributes is required: low density, resistance removed, low cost. The problem is then to identify this attribute profile and to compare it with those of the materials, in order to find the one that comes closest. The aim of this work is to demonstrate the feasibility of characterizing a mini turbine made of 3D printed fiber-filled composite material by the process of additive manufacturing, then compare the performance of the alloy turbine with the composite turbine according to the results of the simulation by Abaqus software.

Keywords: additive manufacturing, composite materials, design, 3D printer, turbine

Procedia PDF Downloads 137
11597 A Gendered Perspective of the Influence of Public Transport Infrastructural Design on Accessibility

Authors: Ajeni Ari, Chiara Maria Leva, Lorraine D’Arcy, Mary Kinahan

Abstract:

In addressing gender and transport, considerations of mobility disparities amongst users are important. Public transport (PT) policy and design do not efficiently account for the varied mobility practices between men and women, with literature only recently showing a movement towards gender inclusion in transport. Arrantly, transport policy and designs remain gender-blind to the variation of mobility needs. The global movement towards sustainability highlights the need for expeditious strategies that could mitigate biases within the existing system. At the forefront of such a plan of action, in part, may be mandated inclusive infrastructural designs that stimulate user engagement with the transport system. Fundamentally access requires a means or an opportunity for the entity, which for PT is an establishment of its physical environment and/or infrastructural design. Its practicality may be utilised with knowledge of shortcomings in tangible or intangible aspects of the service offerings allowing access to opportunities. To inform on existing biases in PT planning and design, this study analyses qualitative data to examine the opinions and lived experiences among transport users in Ireland. Findings show that infrastructural design plays a significant role in users’ engagement with the service. Paramount to accessibility are service provisions that cater to both user interactions and those of their dependents. Apprehension to use the service is more so evident in women in comparison to men, particularly while carrying out household duties and caring responsibilities at peak times or dark hours. Furthermore, limitations are apparent with infrastructural service offerings that do not accommodate the physical (dis)ability of users, especially universal design. There are intersecting factors that impinge on accessibility, e.g., safety and security, yet essentially; the infrastructural design is an important influencing parameter to user perceptual conditioning. Additionally, data discloses the need for user intricacies to be factored in transport planning geared towards gender inclusivity, including mobility practices, travel purpose, transit time or location, and system integration.

Keywords: infrastructure design, public transport, accessibility, women, gender

Procedia PDF Downloads 77
11596 Augmented Tourism: Definitions and Design Principles

Authors: Eric Hawkinson

Abstract:

After designing and implementing several iterations of implementations of augmented reality (AR) in tourism, this paper takes a deep look into design principles and implementation strategies of using AR at destination tourism settings. The study looks to define augmented tourism from past implementations as well as several cases, uses designed and implemented for tourism. The discussion leads to formation of frameworks and best practices for AR as well as virtual reality( VR) to be used in tourism settings. Some main affordances include guest autonomy, customized experiences, visitor data collection and increased electronic word-of-mouth generation for promotion purposes. Some challenges found include the need for high levels of technology infrastructure, low adoption rates or ‘buy-in’ rates, high levels of calibration and customization, and the need for maintenance and support services. Some suggestions are given as to how to leverage the affordances and meet the challenges of implementing AR for tourism.

Keywords: augmented tourism, augmented reality, eTourism, virtual tourism, tourism design

Procedia PDF Downloads 375
11595 Fast Generation of High-Performance Driveshafts: A Digital Approach to Automated Linked Topology and Design Optimization

Authors: Willi Zschiebsch, Alrik Dargel, Sebastian Spitzer, Philipp Johst, Robert Böhm, Niels Modler

Abstract:

In this article, we investigate an approach that digitally links individual development process steps by using the drive shaft of an aircraft engine as a representative example of a fiber polymer composite. Such high-performance, lightweight composite structures have many adjustable parameters that influence the mechanical properties. Only a combination of optimal parameter values can lead to energy efficient lightweight structures. The development tools required for the Engineering Design Process (EDP) are often isolated solutions, and their compatibility with each other is limited. A digital framework is presented in this study, which allows individual specialised tools to be linked via the generated data in such a way that automated optimization across programs becomes possible. This is demonstrated using the example of linking geometry generation with numerical structural analysis. The proposed digital framework for automated design optimization demonstrates the feasibility of developing a complete digital approach to design optimization. The methodology shows promising potential for achieving optimal solutions in terms of mass, material utilization, eigenfrequency, and deformation under lateral load with less development effort. The development of such a framework is an important step towards promoting a more efficient design approach that can lead to stable and balanced results.

