Search results for: mining landscapes
371 Advancement of Computer Science Research in Nigeria: A Bibliometric Analysis of the Past Three Decades
Authors: Temidayo O. Omotehinwa, David O. Oyewola, Friday J. Agbo
Abstract:
This study aims to gather a proper perspective of the development landscape of Computer Science research in Nigeria. Therefore, a bibliometric analysis of 4,333 bibliographic records of Computer Science research in Nigeria in the last 31 years (1991-2021) was carried out. The bibliographic data were extracted from the Scopus database and analyzed using VOSviewer and the bibliometrix R package through the biblioshiny web interface. The findings of this study revealed that Computer Science research in Nigeria has a growth rate of 24.19%. The most developed and well-studied research areas in the Computer Science field in Nigeria are machine learning, data mining, and deep learning. The social structure analysis result revealed that there is a need for improved international collaborations. Sparsely established collaborations are largely influenced by geographic proximity. The funding analysis result showed that Computer Science research in Nigeria is under-funded. The findings of this study will be useful for researchers conducting Computer Science related research. Experts can gain insights into how to develop a strategic framework that will advance the field in a more impactful manner. Government agencies and policymakers can also utilize the outcome of this research to develop strategies for improved funding for Computer Science research.Keywords: bibliometric analysis, biblioshiny, computer science, Nigeria, science mapping
Procedia PDF Downloads 112370 Walls, Barriers, and Fences to Informal Political Economy of Land Resource Accesses: A Case of Banyabunagana Along with Uganda–Congo Border, South Western Uganda, Kisoro District
Authors: Niringiye Fred
Abstract:
Banyabunagana has always had access to land resources for grazing animals, sand mining, and farmland across the border in the Democratic Republic of Congo during the pre-colonial and colonial times, usually on an informal arrangement facilitated by kinship ties and rent transactions for these resources. However, in recent periods, the government of the Democratic Republic of the Congo (DRC) has been pursuing a policy of constructing barriers such as walls and fences so that Banyabunagana communities do not access the land on the DRC side of the border. This is happening in the background of increased and intensified demand for land use on the side of the Ugandan community. This paper will attempt to discuss the reasons behind the construction of walls, fences, and other barriers which deny access to land for Banyabunagana communities in Bunagana Parish, Muramba Sub-county- Kisoro district, Uganda. The research will attempt to answer the following main questions, among others, whether there are the factors that explain the construction of walls and fences which could limit or deny access to the informal use of land and other resources and whether policy options to ensure continued access to land and other resources for local communities.Keywords: border, walls, fences, land resource access
Procedia PDF Downloads 127369 Female Mystics in Medieval Muslim Societies in the Period between the Ninth and Thirteenth Centuries
Authors: Arin Salamah Qudsi
Abstract:
Female piety and the roles that female mystics played in Muslim landscapes of the period between the ninth and thirteenth centuries are topics that attracted many scholarly endeavors. However, personal aspects of both male and female Sufis were not thoroughly investigated. It would be of a great significance to examine the different roles of Sufi women as spouses, household supporters, and, mothers based on Sufi and non Sufi sources. Sisters and mothers, rather than wives and daughters, are viewed in anthropological studies of different cultures as women who could enjoy a high social status and thus play influential roles. Sufi hagiographies, which are our main sources, have long been regarded in a negative light, and their value for our understanding of the early history of Sufism is held in doubt. More recently, however, a new scholarly voice has begun to reclaim the historical value of hagiographies. We need to approach the narrative structures and styles of the anecdotal segments, which are the building blocks of the hagiographical body of writing. The image of a particular Sufi figure as portrayed by his near-contemporaries can provide a more useful means to sketch the components of his unique piety than his real life. However, in certain cases, whenever singular and unique appearances of particular stories occur, certain historical and individual conclusions could be sought. As for women in Sufi hagiographies, we know about