Search results for: network system
19722 A Neural Network for the Prediction of Contraction after Burn Injuries
Authors: Ginger Egberts, Marianne Schaaphok, Fred Vermolen, Paul van Zuijlen
Abstract:
A few years ago, a promising morphoelastic model was developed for the simulation of contraction formation after burn injuries. Contraction can lead to a serious reduction in physical mobility, like a reduction in the range-of-motion of joints. If this is the case in a healing burn wound, then this is referred to as a contracture that needs medical intervention. The morphoelastic model consists of a set of partial differential equations describing both a chemical part and a mechanical part in dermal wound healing. These equations are solved with the numerical finite element method (FEM). In this method, many calculations are required on each of the chosen elements. In general, the more elements, the more accurate the solution. However, the number of elements increases rapidly if simulations are performed in 2D and 3D. In that case, it not only takes longer before a prediction is available, the computation also becomes more expensive. It is therefore important to investigate alternative possibilities to generate the same results, based on the input parameters only. In this study, a surrogate neural network has been designed to mimic the results of the one-dimensional morphoelastic model. The neural network generates predictions quickly, is easy to implement, and there is freedom in the choice of input and output. Because a neural network requires extensive training and a data set, it is ideal that the one-dimensional FEM code generates output quickly. These feed-forward-type neural network results are very promising. Not only can the network give faster predictions, but it also has a performance of over 99%. It reports on the relative surface area of the wound/scar, the total strain energy density, and the evolutions of the densities of the chemicals and mechanics. It is, therefore, interesting to investigate the applicability of a neural network for the two- and three-dimensional morphoelastic model for contraction after burn injuries.Keywords: biomechanics, burns, feasibility, feed-forward NN, morphoelasticity, neural network, relative surface area wound
Procedia PDF Downloads 5419721 Assessment of Taiwan Railway Occurrences Investigations Using Causal Factor Analysis System and Bayesian Network Modeling Method
Authors: Lee Yan Nian
Abstract:
Safety investigation is different from an administrative investigation in that the former is conducted by an independent agency and the purpose of such investigation is to prevent accidents in the future and not to apportion blame or determine liability. Before October 2018, Taiwan railway occurrences were investigated by local supervisory authority. Characteristics of this kind of investigation are that enforcement actions, such as administrative penalty, are usually imposed on those persons or units involved in occurrence. On October 21, 2018, due to a Taiwan Railway accident, which caused 18 fatalities and injured another 267, establishing an agency to independently investigate this catastrophic railway accident was quickly decided. The Taiwan Transportation Safety Board (TTSB) was then established on August 1, 2019 to take charge of investigating major aviation, marine, railway and highway occurrences. The objective of this study is to assess the effectiveness of safety investigations conducted by the TTSB. In this study, the major railway occurrence investigation reports published by the TTSB are used for modeling and analysis. According to the classification of railway occurrences investigated by the TTSB, accident types of Taiwan railway occurrences can be categorized into: derailment, fire, Signal Passed at Danger and others. A Causal Factor Analysis System (CFAS) developed by the TTSB is used to identify the influencing causal factors and their causal relationships in the investigation reports. All terminologies used in the CFAS are equivalent to the Human Factors Analysis and Classification System (HFACS) terminologies, except for “Technical Events” which was added to classify causal factors resulting from mechanical failure. Accordingly, the Bayesian network structure of each occurrence category is established based on the identified causal factors in the CFAS. In the Bayesian networks, the prior probabilities of identified causal factors are obtained from the number of times in the investigation reports. Conditional Probability Table of each parent node is determined from domain experts’ experience and judgement. The resulting networks are quantitatively assessed under different scenarios to evaluate their forward predictions and backward diagnostic capabilities. Finally, the established Bayesian network of derailment is assessed using investigation reports of the same accident which was investigated by the TTSB and the local supervisory authority respectively. Based on the assessment results, findings of the administrative investigation is more closely tied to errors of front line personnel than to organizational related factors. Safety investigation can identify not only unsafe acts of individual but also in-depth causal factors of organizational influences. The results show that the proposed methodology can identify differences between safety investigation and administrative investigation. Therefore, effective intervention strategies in associated areas can be better addressed for safety improvement and future accident prevention through safety investigation.Keywords: administrative investigation, bayesian network, causal factor analysis system, safety investigation
Procedia PDF Downloads 12319720 DeepLig: A de-novo Computational Drug Design Approach to Generate Multi-Targeted Drugs
Authors: Anika Chebrolu
Abstract:
Mono-targeted drugs can be of limited efficacy against complex diseases. Recently, multi-target drug design has been approached as a promising tool to fight against these challenging diseases. However, the scope of current computational approaches for multi-target drug design is limited. DeepLig presents a de-novo drug discovery platform that uses reinforcement learning to generate and optimize novel, potent, and multitargeted drug candidates against protein targets. DeepLig’s model consists of two networks in interplay: a generative network and a predictive network. The generative network, a Stack- Augmented Recurrent Neural Network, utilizes a stack memory unit to remember and recognize molecular patterns when generating novel ligands from scratch. The generative network passes each newly created ligand to the predictive network, which then uses multiple Graph Attention Networks simultaneously to forecast the average binding affinity of the generated ligand towards multiple target proteins. With each iteration, given feedback from the predictive network, the generative network learns to optimize itself to create molecules with a higher average binding affinity towards multiple proteins. DeepLig was evaluated based on its ability to generate multi-target ligands against two distinct proteins, multi-target ligands against three distinct proteins, and multi-target ligands against two distinct binding pockets on the same protein. With each test case, DeepLig was able to create a library of valid, synthetically accessible, and novel molecules with optimal and equipotent binding energies. We propose that DeepLig provides an effective approach to design multi-targeted drug therapies that can potentially show higher success rates during in-vitro trials.Keywords: drug design, multitargeticity, de-novo, reinforcement learning
Procedia PDF Downloads 9519719 Artificial Neural Network for Forecasting of Daily Reservoir Inflow: Case Study of the Kotmale Reservoir in Sri Lanka
Authors: E. U. Dampage, Ovindi D. Bandara, Vinushi S. Waraketiya, Samitha S. R. De Silva, Yasiru S. Gunarathne
Abstract:
The knowledge of water inflow figures is paramount in decision making on the allocation for consumption for numerous purposes; irrigation, hydropower, domestic and industrial usage, and flood control. The understanding of how reservoir inflows are affected by different climatic and hydrological conditions is crucial to enable effective water management and downstream flood control. In this research, we propose a method using a Long Short Term Memory (LSTM) Artificial Neural Network (ANN) to assist the aforesaid decision-making process. The Kotmale reservoir, which is the uppermost reservoir in the Mahaweli reservoir complex in Sri Lanka, was used as the test bed for this research. The ANN uses the runoff in the Kotmale reservoir catchment area and the effect of Sea Surface Temperatures (SST) to make a forecast for seven days ahead. Three types of ANN are tested; Multi-Layer Perceptron (MLP), Convolutional Neural Network (CNN), and LSTM. The extensive field trials and validation endeavors found that the LSTM ANN provides superior performance in the aspects of accuracy and latency.Keywords: convolutional neural network, CNN, inflow, long short-term memory, LSTM, multi-layer perceptron, MLP, neural network
Procedia PDF Downloads 14919718 Global Navigation Satellite System and Precise Point Positioning as Remote Sensing Tools for Monitoring Tropospheric Water Vapor
Authors: Panupong Makvichian
Abstract:
Global Navigation Satellite System (GNSS) is nowadays a common technology that improves navigation functions in our life. Additionally, GNSS is also being employed on behalf of an accurate atmospheric sensor these times. Meteorology is a practical application of GNSS, which is unnoticeable in the background of people’s life. GNSS Precise Point Positioning (PPP) is a positioning method that requires data from a single dual-frequency receiver and precise information about satellite positions and satellite clocks. In addition, careful attention to mitigate various error sources is required. All the above data are combined in a sophisticated mathematical algorithm. At this point, the research is going to demonstrate how GNSS and PPP method is capable to provide high-precision estimates, such as 3D positions or Zenith tropospheric delays (ZTDs). ZTDs combined with pressure and temperature information allows us to estimate the water vapor in the atmosphere as precipitable water vapor (PWV). If the process is replicated for a network of GNSS sensors, we can create thematic maps that allow extract water content information in any location within the network area. All of the above are possible thanks to the advances in GNSS data processing. Therefore, we are able to use GNSS data for climatic trend analysis and acquisition of the further knowledge about the atmospheric water content.Keywords: GNSS, precise point positioning, Zenith tropospheric delays, precipitable water vapor
Procedia PDF Downloads 19619717 Combining an Optimized Closed Principal Curve-Based Method and Evolutionary Neural Network for Ultrasound Prostate Segmentation
Authors: Tao Peng, Jing Zhao, Yanqing Xu, Jing Cai
Abstract:
Due to missing/ambiguous boundaries between the prostate and neighboring structures, the presence of shadow artifacts, as well as the large variability in prostate shapes, ultrasound prostate segmentation is challenging. To handle these issues, this paper develops a hybrid method for ultrasound prostate segmentation by combining an optimized closed principal curve-based method and the evolutionary neural network; the former can fit curves with great curvature and generate a contour composed of line segments connected by sorted vertices, and the latter is used to express an appropriate map function (represented by parameters of evolutionary neural network) for generating the smooth prostate contour to match the ground truth contour. Both qualitative and quantitative experimental results showed that our proposed method obtains accurate and robust performances.Keywords: ultrasound prostate segmentation, optimized closed polygonal segment method, evolutionary neural network, smooth mathematical model, principal curve