Keywords: digital linked process, composite, CFRP, multi-objective, EDP, NSGA-2, NSGA-3, TPE

Procedia PDF Downloads 78
11594 Design of Parity-Preserving Reversible Logic Signed Array Multipliers

Authors: Mojtaba Valinataj

Abstract:

Reversible logic as a new favorable design domain can be used for various fields especially creating quantum computers because of its speed and intangible power consumption. However, its susceptibility to a variety of environmental effects may lead to yield the incorrect results. In this paper, because of the importance of multiplication operation in various computing systems, some novel reversible logic array multipliers are proposed with error detection capability by incorporating the parity-preserving gates. The new designs are presented for two main parts of array multipliers, partial product generation and multi-operand addition, by exploiting the new arrangements of existing gates, which results in two signed parity-preserving array multipliers. The experimental results reveal that the best proposed 4×4 multiplier in this paper reaches 12%, 24%, and 26% enhancements in the number of constant inputs, number of required gates, and quantum cost, respectively, compared to previous design. Moreover, the best proposed design is generalized for n×n multipliers with general formulations to estimate the main reversible logic criteria as the functions of the multiplier size.

Keywords: array multipliers, Baugh-Wooley method, error detection, parity-preserving gates, quantum computers, reversible logic

Procedia PDF Downloads 261
11593 Introducing a Practical Model for Instructional System Design Based on Determining of the knowledge Level of the Organization: Case Study of Isfahan Public Transportation Co.

Authors: Mojtaba Aghajari, Alireza Aghasi

Abstract:

The first challenge which the current research faced has been the identification or determination of the level of knowledge in Isfahan public transportation corporation, and the second challenge has been the recognition and choice of a proper approach for the instructional system design. Responding these two challenges will present an appropriate model of instructional system design. In order to respond the first challenge or question, Nonaka and Takeuchi KM model has been utilized due to its universality among the 26 models proposed so far. The statistical population of this research included 2200 people, among which 200 persons were chosen as the sample of the research by the use of Morgan’s method. The data gathering has been carried out by the means of a questionnaire based on Nonaka and Takeuchi KM model, analysis of which has been done by SPSS program. The output of this questionnaire, yielding the point of 1.96 (out of 5 points), revealed that the general condition of Isfahan public transportation corporation is weak concerning its being knowledge-centered. After placing this output on Jonassen’s continuum, it was revealed that the appropriate approach for instructional system design is the system (or behavioral) approach. Accordingly, different steps of the general model of ADDIE, which covers all of the ISO10015 standards, were adopted in the act of designing. Such process in Isfahan public transportation corporation was designed and divided into three main steps, including: instructional designing and planning, instructional course planning, determination of the evaluation and the effectiveness of the instructional courses.

Keywords: instructional system design, system approach, knowledge management, employees

Procedia PDF Downloads 330
11592 3D Printing for Maritime Cultural Heritage: A Design for All Approach to Public Interpretation

Authors: Anne Eugenia Wright

Abstract:

This study examines issues in accessibility to maritime cultural heritage. Using the Pillar Dollar Wreck in Biscayne National Park, Florida, this study presents an approach to public outreach based on the concept of Design for All. Design for All advocates creating products that are accessible and functional for all users, including those with visual, hearing, learning, mobility, or economic impairments. As a part of this study, a small exhibit was created that uses 3D products as a way to bring maritime cultural heritage to the public. It was presented to the public at East Carolina University’s Joyner Library. Additionally, this study presents a methodology for 3D printing scaled photogrammetry models of archaeological sites in full color. This methodology can be used to present a realistic depiction of underwater archaeological sites to those who are incapable of accessing them in the water. Additionally, this methodology can be used to present underwater archaeological sites that are inaccessible to the public due to conditions such as visibility, depth, or protected status. This study presents a practical use for 3D photogrammetry models, as well as an accessibility strategy to expand the outreach potential for maritime archaeology.

Keywords: Underwater Archaeology, 3D Printing, Photogrammetry, Design for All

Procedia PDF Downloads 146
11591 Analyze and Improve Project Delivery Time Enhancing Business Management System of Review and Approval Process for Project Design Submittals

Authors: Abdulaziz Alnajem, Amit Sharma

Abstract:

Business Case: Project delivery and enhancing activities' completion in the shortest possible time is critical during execution to proceed with the subsequent phases of Procurement, C & C phases of Contracts to have the required Production facilities/Infrastructure in place to achieve the Company strategic objective of 4.0 MBOPD oil production. SOR (Statement of requirement): Design and Engineering phase of Projects execution takes a long time. It is observed that, in most of the cases, company has crossed the Project Design Submittals review time as per the Contract/Company Standards, resulting into delays in projects completion, and cost impact to the company. Study Scope: Scope of the study covers the process from date of first submission of D & E documents by the contractor to final approval by the controlling team to proceed with the procurement of materials. This scope covers projects handled by the company’s project management teams and includes only the internal review process by the company.