sisters who acted as a solid support for their renowned Sufi brothers. Some of those sisters preferred not to be married until a late age in order to "serve" their brothers, while others supported their brothers while pursuing their own spiritual careers. Data of this type should be carefully considered and its historical context should be thoroughly investigated. The reference here is to women, mostly married women, who offered to maintain their brothers or male relatives despite social norms or generic prohibitions, which undoubtedly gave them strong authority over them. As for mothers, we should differentiate between mothers who were Sufis themselves, and those who were the mothers of Sufi figures. It seems most likely that in both types, mothers were not always unquestionably the effective lightening trigger. Mothers of certain Sufi figures denied their sons free mobility, taking advantage of the highly esteemed principle of gratifying the wishes of one's mother and the seminal ideal of ḥaqq al-wālida (lit. mother's right). Drawing on the anecdotes provided by a few sources leads to the suggestion that many Sufis actually strove to reduce their mothers' authority in order to establish their independent careers. In light of women's authority over their brothers and sons in Sufi spheres, maternal uncles could enjoy a crucial position of influence over their nephews. The roles of Sufi mothers and of Sufi maternal uncles in the lives of early Sufi figures are topics that have not yet been dealt with in modern scholarship on classical Sufism.Keywords: female Sufis, hagiographies, maternal uncles, mother's right
Procedia PDF Downloads 334368 Atomic Absorption Spectroscopic Analysis of Heavy Metals in Cancerous Breast Tissues among Women in Jos, Nigeria
Authors: Opeyemi Peter Idowu
Abstract:
Breast cancer is prevalent in northern Nigerian women, most especially in Jos, Plateau State, owing to anthropogenic activities such as solid earth mineral mining as far back as 1904. In this study, atomic absorption spectrometry was used to determine the concentration of eight heavy metals (Cd, As, Cr, Cu, Fe, Pb, Ni, and Zn) in cancerous and non-cancerous breast tissues of Jos Nigerian Women. The levels of heavy metals ranged from 1.08 to 29.34 mg/kg, 0.29 to 10.76 mg/kg, 0.35 to 51.93 mg/kg, 5.15 to 62.93 mg/kg, 11.64 to 51.10 mg/kg, 0.42 to 83.16 mg/kg, 2.08 to 43.07 mg/kg and 1.67 to 71.53 mg/kg for Cd, As, Cr, Cu, Fe, Pb, Ni and Zn respectively. Using MATLAB R2016a, significant differences (tᵥ = 0.0041 - 0.0317) existed between the levels of all the heavy metals in cancerous and non-cancerous breast tissues except Fe. At 0.01 level of significance, a positive significant correlation existed between Pb and Fe, Pb and Cu, Pb and Fe, Ni and Fe, Cr and Pb, as well as Ni and Cr (r = 0.583 – 0.998) in cancerous breast tissues. Using ANOVA, significant differences also occurred in the levels of these heavy metals in cancerous breast tissues (p = 1.910510×10⁻²⁶). The relatively high levels of the cancer-induced heavy metals (Cd, As, Cr, and Pb) compared with control indicated contamination or exposure to heavy metals, which could be the major cause of cancer in these female subjects. This was evidence of contamination as a result of exposure by ingestion, inhalation, or other means to one anthropogenic activity of the other. Therapeutic measures such as gastric lavage, ascorbic acid consumption, and divalent cation treatment are all effective ways to manage heavy metal toxicity in the subjects to lower the risk of breast cancer.Keywords: breast cancer, heavy metals, spectroscopy, bio-accumulation
Procedia PDF Downloads 30367 A Methodology for Investigating Public Opinion Using Multilevel Text Analysis
Authors: William Xiu Shun Wong, Myungsu Lim, Yoonjin Hyun, Chen Liu, Seongi Choi, Dasom Kim, Kee-Young Kwahk, Namgyu Kim
Abstract:
Recently, many users have begun to frequently share their opinions on diverse issues using various social media. Therefore, numerous governments have attempted to establish or improve national policies according to the public opinions captured from various social media. In this paper, we indicate several limitations of the traditional approaches to analyze public opinion on science and technology and provide an alternative methodology to overcome these limitations. First, we distinguish between the science and technology analysis phase and the social issue analysis phase to reflect the fact that public opinion can be formed only when a certain science and technology is applied to a specific social issue. Next, we successively apply a start list and a stop list to acquire clarified and interesting results. Finally, to identify the most appropriate documents that fit with a given subject, we develop a new logical filter concept that consists of not only mere keywords but also a logical relationship among the keywords. This study then analyzes the possibilities for the practical use of the proposed methodology thorough its application to discover core issues and public opinions from 1,700,886 documents comprising SNS, blogs, news, and discussions.Keywords: big data, social network analysis, text mining, topic modeling