Procedia PDF Downloads 19919716 Forecasting Optimal Production Program Using Profitability Optimization by Genetic Algorithm and Neural Network
Authors: Galal H. Senussi, Muamar Benisa, Sanja Vasin
Abstract:
In our business field today, one of the most important issues for any enterprises is cost minimization and profit maximization. Second issue is how to develop a strong and capable model that is able to give us desired forecasting of these two issues. Many researches deal with these issues using different methods. In this study, we developed a model for multi-criteria production program optimization, integrated with Artificial Neural Network. The prediction of the production cost and profit per unit of a product, dealing with two obverse functions at same time can be extremely difficult, especially if there is a great amount of conflict information about production parameters. Feed-Forward Neural Networks are suitable for generalization, which means that the network will generate a proper output as a result to input it has never seen. Therefore, with small set of examples the network will adjust its weight coefficients so the input will generate a proper output. This essential characteristic is of the most important abilities enabling this network to be used in variety of problems spreading from engineering to finance etc. From our results as we will see later, Feed-Forward Neural Networks has a strong ability and capability to map inputs into desired outputs.Keywords: project profitability, multi-objective optimization, genetic algorithm, Pareto set, neural networks
Procedia PDF Downloads 44519715 Bottleneck Modeling in Information Technology Service Management
Authors: Abhinay Puvvala, Veerendra Kumar Rai
Abstract:
A bottleneck situation arises when the outflow is lesser than the inflow in a pipe-like setup. A more practical interpretation of bottlenecks emphasizes on the realization of Service Level Objectives (SLOs) at given workloads. Our approach detects two key aspects of bottlenecks – when and where. To identify ‘when’ we continuously poll on certain key metrics such as resource utilization, processing time, request backlog and throughput at a system level. Further, when the slope of the expected sojourn time at a workload is greater than ‘K’ times the slope of expected sojourn time at the previous step of the workload while the workload is being gradually increased in discrete steps, a bottleneck situation arises. ‘K’ defines the threshold condition and is computed based on the system’s service level objectives. The second aspect of our approach is to identify the location of the bottleneck. In multi-tier systems with a complex network of layers, it is a challenging problem to locate bottleneck that affects the overall system performance. We stage the system by varying workload incrementally to draw a correlation between load increase and system performance to the point where Service Level Objectives are violated. During the staging process, multiple metrics are monitored at hardware and application levels. The correlations are drawn between metrics and the overall system performance. These correlations along with the Service Level Objectives are used to arrive at the threshold conditions for each of these metrics. Subsequently, the same method used to identify when a bottleneck occurs is used on metrics data with threshold conditions to locate bottlenecks.Keywords: bottleneck, workload, service level objectives (SLOs), throughput, system performance
Procedia PDF Downloads 23619714 A Hybrid Model for Secure Protocol Independent Multicast Sparse Mode and Dense Mode Protocols in a Group Network
Authors: M. S. Jimah, A. C. Achuenu, M. Momodu
Abstract:
Group communications over public infrastructure are prone to a lot of security issues. Existing network protocols like Protocol Independent Multicast Sparse Mode (PIM SM) and Protocol Independent Multicast Dense Mode (PIM DM) do not have inbuilt security features. Therefore, any user or node can easily access the group communication as long as the user can send join message to the source nodes, the source node then adds the user to the network group. In this research, a hybrid method of salting and hashing to encrypt information in the source and stub node was designed, and when stub nodes need to connect, they must have the appropriate key to join the group network. Object oriented analysis design (OOAD) was the methodology used, and the result shows that no extra controlled bandwidth overhead cost was added by encrypting and the hybrid model was more securing than the existing PIM SM, PIM DM and Zhang secure PIM SM.Keywords: group communications, multicast, PIM SM, PIM DM, encryption
Procedia PDF Downloads 16219713 An AI Based Smart Conference Calling System Using Bluetooth Technology
Authors: Ankita Dixit
Abstract:
A conference call using a mobile refers to a telephonic call in which several people talks to each other simultaneously. This is one of the most eminent features nowadays. This concept is already existing using LTE technology for mobile phones supporting SIM cards. Hence, currently, a conference call is possible only with the support of a SIM card, i.e., a Mobile operator. Bluetooth is a short-range wireless technology that is used for exchanging data between devices placed over short distances (up to 240 meters). This is a booming technology that is easily and freely available and has no dependency on network operators. Our study work proposes a smart system to enable conference calls with more than two mobile users without SIM support to communicate with each other simultaneously. The AI-based proposed solution will be self–governed, self-learned and will be intelligent enough to smartly switch between all callers connected via Bluetooth in a conference call. This proposed solution system will greatly increase the potential of using Bluetooth technology from a wider applicability perspective of conference calls, which is currently only possible over LTE mobiles.Keywords: conference call, bluetooth, AI, frequency hopping, piconet, scatter net