Keywords: business management system, project management, oil and gas, analysis, improvement, design, delays

Procedia PDF Downloads 221
11590 Weight Comparison of Oil and Dry Type Distribution Transformers

Authors: Murat Toren, Mehmet Çelebi

Abstract:

Reducing the weight of transformers while providing good performance, cost reduction and increased efficiency is important. Weight is one of the most significant factors in all electrical machines, and as such, many transformer design parameters are related to weight calculations. This study presents a comparison of the weight of oil type transformers and dry type transformer weight. Oil type transformers are mainly used in industry; however, dry type transformers are becoming more widespread in recent years. MATLAB is typically used for designing transformers and design parameters (rated voltages, core loss, etc.) along with design in ANSYS Maxwell. Similar to other studies, this study presented that the dry type transformer option is limited. Moreover, the commonly-used 50 kVA distribution transformers in the industry are oil type and dry type transformers are designed and considered in terms of weight. Currently, the preference for low-cost oil-type transformers would change if costs for dry-type transformer were more competitive. The aim of this study was to compare the weight of transformers, which is a substantial cost factor, and to provide an evaluation about increasing the use of dry type transformers.

Keywords: weight, optimization, oil-type transformers, dry-type transformers

Procedia PDF Downloads 358
11589 Approach on Conceptual Design and Dimensional Synthesis of the Linear Delta Robot for Additive Manufacturing

Authors: Efrain Rodriguez, Cristhian Riano, Alberto Alvares

Abstract:

In recent years, robots manipulators with parallel architectures are used in additive manufacturing processes – 3D printing. These robots have advantages such as speed and lightness that make them suitable to help with the efficiency and productivity of these processes. Consequently, the interest for the development of parallel robots for additive manufacturing applications has increased. This article deals with the conceptual design and dimensional synthesis of the linear delta robot for additive manufacturing. Firstly, a methodology based on structured processes for the development of products through the phases of informational design, conceptual design and detailed design is adopted: a) In the informational design phase the Mudge diagram and the QFD matrix are used to aid a set of technical requirements, to define the form, functions and features of the robot. b) In the conceptual design phase, the functional modeling of the system through of an IDEF0 diagram is performed, and the solution principles for the requirements are formulated using a morphological matrix. This phase includes the description of the mechanical, electro-electronic and computational subsystems that constitute the general architecture of the robot. c) In the detailed design phase, a digital model of the robot is drawn on CAD software. A list of commercial and manufactured parts is detailed. Tolerances and adjustments are defined for some parts of the robot structure. The necessary manufacturing processes and tools are also listed, including: milling, turning and 3D printing. Secondly, a dimensional synthesis method applied on design of the linear delta robot is presented. One of the most important key factors in the design of a parallel robot is the useful workspace, which strongly depends on the joint space, the dimensions of the mechanism bodies and the possible interferences between these bodies. The objective function is based on the verification of the kinematic model for a prescribed cylindrical workspace, considering geometric constraints that possibly lead to singularities of the mechanism. The aim is to determine the minimum dimensional parameters of the mechanism bodies for the proposed workspace. A method based on genetic algorithms was used to solve this problem. The method uses a cloud of points with the cylindrical shape of the workspace and checks the kinematic model for each of the points within the cloud. The evolution of the population (point cloud) provides the optimal parameters for the design of the delta robot. The development process of the linear delta robot with optimal dimensions for additive manufacture is presented. The dimensional synthesis enabled to design the mechanism of the delta robot in function of the prescribed workspace. Finally, the implementation of the robotic platform developed based on a linear delta robot in an additive manufacturing application using the Fused Deposition Modeling (FDM) technique is presented.

Keywords: additive manufacturing, delta parallel robot, dimensional synthesis, genetic algorithms

Procedia PDF Downloads 192
11588 Challenges of Landscape Design with Tree Species Diversity

Authors: Henry Kuppen

Abstract:

In the last decade, tree managers have faced many threats of pests and diseases and the effects of climate change. Managers will recognize that they have to put more energy and more money into tree management. By recognizing the cause behind this, the opportunity will arise to build sustainable tree populations for the future. More and more, unwanted larvae are sprayed, ash dieback infected trees are pruned or felled, and emerald ash borer is knocking at the door of West Europe. A lot of specific knowledge is needed to produce management plans and best practices. If pest and disease have a large impact, society loses complete tree species and need to start all over again building urban forest. But looking at the cause behind it, landscape design, and tree species selection, the sustainable solution does not present itself in managing these threats. Every pest or disease needs two important basic ingredients to be successful: climate and food. The changing climate is helping several invasive pathogens to survive. Food is often designed by the landscapers and managers of the urban forest. Monocultures promote the success of pathogens. By looking more closely at the basics, tree managers will realise very soon that the solution will not be the management of pathogens. The long-term solution for sustainable tree populations is a different design of our urban landscape. The use of tree species diversity can help to reduce the impact of climate change and pathogens. Therefore landscapers need to be supported. They are the specialists in designing the landscape using design values like canopy volume, ecosystem services, and seasonal experience. It’s up to the species specialist to show what the opportunities are for different species that meet the desired interpretation of the landscape. Based on landscapers' criteria, selections can be made, including tree species related requirements. Through this collaboration and formation of integral teams, sustainable plant design will be possible.