Procedia PDF Downloads 297366 Multi-Criteria Inventory Classification Process Based on Logical Analysis of Data
Authors: Diana López-Soto, Soumaya Yacout, Francisco Ángel-Bello
Abstract:
Although inventories are considered as stocks of money sitting on shelve, they are needed in order to secure a constant and continuous production. Therefore, companies need to have control over the amount of inventory in order to find the balance between excessive and shortage of inventory. The classification of items according to certain criteria such as the price, the usage rate and the lead time before arrival allows any company to concentrate its investment in inventory according to certain ranking or priority of items. This makes the decision making process for inventory management easier and more justifiable. The purpose of this paper is to present a new approach for the classification of new items based on the already existing criteria. This approach is called the Logical Analysis of Data (LAD). It is used in this paper to assist the process of ABC items classification based on multiple criteria. LAD is a data mining technique based on Boolean theory that is used for pattern recognition. This technique has been tested in medicine, industry, credit risk analysis, and engineering with remarkable results. An application on ABC inventory classification is presented for the first time, and the results are compared with those obtained when using the well-known AHP technique and the ANN technique. The results show that LAD presented very good classification accuracy.Keywords: ABC multi-criteria inventory classification, inventory management, multi-class LAD model, multi-criteria classification
Procedia PDF Downloads 883365 COVID-19 Laws and Policy: The Use of Policy Surveillance For Better Legal Preparedness
Authors: Francesca Nardi, Kashish Aneja, Katherine Ginsbach
Abstract:
The COVID-19 pandemic has demonstrated both a need for evidence-based and rights-based public health policy and how challenging it can be to make effective decisions with limited information, evidence, and data. The O’Neill Institute, in conjunction with several partners, has been working since the beginning of the pandemic to collect, analyze, and distribute critical data on public health policies enacted in response to COVID-19 around the world in the COVID-19 Law Lab. Well-designed laws and policies can help build strong health systems, implement necessary measures to combat viral transmission, enforce actions that promote public health and safety for everyone, and on the individual level have a direct impact on health outcomes. Poorly designed laws and policies, on the other hand, can fail to achieve the intended results and/or obstruct the realization of fundamental human rights, further disease spread, or cause unintended collateral harms. When done properly, laws can provide the foundation that brings clarity to complexity, embrace nuance, and identifies gaps of uncertainty. However, laws can also shape the societal factors that make disease possible. Law is inseparable from the rest of society, and COVID-19 has exposed just how much laws and policies intersects all facets of society. In the COVID-19 context, evidence-based and well-informed law and policy decisions—made at the right time and in the right place—can and have meant the difference between life or death for many. Having a solid evidentiary base of legal information can promote the understanding of what works well and where, and it can drive resources and action to where they are needed most. We know that legal mechanisms can enable nations to reduce inequities and prepare for emerging threats, like novel pathogens that result in deadly disease outbreaks or antibiotic resistance. The collection and analysis of data on these legal mechanisms is a critical step towards ensuring that legal interventions and legal landscapes are effectively incorporated into more traditional kinds of health science data analyses. The COVID-19 Law Labs see a unique opportunity to collect and analyze this kind of non-traditional data to inform policy using laws and policies from across the globe and across diseases. This global view is critical to assessing the efficacy of policies in a wide range of cultural, economic, and demographic circumstances. The COVID-19 Law Lab is not just a collection of legal texts relating to COVID-19; it is a dataset of concise and actionable legal information that can be used by health researchers, social scientists, academics, human rights advocates, law and policymakers, government decision-makers, and others for cross-disciplinary quantitative and qualitative analysis to identify best practices from this outbreak, and previous ones, to be better prepared for potential future public health events.Keywords: public health law, surveillance, policy, legal, data