Procedia PDF Downloads 8319712 Multi-Agent Approach for Monitoring and Control of Biotechnological Processes
Authors: Ivanka Valova
Abstract:
This paper is aimed at using a multi-agent approach to monitor and diagnose a biotechnological system in order to validate certain control actions depending on the process development and the operating conditions. A multi-agent system is defined as a network of interacting software modules that collectively solve complex tasks. Remote monitoring and control of biotechnological processes is a necessity when automated and reliable systems operating with no interruption of certain activities are required. The advantage of our approach is in its flexibility, modularity and the possibility of improving by acquiring functionalities through the integration of artificial intelligence.Keywords: multi-agent approach, artificial intelligence, biotechnological processes, anaerobic biodegradation
Procedia PDF Downloads 8519711 An Integrated Label Propagation Network for Structural Condition Assessment
Authors: Qingsong Xiong, Cheng Yuan, Qingzhao Kong, Haibei Xiong
Abstract:
Deep-learning-driven approaches based on vibration responses have attracted larger attention in rapid structural condition assessment while obtaining sufficient measured training data with corresponding labels is relevantly costly and even inaccessible in practical engineering. This study proposes an integrated label propagation network for structural condition assessment, which is able to diffuse the labels from continuously-generating measurements by intact structure to those of missing labels of damage scenarios. The integrated network is embedded with damage-sensitive features extraction by deep autoencoder and pseudo-labels propagation by optimized fuzzy clustering, the architecture and mechanism which are elaborated. With a sophisticated network design and specified strategies for improving performance, the present network achieves to extends the superiority of self-supervised representation learning, unsupervised fuzzy clustering and supervised classification algorithms into an integration aiming at assessing damage conditions. Both numerical simulations and full-scale laboratory shaking table tests of a two-story building structure were conducted to validate its capability of detecting post-earthquake damage. The identifying accuracy of a present network was 0.95 in numerical validations and an average 0.86 in laboratory case studies, respectively. It should be noted that the whole training procedure of all involved models in the network stringently doesn’t rely upon any labeled data of damage scenarios but only several samples of intact structure, which indicates a significant superiority in model adaptability and feasible applicability in practice.Keywords: autoencoder, condition assessment, fuzzy clustering, label propagation
Procedia PDF Downloads 9319710 Complete Ensemble Empirical Mode Decomposition with Adaptive Noise Temporal Convolutional Network for Remaining Useful Life Prediction of Lithium Ion Batteries
Authors: Jing Zhao, Dayong Liu, Shihao Wang, Xinghua Zhu, Delong Li
Abstract:
Uhumanned Underwater Vehicles generally operate in the deep sea, which has its own unique working conditions. Lithium-ion power batteries should have the necessary stability and endurance for use as an underwater vehicle’s power source. Therefore, it is essential to accurately forecast how long lithium-ion batteries will last in order to maintain the system’s reliability and safety. In order to model and forecast lithium battery Remaining Useful Life (RUL), this research suggests a model based on Complete Ensemble Empirical Mode Decomposition with Adaptive noise-Temporal Convolutional Net (CEEMDAN-TCN). In this study, two datasets, NASA and CALCE, which have a specific gap in capacity data fluctuation, are used to verify the model and examine the experimental results in order to demonstrate the generalizability of the concept. The experiments demonstrate the network structure’s strong universality and ability to achieve good fitting outcomes on the test set for various battery dataset types. The evaluation metrics reveal that the CEEMDAN-TCN prediction performance of TCN is 25% to 35% better than that of a single neural network, proving that feature expansion and modal decomposition can both enhance the model’s generalizability and be extremely useful in industrial settings.Keywords: lithium-ion battery, remaining useful life, complete EEMD with adaptive noise, temporal convolutional net
Procedia PDF Downloads 15019709 Upgrades for Hydric Supply in Water System Distribution: Use of the Bayesian Network and Technical Expedients
Authors: Elena Carcano, James Ball
Abstract:
This work details the strategies adopted by the Italian Water Utilities during the distribution of water in emergency conditions which glide from earthquakes and droughts to floods and fires. Several water bureaus located over the national territory have been interviewed, and the collected information has been used in a database of potential interventions to be taken. The work discusses the actions adopted by water utilities. These are generally prioritized in order to minimize the social, temporal, and economic burden that the damaged and nearby areas need to support. Actions are defined relying on the Bayesian Network Approach, which constitutes the hard core of any decision support system. The Bayesian Networks give answers to interventions to real and most likely risky cases. The added value of this research consists in supplying the National Bureau, namely Protezione Civile, in charge of managing havoc and catastrophic situations with a univocal plot outline so as to be able to handle actions uniformly at the expense of different local laws or contradictory customs which squander any recovery conditions, proper technical service, and economic aids. The paper is organized as follows: in section 1, the introduction is stated; section 2 provides a brief discussion of BNNs (Bayesian Networks), section 3 introduces the adopted methodology; and in the last sections, results are presented, and conclusions are drawn.Keywords: hierarchical process, strategic plan, water emergency conditions, water supply