Keywords: climate change, landscape design, resilient landscape, tree species selection

Procedia PDF Downloads 137
11587 Primary School Teachers’ Conceptual and Procedural Knowledge of Rational Numbers and Its Effects on Pupils Achievement of Rational Numbers

Authors: Raliatu Mohammed Kashim

Abstract:

The study investigated primary school teachers conceptual and procedural knowledge of rational numbers to determine how it effects on pupil’s achievement on rational number. Specifically, primary school teachers’ level of conceptual and procedural knowledge about rational number and its effects on their pupils understanding of rational number in primary school was explored. The study was carried out in Bauchi state of Nigeria, Using a multistage design. The first stage was a descriptive design. The second stage involves a pre-test post-test only quasi experiment design. The population of the study comprises of six mathematics teachers holding the Nigerian Certificate in Education (NCE) teaching primary six and their two hundred and ten pupils in intact class. Two instrument namely Conceptual and Procedural knowledge Test (CPKT) and Rational number Achievement Test (RAT) were used for data collection. Data collected was analyzed using ANCOVA and Scheffe’s Test. The result revealed a significant differences between pupils taught by teachers with high conceptual and procedural knowledge and those target by teachers with low conceptual and procedural knowledge.

Keywords: conceptual knowledge, procedural knowledge, rational numbers, multistage design

Procedia PDF Downloads 392
11586 Hybrid Concrete Construction (HCC) for Sustainable Infrastructure Development in Nigeria

Authors: Muhammad Bello Ibrahim, M. Auwal Zakari, Aliyu Usman

Abstract:

Hybrid concrete construction (HCC) combines all the benefits of pre-casting with the advantages of cast in-situ construction. Merging the two, as a hybrid structure, results in even greater construction speed, value, and the overall economy. Its variety of uses has gained popularity in the United States and in Europe due to its distinctive benefits. However, the increase of its application in some countries (including Nigeria) has been relatively slow. Several researches have shown that hybrid construction offers an ultra-high performance concrete that offers superior strength, durability and aesthetics with design flexibility and within sustainability credentials, based on the available and economically visible technologies. This paper examines and documents the criterion that will help inform the process of deciding whether or not to adopt hybrid concrete construction (HCC) technology rather than more traditional alternatives. It also the present situation of design, construction and research on hybrid structures.

Keywords: hybrid concrete construction, Nigeria, sustainable infrastructure development, design flexibility

Procedia PDF Downloads 562
11585 Ubiquitous Collaborative Mobile Learning (UCML): A Flexible Instructional Design Model for Social Learning

Authors: Hameed Olalekan Bolaji

Abstract:

The digital natives are driving the trends of literacy in the use of electronic devices for learning purposes. This has reconfigured the context of learning in the exploration of knowledge in a social learning environment. This study explores the impact of Ubiquitous Collaborative Mobile Learning (UCML) instructional design model in a quantitative designed-based research approach. The UCML model was a synergetic blend of four models that are relevant to the design of instructional content for a social learning environment. The UCML model serves as the treatment and instructions were transmitted via mobile device based on the principle of ‘bring your own device’ (BYOD) to promote social learning. Three research questions and two hypotheses were raised to guide the conduct of this study. A researcher-designed questionnaire was used to collate data and the it was subjected to reliability of Cronbach Alpha which yielded 0.91. Descriptive statistics of mean and standard deviation were used to answer research questions while inferential statistics of independent sample t-test was used to analyze the hypotheses. The findings reveal that the UCML model was adequately evolved and it promotes social learning its design principles through the use of mobile devices.

Keywords: collaboration, mobile device, social learning, ubiquitous

Procedia PDF Downloads 161
11584 The Design and Development of Foot Massage Plate from Coconut Shell

Authors: Chananchida Yuktirat, Nichanant Sermsri

Abstract:

The objectives of this research were to design and develop foot massage plate from coconut shell. The research investigated on the satisfaction of the users on the developed foot massage plate on 4 aspects; usage, practical in use, safety, and materials & production process. The sample group included 64 people joining the service at Wat Paitan Health Center, Bangkok. The samples were randomly tried on the massage plate and evaluated according to the 4 aspects. The data were analyzed to find mean, percentage, and standard deviation. The result showed that the overall satisfaction was at good level (mean = 3.80). When considering in details, it was found that the subjects reported their highest satisfaction on the practical usage (mean = 4.16), followed by safety (mean = 3.82); then, materials and production process (mean = 3.78). The least satisfaction aspect was on function and usage (mean = 3.45) or moderate level.

Keywords: coconut shell, design, foot massage, foot massage plate

Procedia PDF Downloads 242
11583 Optimisation of Pin Fin Heat Sink Using Taguchi Method

Authors: N. K. Chougule, G. V. Parishwad

Abstract:

The pin fin heat sink is a novel heat transfer device to transfer large amount of heat through with very small temperature differences and it also possesses large uniform cooling characteristics. Pin fins are widely used as elements that provide increased cooling for electronic devices. Increasing demands regarding the performance of such devices can be observed due to the increasing heat production density of electronic components. For this reason, extensive work is being carried out to select and optimize pin fin elements for increased heat transfer. In this paper, the effects of design parameters and the optimum design parameters for a Pin-Fin heat sink (PFHS) under multi-jet impingement case with thermal performance characteristics have been investigated by using Taguchi methodology based on the L9 orthogonal arrays. Various design parameters, such as pin-fin array size, gap between nozzle exit to impingement target surface (Z/d) and air velocity are explored by numerical experiment. The average convective heat transfer coefficient is considered as the thermal performance characteristics. The analysis of variance (ANOVA) is applied to find the effect of each design parameter on the thermal performance characteristics. Then the results of confirmation test with the optimal level constitution of design parameters have obviously shown that this logic approach can effective in optimizing the PFHS with the thermal performance characteristics. The analysis of the Taguchi method reveals that, all the parameters mentioned above have equal contributions in the performance of heat sink efficiency. Experimental results are provided to validate the suitability of the proposed approach.