Procedia PDF Downloads 142364 Identifying the Effects of the Rural Demographic Changes in the Northern Netherlands: A Holistic Approach to Create Healthier Environment
Authors: A. R. Shokoohi, E. A. M. Bulder, C. Th. van Alphen, D. F. den Hertog, E. J. Hin
Abstract:
The Northern region of the Netherlands has beautiful landscapes, a nice diversity of green and blue areas, and dispersed settlements. However, some recent population changes can become threats to health and wellbeing in these areas. The rural areas in the three northern provinces -Groningen, Friesland, and Drenthe, see youngsters leave the region for which reason they are aging faster than other regions in the Netherlands. As a result, some villages have faced major population decline that is leading to loss of facilities/amenities and a decrease in accessibility and social cohesion. Those who still live in these villages are relatively old, low educated and have low-income. To develop a deeper understanding of the health status of the people living in these areas, and help them to improve their living environment, the GO!-Method is being applied in this study. This method has been developed by the National Institute for Public Health and the Environment (RIVM) of the Netherlands and is inspired by the broad definition of health by Machteld Huber: the ability to adapt and direct control, in terms of the physical, emotional and social challenges of life, while paying extra attention to vulnerable groups. A healthy living environment is defined as an environment that residents find it pleasant and encourages and supports healthy behavior. The GO!-method integrates six domains that constitute a healthy living environment: health and lifestyle, facilities and development, safety and hygiene, social cohesion and active citizens, green areas, and air and noise pollution. First of all, this method will identify opportunities for a healthier living environment using existing information and perceptions of residents and other local stakeholders in order to strengthen social participation and quality of life in these rural areas. Second, this approach will connect identified opportunities with available and effective evidence-based interventions in order to develop an action plan from the residents and local authorities perspective which will help them to design their municipalities healthier and more resilient. This method is being used for the first time in rural areas to our best knowledge, in close collaboration with the residents and local authorities of the three provinces to create a sustainable process and stimulate social participation. Our paper will present the outcomes of the first phase of this project in collaboration with the municipality of Westerkwartier, located in the northwest of the province of Groningen. And will describe the current situation, and identify local assets, opportunities, and policies relating to healthier environment; as well as needs and challenges to achieve goals. The preliminary results show that rural demographic changes in the northern Netherlands have negative impacts on service provisions and social cohesion, and there is a need to understand this complicated situation and improve the quality of life in those areas.Keywords: population decline, rural areas, healthy environment, Netherlands
Procedia PDF Downloads 98363 De-Densifying Congested Cores of Cities and Their Emerging Design Opportunities
Authors: Faith Abdul Rasak Asharaf
Abstract:
Every city has a threshold known as urban carrying capacity based on which it can withstand a particular density of people, above which the city might need to resort to measures like expanding its boundaries or growing vertically. As a result of this circumstance, the number of squatter communities is growing, as is the claustrophobic feeling of being confined inside a "concrete jungle." The expansion of suburbs, commercial areas, and industrial real estate in the areas surrounding medium-sized cities has resulted in changes to their landscapes and urban forms, as well as a systematic shift in their role in the urban hierarchy when functional endowment and connections to other territories are considered. The urban carrying capacity idea provides crucial guidance for city administrators and planners in better managing, designing, planning, constructing, and distributing urban resources to satisfy the huge demands of an evergrowing