Procedia PDF Downloads 15819708 Big Data Strategy for Telco: Network Transformation
Abstract:
Big data has the potential to improve the quality of services; enable infrastructure that businesses depend on to adapt continually and efficiently; improve the performance of employees; help organizations better understand customers; and reduce liability risks. Analytics and marketing models of fixed and mobile operators are falling short in combating churn and declining revenue per user. Big Data presents new method to reverse the way and improve profitability. The benefits of Big Data and next-generation network, however, are more exorbitant than improved customer relationship management. Next generation of networks are in a prime position to monetize rich supplies of customer information—while being mindful of legal and privacy issues. As data assets are transformed into new revenue streams will become integral to high performance.Keywords: big data, next generation networks, network transformation, strategy
Procedia PDF Downloads 35919707 State Estimator Performance Enhancement: Methods For Identifying Errors In Modelling And Telemetry
Authors: M Ananthakrishnan, Sunil K Patil, Koti Naveen, Inuganti Hemanth Kumar
Abstract:
State estimation output of EMS forms the base case for all other advanced applications used in real time by a power system operator. Ensuring tuning of state estimator is a repeated process and cannot be left once a good solution is obtained. This paper attempts to demonstrate methods to improve state estimator solution by identifying incorrect modelling and telemetry inputs to the application. In this work, identification of database topology modelling error by plotting static network using node-to-node connection details is demonstrated with examples. Analytical methods to identify wrong transmission parameters, incorrect limits and mistakes in pseudo load and generator modelling are explained with various cases observed. Further, methods used for active and reactive power tuning using bus summation display, reactive power absorption summary, and transformer tap correction are also described. In a large power system, verifying all network static data and modelling parameter on regular basis is difficult .The proposed tuning methods can be easily used by operators to quickly identify errors to obtain the best possible state estimation performance. This, in turn, can lead to improved decision-support capabilities, ultimately enhancing the safety and reliability of the power grid.Keywords: active power tuning, database modelling, reactive power, state estimator
Procedia PDF Downloads 519706 Intelligent Minimal Allocation of Capacitors in Distribution Networks Using Genetic Algorithm
Authors: S. Neelima, P. S. Subramanyam
Abstract:
A distribution system is an interface between the bulk power system and the consumers. Among these systems, radial distributions system is popular because of low cost and simple design. In distribution systems, the voltages at buses reduces when moved away from the substation, also the losses are high. The reason for a decrease in voltage and high losses is the insufficient amount of reactive power, which can be provided by the shunt capacitors. But the placement of the capacitor with an appropriate size is always a challenge. Thus, the optimal capacitor placement problem is to determine the location and size of capacitors to be placed in distribution networks in an efficient way to reduce the power losses and improve the voltage profile of the system. For this purpose, in this paper, two stage methodologies are used. In the first stage, the load flow of pre-compensated distribution system is carried out using ‘dimension reducing distribution load flow algorithm (DRDLFA)’. On the basis of this load flow the potential locations of compensation are computed. In the second stage, Genetic Algorithm (GA) technique is used to determine the optimal location and size of the capacitors such that the cost of the energy loss and capacitor cost to be a minimum. The above method is tested on IEEE 9 and 34 bus system and compared with other methods in the literature.Keywords: dimension reducing distribution load flow algorithm, DRDLFA, genetic algorithm, electrical distribution network, optimal capacitors placement, voltage profile improvement, loss reduction
Procedia PDF Downloads 39019705 Investigating Message Timing Side Channel Attacks on Networks on Chip with Ring Topology
Authors: Mark Davey
Abstract:
Communications on a Network on Chip (NoC) produce timing information, i.e., network injection delays, packet traversal times, throughput metrics, and other attributes relating to the traffic being sent across the chip. The security requirements of a platform encompass each node to operate with confidentiality, integrity, and availability (ISO 27001). Inherently, a shared NoC interconnect is exposed to analysis of timing patterns created by contention for the network components, i.e., links and switches/routers. This phenomenon is defined as information leakage, which represents a ‘side channel’ of sensitive information that can be correlated to platform activity. The key algorithm presented in this paper evaluates how an adversary can control two platform neighbouring nodes of a target node to obtain sensitive information about communication with the target node. The actual information obtained is the period value of a periodic task communication. This enacts a breach of the expected confidentiality of a node operating in a multiprocessor platform. An experimental investigation of the side channel is undertaken to judge the level and significance of inferred information produced by access times to the NoC. Results are presented with a series of expanding task set scenarios to evaluate the efficacy of the side channel detection algorithm as the network load increases.Keywords: embedded systems, multiprocessor, network on chip, side channel