Keywords: Pin Fin Heat Sink (PFHS), Taguchi method, CFD, thermal performance

Procedia PDF Downloads 253
11582 Sustainable Design Features Implementing Public Rental Housing for Remodeling

Authors: So-Young Lee, Myoung-Won Oh, Soon-Cheol Eom, Yeon-Won Suh

Abstract:

Buildings produce more than one thirds of the total energy consumption and CO₂ emissions. Korean government agency pronounced and initiated Zero Energy Buildings policy for construction as of 2025. The net zero energy design features include passive (daylight, layout, materials, insulation, finishes, etc.) and active (renewable energy sources) elements. The Zero Energy House recently built in Nowon-gu, Korea is provided for 121 households as a public rental housing complex. However most of public rental housing did not include sustainable features which can reduce housing maintaining cost significantly including energy cost. It is necessary to implement net zero design features to the obsolete public rental housing during the remodeling procedure since it can reduce housing cost in long term. The purpose of this study is to investigate sustainable design elements implemented in Net Zero Energy House in Korea and passive and active housing design features in order to apply the sustainable features to the case public rental apartment for remodeling. Housing complex cases in this study are Nowan zero Energy house, Gangnam Bogemjari House, and public rental housings built in more than 20 years in Seoul areas. As results, energy consumption in public rental housing built in 5-years can be improved by exterior surfaces. Energy optimizing in case housing built in more than 20 years can be enhanced by renovated materials, insulation, replacement of windows, exterior finishes, lightings, gardening, water, renewable energy installation, Green IT except for sunlight and layout of buildings. Further life costing analysis is needed for energy optimizing for case housing alternatives.

Keywords: affordable housing, remodeling, sustainable design, zero-energy house

Procedia PDF Downloads 195
11581 Business Domain Modelling Using an Integrated Framework

Authors: Mohammed Hasan Salahat, Stave Wade

Abstract:

This paper presents an application of a “Systematic Soft Domain Driven Design Framework” as a soft systems approach to domain-driven design of information systems development. The framework combining techniques from Soft Systems Methodology (SSM), the Unified Modeling Language (UML), and an implementation pattern knows as ‘Naked Objects’. This framework have been used in action research projects that have involved the investigation and modeling of business processes using object-oriented domain models and the implementation of software systems based on those domain models. Within this framework, Soft Systems Methodology (SSM) is used as a guiding methodology to explore the problem situation and to develop the domain model using UML for the given business domain. The framework is proposed and evaluated in our previous works, and a real case study ‘Information Retrieval System for Academic Research’ is used, in this paper, to show further practice and evaluation of the framework in different business domain. We argue that there are advantages from combining and using techniques from different methodologies in this way for business domain modeling. The framework is overviewed and justified as multi-methodology using Mingers Multi-Methodology ideas.

Keywords: SSM, UML, domain-driven design, soft domain-driven design, naked objects, soft language, information retrieval, multimethodology

Procedia PDF Downloads 563
11580 Optimization of Biodiesel Production from Sunflower Oil Using Central Composite Design

Authors: Pascal Mwenge, Jefrey Pilusa, Tumisang Seodigeng

Abstract:

The current study investigated the effect of catalyst ratio and methanol to oil ratio on biodiesel production by using central composite design. Biodiesel was produced by transesterification using sodium hydroxide as a homogeneous catalyst, a laboratory scale reactor consisting of flat bottom flask mounts with a reflux condenser, and a heating plate was used to produce biodiesel. Key parameters, including time, temperature, and mixing rate was kept constant at 60 minutes, 60 oC and 600 RPM, respectively. From the results obtained, it was observed that the biodiesel yield depends on catalyst ratio and methanol to oil ratio. The highest yield of 50.65% was obtained at catalyst ratio of 0.5 wt.% and methanol to oil mole ratio 10.5. The analysis of variances of biodiesel yield showed the R Squared value of 0.8387. A quadratic mathematical model was developed to predict the biodiesel yield in the specified parameters ranges.