urban population. An ecological footprint is a criterion of urban carrying capacity, which is the amount of land required to provide humanity with renewable resources and absorb its trash. However, as each piece of land has its unique carrying capacity, including ecological, social, and economic considerations, these metropolitan areas begin to reach a saturation point over time. Various city models have been tried throughout the years to meet the increasing urban population density by moving the zones of work, life, and leisure to achieve maximum sustainable growth. The current scenario is that of a vertical city and compact city concept, in which the maximum density of people is attempted to fit into a definite area using efficient land use and a variety of other strategies, but this has proven to be a very unsustainable method of growth, as evidenced by the COVID-19 period. Due to a shortage of housing and basic infrastructure, densely populated cities gave rise to massive squatter communities, unable to accommodate the overflowing migrants. To achieve optimum carrying capacity, planning measures such as polycentric city and diffuse city concepts can be implemented, which will help to relieve the congested city core by relocating certain sectors of the town to the city periphery, which will help to create newer spaces for design in terms of public space, transportation, and housing, which is a major concern in the current scenario. The study's goal is focused on suggesting design options and solutions in terms of placemaking for better urban quality and urban life for the citizens once city centres have been de-densified based on urban carrying capacity and ecological footprint, taking the case of Kochi as an apt example of a highly densified city core, focusing on Edappally, which is an agglomeration of many urban factors.Keywords: urban carrying capacity, urbanization, urban sprawl, ecological footprint
Procedia PDF Downloads 80362 Experimental and Numerical Investigations on the Vulnerability of Flying Structures to High-Energy Laser Irradiations
Authors: Vadim Allheily, Rudiger Schmitt, Lionel Merlat, Gildas L'Hostis
Abstract:
Inflight devices are nowadays major actors in both military and civilian landscapes. Among others, missiles, mortars, rockets or even drones this last decade are increasingly sophisticated, and it is today of prior manner to develop always more efficient defensive systems from all these potential threats. In this frame, recent High Energy Laser weapon prototypes (HEL) have demonstrated some extremely good operational abilities to shot down within seconds flying targets several kilometers off. Whereas test outcomes are promising from both experimental and cost-related perspectives, the deterioration process still needs to be explored to be able to closely predict the effects of a high-energy laser irradiation on typical structures, heading finally to an effective design of laser sources and protective countermeasures. Laser matter interaction researches have a long history of more than 40 years at the French-German Research Institute (ISL). Those studies were tied with laser sources development in the mid-60s, mainly for specific metrology of fast phenomena. Nowadays, laser matter interaction can be viewed as the terminal ballistics of conventional weapons, with the unique capability of laser beams to carry energy at light velocity over large ranges. In the last years, a strong focus was made at ISL on the interaction process of laser radiation with metal targets such as artillery shells. Due to the absorbed laser radiation and the resulting heating process, an encased explosive charge can be initiated resulting in deflagration or even detonation of the projectile in flight. Drones and Unmanned Air Vehicles (UAVs) are of outmost interests in modern warfare. Those aerial systems are usually made up of polymer-based composite materials, whose complexity involves new scientific challenges. Aside this main laser-matter interaction activity, a lot of experimental and numerical knowledge has been gathered at ISL within domains like spectrometry, thermodynamics or mechanics. Techniques and devices were developed to study separately each aspect concerned by this topic; optical characterization, thermal investigations, chemical reactions analysis or mechanical examinations are beyond carried out to neatly estimate essential key values. Results from these diverse tasks are then incorporated into analytic or FE numerical models that were elaborated, for example, to predict thermal repercussion on explosive charges or mechanical failures of structures. These simulations highlight the influence of each phenomenon during the laser irradiation and forecast experimental observations with good accuracy.Keywords: composite materials, countermeasure, experimental work, high-energy laser, laser-matter interaction, modeling