Procedia PDF Downloads 7019704 Self-Organizing Map Network for Wheeled Robot Movement Optimization
Authors: Boguslaw Schreyer
Abstract:
The paper investigates the application of the Kohonen’s Self-Organizing Map (SOM) to the wheeled robot starting and braking dynamic states. In securing wheeled robot stability as well as minimum starting and braking time, it is important to ensure correct torque distribution as well as proper slope of braking and driving moments. In this paper, a correct movement distribution has been formulated, securing optimum adhesion coefficient and good transversal stability of a wheeled robot. A neural tuner has been proposed to secure the above properties, although most of the attention is attached to the SOM network application. If the delay of the torque application or torque release is not negligible, it is important to change the rising and falling slopes of the torque. The road/surface condition is also paramount in robot dynamic states control. As the road conditions may randomly change in time, application of the SOM network has been suggested in order to classify the actual road conditions.Keywords: slip control, SOM network, torque distribution, wheeled Robot
Procedia PDF Downloads 12519703 Coal Mining Safety Monitoring Using Wsn
Authors: Somdatta Saha
Abstract:
The main purpose was to provide an implementable design scenario for underground coal mines using wireless sensor networks (WSNs). The main reason being that given the intricacies in the physical structure of a coal mine, only low power WSN nodes can produce accurate surveillance and accident detection data. The work mainly concentrated on designing and simulating various alternate scenarios for a typical mine and comparing them based on the obtained results to arrive at a final design. In the Era of embedded technology, the Zigbee protocols are used in more and more applications. Because of the rapid development of sensors, microcontrollers, and network technology, a reliable technological condition has been provided for our automatic real-time monitoring of coal mine. The underground system collects temperature, humidity and methane values of coal mine through sensor nodes in the mine; it also collects the number of personnel inside the mine with the help of an IR sensor, and then transmits the data to information processing terminal based on ARM.Keywords: ARM, embedded board, wireless sensor network (Zigbee)
Procedia PDF Downloads 34019702 Smart Forms and Intelligent Transportation Network Patterns, an Integrated Spatial Approach to Smart Cities and Intelligent Transport Systems in India Cities
Authors: Geetanjli Rani
Abstract:
The physical forms and network pattern of the city is expected to be enhanced with the advancement of technology. Reason being, the era of virtualisation and digital urban realm convergence with physical development. By means of comparative Spatial graphics and visuals of cities, the present paper attempts to revisit the very base of efficient physical forms and patterns to sync the emergence of virtual activities. Thus, the present approach to integrate spatial Smartness of Cities and Intelligent Transportation Systems is a brief assessment of smart forms and intelligent transportation network pattern to the dualism of physical and virtual urban activities. Finally, the research brings out that the grid iron pattern, radial, ring-radial, orbital etc. stands to be more efficient, effective and economical transit friendly for users, resource optimisation as well as compact urban and regional systems. Moreover, this paper concludes that the idea of flow and contiguity hidden in such smart forms and intelligent transportation network pattern suits to layering, deployment, installation and development of Intelligent Transportation Systems of Smart Cities such as infrastructure, facilities and services.Keywords: smart form, smart infrastructure, intelligent transportation network pattern, physical and virtual integration
Procedia PDF Downloads 15419701 Available Transmission Transfer Efficiency (ATTE) as an Index Measurement for Power Transmission Grid Performance
Authors: Ahmad Abubakar Sadiq, Nwohu Ndubuka Mark, Jacob Tsado, Ahmad Adam Asharaf, Agbachi E. Okenna, Enesi E. Yahaya, Ambafi James Garba
Abstract:
Transmission system performance analysis is vital to proper planning and operations of power systems in the presence of deregulation. Key performance indicators (KPIs) are often used as measure of degree of performance. This paper gives a novel method to determine the transmission efficiency by evaluating the ratio of real power losses incurred from a specified transfer direction. Available Transmission Transfer Efficiency (ATTE) expresses the percentage of real power received resulting from inter-area available power transfer. The Tie line (Rated system path) performance is seen to differ from system wide (Network response) performance and ATTE values obtained are transfer direction specific. The required sending end quantities with specified receiving end ATC and the receiving end power circle diagram are obtained for the tie line analysis. The amount of real power loss load relative to the available transfer capability gives a measure of the transmission grid efficiency.Keywords: performance, transmission system, real power efficiency, available transfer capability
Procedia PDF Downloads 64719700 Comparative Study on Manet Using Soft Computing Techniques
Authors: Amarjit Singh, Tripatdeep Singh Dua, Vikas Attri
Abstract:
Mobile Ad-hoc Network is a combination of several nodes that create dynamically a specific network without using any base infrastructure. In this study all the mobile nodes can depended upon each other to send any data. Mobile host can pick up data and forwarding to their destination path. Basically MANET depend upon their Quality of Service which is highly constraints to the user. To give better services we need to improve the QOS. In these days MANET QOS requirement to use soft computing techniques. These techniques depend upon their specific requirement and which exists using MANET concepts. Using a soft computing techniques various protocol and algorithms may be considered. In this paper, we provide comparative study review of existing work done in MANET using various kind of soft computing techniques. Our review research is based on their specific protocol or algorithm which provide concern solution of QOS need. We discuss about various protocol through which routing in MANET. In Second section we clear the concepts of Soft Computing and their types. In third section we review the MANET using different kind of soft computing techniques work done before. In forth section we need to understand the concept of QoS requirement which exists in MANET and we done comparative study on different protocol used before and last we conclude the purpose of using MANET with soft computing techniques metrics.Keywords: mobile ad-hoc network, fuzzy improved genetic approach, neural network, routing protocol, wireless mesh network
Procedia PDF Downloads 34819699 Proposal of Commutation Protocol in Hybrid Sensors and Vehicular Networks for Intelligent Transport Systems
Authors: Taha Bensiradj, Samira Moussaoui
Abstract:
Hybrid Sensors and Vehicular Networks (HSVN), represent a hybrid network, which uses several generations of Ad-Hoc networks. It is used especially in Intelligent Transport Systems (ITS). The HSVN allows making collaboration between the Wireless Sensors Network (WSN) deployed on the border of the road and the Vehicular Network (VANET). This collaboration is defined by messages exchanged between the two networks for the purpose to inform the drivers about the state of the road, provide road safety information and more information about traffic on the road. Moreover, this collaboration created by HSVN, also allows the use of a network and the advantage of improving another network. For example, the dissemination of information between the sensors quickly decreases its energy, and therefore, we can use vehicles that do not have energy constraint to disseminate the information between sensors. On the other hand, to solve the disconnection problem in VANET, the sensors can be used as gateways that allow sending the messages received by one vehicle to another. However, because of the short communication range of the sensor and its low capacity of storage and processing of data, it is difficult to ensure the exchange of road messages between it and the vehicle, which can be moving at high speed at the time of exchange. This represents the time where the vehicle is in communication range with the sensor. This work is the proposition of a communication protocol between the sensors and the vehicle used in HSVN. The latter has as the purpose to ensure the exchange of road messages in the available time of exchange.Keywords: HSVN, ITS, VANET, WSN
Procedia PDF Downloads 36019698 Implementation of Conceptual Real-Time Embedded Functional Design via Drive-By-Wire ECU Development
Authors: Ananchai Ukaew, Choopong Chauypen
Abstract:
Design concepts of real-time embedded system can be realized initially by introducing novel design approaches. In this literature, model based design approach and in-the-loop testing were employed early in the conceptual and preliminary phase to formulate design requirements and perform quick real-time verification. The design and analysis methodology includes simulation analysis, model based testing, and in-the-loop testing. The design of conceptual drive-by-wire, or DBW, algorithm for electronic control unit, or ECU, was presented to demonstrate the conceptual design process, analysis, and functionality evaluation. The concepts of DBW ECU function can be implemented in the vehicle system to improve electric vehicle, or EV, conversion drivability. However, within a new development process, conceptual ECU functions and parameters are needed to be evaluated. As a result, the testing system was employed to support conceptual DBW ECU functions evaluation. For the current setup, the system components were consisted of actual DBW ECU hardware, electric vehicle models, and control area network or CAN protocol. The vehicle models and CAN bus interface were both implemented as real-time applications where ECU and CAN protocol functionality were verified according to the design requirements. The proposed system could potentially benefit in performing rapid real-time analysis of design parameters for conceptual system or software algorithm development.Keywords: drive-by-wire ECU, in-the-loop testing, model-based design, real-time embedded system
Procedia PDF Downloads 34819697 Teaching the Binary System via Beautiful Facts from the Real Life
Authors: Salem Ben Said
Abstract:
In recent times the decimal number system to which we are accustomed has received serious competition from the binary number system. In this note, an approach is suggested to teaching and learning the binary number system using examples from the real world. More precisely, we will demonstrate the utility of the binary system in describing the optimal strategy to win the Chinese Nim game, and in telegraphy by decoding the hidden message on Perseverance’s Mars parachute written in the language of binary system. Finally, we will answer the question, “why do modern computers prefer the ternary number system instead of the binary system?”. All materials are provided in a format that is conductive to classroom presentation and discussion.Keywords: binary number system, Nim game, telegraphy, computers prefer the ternary system
Procedia PDF Downloads 18319696 Distributed System Computing Resource Scheduling Algorithm Based on Deep Reinforcement Learning
Authors: Yitao Lei, Xingxiang Zhai, Burra Venkata Durga Kumar
Abstract:
As the quantity and complexity of computing in large-scale software systems increase, distributed system computing becomes increasingly important. The distributed system realizes high-performance computing by collaboration between different computing resources. If there are no efficient resource scheduling resources, the abuse of distributed computing may cause resource waste and high costs. However, resource scheduling is usually an NP-hard problem, so we cannot find a general solution. However, some optimization algorithms exist like genetic algorithm, ant colony optimization, etc. The large scale of distributed systems makes this traditional optimization algorithm challenging to work with. Heuristic and machine learning algorithms are usually applied in this situation to ease the computing load. As a result, we do a review of traditional resource scheduling optimization algorithms and try to introduce a deep reinforcement learning method that utilizes the perceptual ability of neural networks and the decision-making ability of reinforcement learning. Using the machine learning method, we try to find important factors that influence the performance of distributed system computing and help the distributed system do an efficient computing resource scheduling. This paper surveys the application of deep reinforcement learning on distributed system computing resource scheduling proposes a deep reinforcement learning method that uses a recurrent neural network to optimize the resource scheduling, and proposes the challenges and improvement directions for DRL-based resource scheduling algorithms.Keywords: resource scheduling, deep reinforcement learning, distributed system, artificial intelligence
Procedia PDF Downloads 11019695 Multilayer Perceptron Neural Network for Rainfall-Water Level Modeling
Authors: Thohidul Islam, Md. Hamidul Haque, Robin Kumar Biswas
Abstract:
Floods are one of the deadliest natural disasters which are very complex to model; however, machine learning is opening the door for more reliable and accurate flood prediction. In this research, a multilayer perceptron neural network (MLP) is developed to model the rainfall-water level relation, in a subtropical monsoon climatic region of the Bangladesh-India border. Our experiments show promising empirical results to forecast the water level for 1 day lead time. Our best performing MLP model achieves 98.7% coefficient of determination with lower model complexity which surpasses previously reported results on similar forecasting problems.Keywords: flood forecasting, machine learning, multilayer perceptron network, regression
Procedia PDF Downloads 17019694 A Multi-Output Network with U-Net Enhanced Class Activation Map and Robust Classification Performance for Medical Imaging Analysis
Authors: Jaiden Xuan Schraut, Leon Liu, Yiqiao Yin
Abstract:
Computer vision in medical diagnosis has achieved a high level of success in diagnosing diseases with high accuracy. However, conventional classifiers that produce an image to-label result provides insufficient information for medical professionals to judge and raise concerns over the trust and reliability of a model with results that cannot be explained. In order to gain local insight into cancerous regions, separate tasks such as imaging segmentation need to be implemented to aid the doctors in treating patients, which doubles the training time and costs which renders the diagnosis system inefficient and difficult to be accepted by the public. To tackle this issue and drive AI-first medical solutions further, this paper proposes a multi-output network that follows a U-Net architecture for image segmentation output and features an additional convolutional neural networks (CNN) module for auxiliary classification output. Class activation maps are a method of providing insight into a convolutional neural network’s feature maps that leads to its classification but in the case of lung diseases, the region of interest is enhanced by U-net-assisted Class Activation Map (CAM) visualization. Therefore, our proposed model combines image segmentation models and classifiers to crop out only the lung region of a chest X-ray’s class activation map to provide a visualization that improves the explainability and is able to generate classification results simultaneously which builds trust for AI-led diagnosis systems. The proposed U-Net model achieves 97.61% accuracy and a dice coefficient of 0.97 on testing data from the COVID-QU-Ex Dataset which includes both diseased and healthy lungs.Keywords: multi-output network model, U-net, class activation map, image classification, medical imaging analysis
Procedia PDF Downloads 20019693 Developing Artificial Neural Networks (ANN) for Falls Detection
Authors: Nantakrit Yodpijit, Teppakorn Sittiwanchai
Abstract:
The number of older adults is rising rapidly. The world’s population becomes aging. Falls is one of common and major health problems in the elderly. Falls may lead to acute and chronic injuries and deaths. The fall-prone individuals are at greater risk for decreased quality of life, lowered productivity and poverty, social problems, and additional health problems. A number of studies on falls prevention using fall detection system have been conducted. Many available technologies for fall detection system are laboratory-based and can incur substantial costs for falls prevention. The utilization of alternative technologies can potentially reduce costs. This paper presents the new design and development of a wearable-based fall detection system using an Accelerometer and Gyroscope as motion sensors for the detection of body orientation and movement. Algorithms are developed to differentiate between Activities of Daily Living (ADL) and falls by comparing Threshold-based values with Artificial Neural Networks (ANN). Results indicate the possibility of using the new threshold-based method with neural network algorithm to reduce the number of false positive (false alarm) and improve the accuracy of fall detection system.Keywords: aging, algorithm, artificial neural networks (ANN), fall detection system, motion sensorsthreshold
Procedia PDF Downloads 496