Keywords: ANOVA, biodiesel, catalyst, transesterification, central composite design

Procedia PDF Downloads 156
11579 Advancing Net Zero Showcase in Subtropical High-Rise Commercial Building

Authors: Melody Wong

Abstract:

Taikoo Green Ribbon is the winning scheme of International Advancing Net Zero ANZ Ideas Competition 2021 and shortlisted as a finalist of top Architectural Award “AJ100 Sustainability Initiative of the Year, 2022, demonstrating city's aspirations to reach carbon neutrality by 2050. The project showcases total design solutions to blend technology and nature to create a futuristic workplace achieving net zero within a decade. The net zero building design featured with extremely low embodied carbon emission (<250 kgCO2/sqm), significant surplus in renewable energy generation (130% of energy consumption) and various carbon capture technology. The project leverages aesthetics, user-experience, sustainability, and technology to develop over 40 design features. Utilizing AI-controlled Smart Envelope system, the possibility of naturally ventilation was maximized to adjust the microclimate to foster behavourial change. The design principle – healthy and collaborative working environment is realized with a landscaped sky-track with kinetic energy pads, natural ventilated open space with edible plants across floors, and 500-seat open-space rooftop theatre to reshape and redefine the new generation of workplaces.

Keywords: NetZero, zero carbon, green, sustainability

Procedia PDF Downloads 83
11578 A Study on Golden Ratio (ф) and Its Implications on Seismic Design Using ETABS

Authors: Vishal A. S. Salelkar, Sumitra S. Kandolkar

Abstract:

Golden ratio (ф) or Golden mean or Golden section, as it is often referred to, is a proportion or a mean, which is often used by architects while conceiving the aesthetics of a structure. Golden Ratio (ф) is an irrational number that can be roughly rounded to 1.618 and is derived out of quadratic equation x2-x-1=0. The use of Golden Ratio (ф) can be observed throughout history, as far as ancient Egyptians, which later peaked during the Greek golden age. The use of this design technique is very much prevalent. At present, architects around the world prefer this as one of the primary techniques to decide aesthetics. In this study, an analysis has been performed to investigate whether the use of the golden ratio while planning a structure has any effects on the seismic behavior of the structure. The structure is modeled and analyzed on ETABS (by Computers and Structures, Inc.) for Seismic requirements equivalent to Zone III (Region: Goa-India) as per Indian Standard Code IS-1893. The results were compared to that of an identical structure modeled along the lines of normal design philosophy, not using the Golden Ratio tools. The results were then compared for Story Shear, Story Drift, and Story Displacement Readings. Improvement in performance, although slight, but was observed. Similar improvements were also observed in subsequent iterations, performed using time-acceleration data of previous major earthquakes matched to Zone III as per IS-1893.

Keywords: ETABS, golden ratio, seismic design, structural behavior

Procedia PDF Downloads 187
11577 Simultaneous Optimization of Design and Maintenance through a Hybrid Process Using Genetic Algorithms

Authors: O. Adjoul, A. Feugier, K. Benfriha, A. Aoussat

Abstract:

In general, issues related to design and maintenance are considered in an independent manner. However, the decisions made in these two sets influence each other. The design for maintenance is considered an opportunity to optimize the life cycle cost of a product, particularly in the nuclear or aeronautical field, where maintenance expenses represent more than 60% of life cycle costs. The design of large-scale systems starts with product architecture, a choice of components in terms of cost, reliability, weight and other attributes, corresponding to the specifications. On the other hand, the design must take into account maintenance by improving, in particular, real-time monitoring of equipment through the integration of new technologies such as connected sensors and intelligent actuators. We noticed that different approaches used in the Design For Maintenance (DFM) methods are limited to the simultaneous characterization of the reliability and maintainability of a multi-component system. This article proposes a method of DFM that assists designers to propose dynamic maintenance for multi-component industrial systems. The term "dynamic" refers to the ability to integrate available monitoring data to adapt the maintenance decision in real time. The goal is to maximize the availability of the system at a given life cycle cost. This paper presents an approach for simultaneous optimization of the design and maintenance of multi-component systems. Here the design is characterized by four decision variables for each component (reliability level, maintainability level, redundancy level, and level of monitoring data). The maintenance is characterized by two decision variables (the dates of the maintenance stops and the maintenance operations to be performed on the system during these stops). The DFM model helps the designers choose technical solutions for the large-scale industrial products. Large-scale refers to the complex multi-component industrial systems and long life-cycle, such as trains, aircraft, etc. The method is based on a two-level hybrid algorithm for simultaneous optimization of design and maintenance, using genetic algorithms. The first level is to select a design solution for a given system that considers the life cycle cost and the reliability. The second level consists of determining a dynamic and optimal maintenance plan to be deployed for a design solution. This level is based on the Maintenance Free Operating Period (MFOP) concept, which takes into account the decision criteria such as, total reliability, maintenance cost and maintenance time. Depending on the life cycle duration, the desired availability, and the desired business model (sales or rental), this tool provides visibility of overall costs and optimal product architecture.