Procedia PDF Downloads 263361 Evaluation of the Urban Regeneration Project: Land Use Transformation and SNS Big Data Analysis
Authors: Ju-Young Kim, Tae-Heon Moon, Jung-Hun Cho
Abstract:
Urban regeneration projects have been actively promoted in Korea. In particular, Jeonju Hanok Village is evaluated as one of representative cases in terms of utilizing local cultural heritage sits in the urban regeneration project. However, recently, there has been a growing concern in this area, due to the ‘gentrification’, caused by the excessive commercialization and surging tourists. This trend was changing land and building use and resulted in the loss of identity of the region. In this regard, this study analyzed the land use transformation between 2010 and 2016 to identify the commercialization trend in Jeonju Hanok Village. In addition, it conducted SNS big data analysis on Jeonju Hanok Village from February 14th, 2016 to March 31st, 2016 to identify visitors’ awareness of the village. The study results demonstrate that rapid commercialization was underway, unlikely the initial intention, so that planners and officials in city government should reconsider the project direction and rebuild deliberate management strategies. This study is meaningful in that it analyzed the land use transformation and SNS big data to identify the current situation in urban regeneration area. Furthermore, it is expected that the study results will contribute to the vitalization of regeneration area.Keywords: land use, SNS, text mining, urban regeneration
Procedia PDF Downloads 294360 A Hybrid Feature Selection and Deep Learning Algorithm for Cancer Disease Classification
Authors: Niousha Bagheri Khulenjani, Mohammad Saniee Abadeh
Abstract:
Learning from very big datasets is a significant problem for most present data mining and machine learning algorithms. MicroRNA (miRNA) is one of the important big genomic and non-coding datasets presenting the genome sequences. In this paper, a hybrid method for the classification of the miRNA data is proposed. Due to the variety of cancers and high number of genes, analyzing the miRNA dataset has been a challenging problem for researchers. The number of features corresponding to the number of samples is high and the data suffer from being imbalanced. The feature selection method has been used to select features having more ability to distinguish classes and eliminating obscures features. Afterward, a Convolutional Neural Network (CNN) classifier for classification of cancer types is utilized, which employs a Genetic Algorithm to highlight optimized hyper-parameters of CNN. In order to make the process of classification by CNN faster, Graphics Processing Unit (GPU) is recommended for calculating the mathematic equation in a parallel way. The proposed method is tested on a real-world dataset with 8,129 patients, 29 different types of tumors, and 1,046 miRNA biomarkers, taken from The Cancer Genome Atlas (TCGA) database.Keywords: cancer classification, feature selection, deep learning, genetic algorithm
Procedia PDF Downloads 112359 CompPSA: A Component-Based Pairwise RNA Secondary Structure Alignment Algorithm
Authors: Ghada Badr, Arwa Alturki
Abstract:
The biological function of an RNA molecule depends on its structure. The objective of the alignment is finding the homology between two or more RNA secondary structures. Knowing the common functionalities between two RNA structures allows a better understanding and a discovery of other relationships between them. Besides, identifying non-coding RNAs -that is not translated into a protein- is a popular application in which RNA structural alignment is the first step A few methods for RNA structure-to-structure alignment have been developed. Most of these methods are partial structure-to-structure, sequence-to-structure, or structure-to-sequence alignment. Less attention is given in the literature to the use of efficient RNA structure representation and the structure-to-structure alignment methods are lacking. In this paper, we introduce an O(N2) Component-based Pairwise RNA Structure Alignment (CompPSA) algorithm, where structures are given as a component-based representation and where N is the maximum number of components in the two structures. The proposed algorithm compares the two RNA secondary structures based on their weighted component features rather than on their base-pair details. Extensive experiments are conducted illustrating the efficiency of the CompPSA algorithm when compared to other approaches and on different real and simulated datasets. The CompPSA algorithm shows an accurate similarity measure between components. The algorithm gives the flexibility for the user to align the two RNA structures based on their weighted features (position, full length, and/or stem length). Moreover, the algorithm proves scalability and efficiency in time and memory performance.Keywords: alignment, RNA secondary structure, pairwise, component-based, data mining