Keywords: availability, design for maintenance (DFM), dynamic maintenance, life cycle cost (LCC), maintenance free operating period (MFOP), simultaneous optimization

Procedia PDF Downloads 122
11576 The Background of Ornamental Design Practice: Theory and Practice Based Research on Ornamental Traditions

Authors: Jenna Pyorala

Abstract:

This research looks at the principles and purposes ornamental design has served in the field of textile design. Ornamental designs are characterized by richness of details, abundance of elements, vegetative motifs and organic forms that flow harmoniously in complex compositions. Research on ornamental design is significant, because ornaments have been overlooked and considered as less meaningful and aesthetically pleasing than minimalistic, modern designs. This is despite the fact that in many parts of the world ornaments have been an important part of the cultural identification and expression for centuries. Ornament has been claimed to be superficial and merely used as a decorative way to hide the faults of designs. Such generalization is an incorrect interpretation of the real purposes of ornament. Many ornamental patterns tell stories, present mythological scenes or convey symbolistic meanings. Historically, ornamental decorations have been representing ideas and characteristics such as abundance, wealth, power and personal magnificence. The production of fine ornaments required refined skill, eye for intricate detail and perseverance while compiling complex elements into harmonious compositions. For this reason, ornaments have played an important role in the advancement of craftsmanship. Even though it has been claimed that people in the western design world have lost the relationship to ornament, the relation to it has merely changed from the practice of a craftsman to conceptualisation of a designer. With the help of new technological tools the production of ornaments has become faster and more efficient, demanding less manual labour. Designers who commit to this style of organic forms and vegetative motifs embrace and respect nature by representing its organically growing forms and by following its principles. The complexity of the designs is used as a way to evoke a sense of extraordinary beauty and stimulate intellect by freeing the mind from the predetermined interpretations. Through the study of these purposes it can be demonstrated that complex and richer design styles are as valuable a part of the world of design as more modern design approaches. The study highlights the meaning of ornaments by presenting visual examples and literature research findings. The practice based part of the project is the visual analysis of historical and cultural ornamental traditions such as Indian Chikan embroidery, Persian carpets, Art Nouveau and Rococo according to the rubric created for the purpose. The next step is the creation of ornamental designs based on the key elements in different styles. Theoretical and practical parts are woven together in this study that respects respect the long traditions of ornaments and highlight the importance of these design approaches to the field, in contrast to the more commonly preferred styles.

Keywords: cultural design traditions, ornamental design, organic forms from nature, textile design

Procedia PDF Downloads 228
11575 Design of Structure for a Heavy-Duty Mineral Tow Machine by Evaluating the Dynamic and Static Loads

Authors: M. Akhondizadeh, Mohsen Khajoei, Mojtaba Khajoei

Abstract:

The purpose of the present work was the design of a towing machine which was decided to be manufactured by Arman Gohar-e-Sirjan company in the Gol-e-Gohar iron ore complex in Iran. The load analysis has been conducted to determine the static and dynamic loads at the critical conditions. The inertial forces due to the velocity increment and road bump have been considered in load evaluation. The form of loading of the present machine is hauling and/or conveying the mineral machines on the mini ramp. Several stages of these forms of loading, from the initial touch of the tow and carried machine to the final position, have been assessed to determine the critical state. The stress analysis has been performed by the ANSYS software. Several geometries for the main load-carrying elements have been analyzed to have the optimum design by the minimum weight of the structure. Finally, a structure with a total weight of 38 tons has been designed with a static load-carrying capacity of 80 tons by considering the 40 tons additional capacity for dynamic effects. The stress analysis for 120 tons load gives the minimum safety factor of 1.18.

Keywords: mechanical design, stress analysis, tow structure, dynamic load, static load

Procedia PDF Downloads 111
11574 Optimal Seismic Design of Reinforced Concrete Shear Wall-Frame Structure

Authors: H. Nikzad, S. Yoshitomi

Abstract:

In this paper, the optimal seismic design of reinforced concrete shear wall-frame building structures was done using structural optimization. The optimal section sizes were generated through structural optimization based on linear static analysis conforming to American Concrete Institute building design code (ACI 318-14). An analytical procedure was followed to validate the accuracy of the proposed method by comparing stresses on structural members through output files of MATLAB and ETABS. In order to consider the difference of stresses in structural elements by ETABS and MATLAB, and to avoid over-stress members by ETABS, a stress constraint ratio of MATLAB to ETABS was modified and introduced for the most critical load combinations and structural members. Moreover, seismic design of the structure was done following the International Building Code (IBC 2012), American Concrete Institute Building Code (ACI 318-14) and American Society of Civil Engineering (ASCE 7-10) standards. Typical reinforcement requirements for the structural wall, beam and column were discussed and presented using ETABS structural analysis software. The placement and detailing of reinforcement of structural members were also explained and discussed. The outcomes of this study show that the modification of section sizes play a vital role in finding an optimal combination of practical section sizes. In contrast, the optimization problem with size constraints has a higher cost than that of without size constraints. Moreover, the comparison of optimization problem with that of ETABS program shown to be satisfactory and governed ACI 318-14 building design code criteria.

Keywords: structural optimization, seismic design, linear static analysis, etabs, matlab, rc shear wall-frame structures

Procedia PDF Downloads 176
11573 Evolution of Memorial Architecture: Comparative Study of Aesthetics and Elements of Memorials in Europe and Indian Subcontinent

Authors: Madhusudan Hamirwasia, Sarang Barbarwar, Arshleen Kaur

Abstract:

The construction of memorials began thousands of years ago and the practice is still continuing. These memorials became a symbol to honor great people and events in the history. The aim of the study was to understand the evolution of memorials from an architectural design perspective. It is also concentrated on the similarities and differences between the memorials in Europe and those in the Indian subcontinent. The study shows how the design of a memorial has seen a considerable shift from the tribal Urasgattas to the contemporary commemorative structures. While they were somber symbolic gestures in the past, they have now transformed into a socio-cultural space in urban areas. Not only the memorials were inspired by the culture but the culture too got influenced by the memorials as with progressing time, they hold the vital link to our past. The study intends to encapsulate the essence of design elements in these memorials that convey the visitors the intangible messages held by the edifice in its tangible presence.

Keywords: evolution, emotion, memorials, symbolism

Procedia PDF Downloads 146
11572 Dynamic Stability Assessment of Different Wheel Sized Bicycles Based on Current Frame Design Practice with ISO Requirement for Bicycle Safety

Authors: Milan Paudel, Fook Fah Yap, Anil K. Bastola

Abstract:

The difficulties in riding small wheel bicycles and their lesser stability have been perceived for a long time. Although small wheel bicycles are designed using the similar approach and guidelines that have worked well for big wheel bicycles, the performance of the big wheelers and the smaller wheelers are markedly different. Since both the big wheelers and small wheelers have same fundamental geometry, most blame the small wheel for this discrepancy in the performance. This paper reviews existing guidelines for bicycle design, especially the front steering geometry for the bicycle, and provides a systematic and quantitative analysis of different wheel sized bicycles. A validated mathematical model has been used as a tool to assess the dynamic performance of the bicycles in term of their self-stability. The results obtained were found to corroborate the subjective perception of cyclists for small wheel bicycles. The current approach for small wheel bicycle design requires higher speed to be self-stable. However, it was found that increasing the headtube angle and selecting a proper trail could improve the dynamic performance of small wheel bicycles. A range of parameters for front steering geometry has been identified for small wheel bicycles that have comparable stability as big wheel bicycles. Interestingly, most of the identified geometries are found to be beyond the ISO recommended range and seem to counter the current approach of small wheel bicycle design. Therefore, it was successfully shown that the guidelines for big wheelers do not translate directly to small wheelers, but careful selection of the front geometry could make small wheel bicycles as stable as big wheel bicycles.

Keywords: big wheel bicycle, design approach, ISO requirements, small wheel bicycle, stability and performance

Procedia PDF Downloads 197
11571 Multi Agent System Architecture Oriented Prometheus Methodology Design for Reverse Logistics

Authors: F. Lhafiane, A. Elbyed, M. Bouchoum

Abstract:

The design of Reverse logistics Network has attracted growing attention with the stringent pressures from both environmental awareness and business sustainability. Reverse logistical activities include return, remanufacture, disassemble and dispose of products can be quite complex to manage. In addition, demand can be difficult to predict, and decision making is one of the challenges tasks. This complexity has amplified the need to develop an integrated architecture for product return as an enterprise system. The main purpose of this paper is to design Multi agent system (MAS) architecture using the Prometheus methodology to efficiently manage reverse logistics processes. The proposed MAS architecture includes five types of agents: Gate keeping Agent, Collection Agent, Sorting Agent, Processing Agent and Disposal Agent which act respectively during the five steps of reverse logistics Network.

Keywords: reverse logistics, multi agent system, prometheus methodology

Procedia PDF Downloads 478
11570 Promoting Organizational Learning Facing the Complexity of Public Healthcare: How to Design a Voluntary, Learning-Oriented Benchmarking

Authors: Rachel M. Lørum, Henrik Eriksson, Frida Smith

Abstract:

Purpose: In recent years, the use of benchmarks for the improvement of healthcare has become increasingly common. There has been an increasing interest in why improvement initiatives so often fail to eliminate the problems they aspire to solve. Benchmarking comes with its fair share of challenges and problems, such as capturing the dynamics and complexities of the care environments, among others. In this study, we demonstrate how learning-oriented, voluntary benchmarks in the complex environment of public healthcare could be designed. Findings: Our four most important findings were the following: first, important organizational learning (OL) regarding the complexity of the service and implications on how to design a benchmark for learning and improvement occurred during the process. Second, participation by a wide range of professionals and stakeholders was crucial for capturing the complexity of people and organizations and increasing the quality of the template. Third, the continuous dialogue between all organizations involved was an important tool for ongoing organizational learning throughout the process. The last important finding was the impact of the facilitator’s role through supporting progress, coordination, and dialogue. Design: We chose participatory design as the research design. Data were derived from written materials such as e-mails, protocols, observational notes, and reflection notes collected during a period of 1.5 years. Originality: Our main contributions are the identification of important strategies, initiatives, and actors to involve when designing voluntary benchmarks for learning and improvement.

Keywords: organizational learning, quality improvement, learning-oriented benchmark, healthcare, patient safety

Procedia PDF Downloads 117