Procedia PDF Downloads 459358 The Latest Salt Caravans: The Chinese Presence between Danakil and Tigray: Interdisciplinary Study to Integrate Chinese and African Relations in Ethiopia: Analyzing Road Evolution and Ethnographic Contexts
Authors: Erika Mattio
Abstract:
The aim of this project is to study the Chinese presence in Ethiopia, in the area between the Saba River and the Coptic areas of the Tigray, with detailed documentation of the Danakil region, from which the salt pickers caravans departed; the study was created to understand the relationships and consequences of the Chinese advance in these areas, inhabited by tribes linked to ancient, still practiced religious rituals, and home to unique landscapes and archaeological sites. Official estimates of the number of Chinese in Africa vary widely; on the continent, there are increasingly diverse groups of Chinese migrants in terms of language, dialect, class, education, and employment. Based on this and on a very general state of the art, it was decided to increase the studies on this phenomenon, focusing the attention on one of the most interesting countries for its diversity, cultural wealth, and for strong Chinese presence: Ethiopia. The study will be integrated with interdisciplinary investigation methods, such as landscape archeology, historiographic research, participatory anthropology, geopolitics, and cultural anthropology and ethnology. There are two main objectives of the research. The first is to predict what will happen to these populations and how the territory will be modified, trying to monitor the growth of infrastructure in the country and the effects it will have on the population. Risk analyzes will be carried out to understand what the foreign presence may entail, such as the absence of sustenance for local populations, the ghettoization of foreigners, unemployment of natives and the exodus of the population to the capital; the relationships between families and the local population will be analyzed, trying to understand the dynamics of socialization and interaction. Thanks to the use of GIS, the areas affected by the Chinese presence will be geo-referenced and mapped, delimiting the areas most affected and creating a risk analysis, both in desert areas and in archaeologically and historically relevant areas. The second point is to document the life and rituals of Ethiopian populations in order not to lose the aspects of uniqueness that risk being lost. Local interviews will collect impressions and criticisms from the local population to understand if the Chinese presence is perceived as a threat or as a solution. Furthermore, Afar leaders in the Logya area will be interviewed, in truly exclusive research, to understand their links with the foreign presence. From the north, along the Saba river, we will move to the northwest, in the Tigray region, to know the impressions in the Coptic area, currently less threatened by the Chinese presence but still affected by urbanization proposals. There will also be documented the Coptic rituals of Gennà and Timkat, unique expressions of a millennial tradition. This will allow the understanding of whether the Maoist presence could influence the religious rites and forms of belief present in the country, or the country will maintain its cultural independence.Keywords: Ethiopia, GIS, risk perceptions, salt caravans
Procedia PDF Downloads 191357 Using Closed Frequent Itemsets for Hierarchical Document Clustering
Authors: Cheng-Jhe Lee, Chiun-Chieh Hsu
Abstract:
Due to the rapid development of the Internet and the increased availability of digital documents, the excessive information on the Internet has led to information overflow problem. In order to solve these problems for effective information retrieval, document clustering in text mining becomes a popular research topic. Clustering is the unsupervised classification of data items into groups without the need of training data. Many conventional document clustering methods perform inefficiently for large document collections because they were originally designed for relational database. Therefore they are impractical in real-world document clustering and require special handling for high dimensionality and high volume. We propose the FIHC (Frequent Itemset-based Hierarchical Clustering) method, which is a hierarchical clustering method developed for document clustering, where the intuition of FIHC is that there exist some common words for each cluster. FIHC uses such words to cluster documents and builds hierarchical topic tree. In this paper, we combine FIHC algorithm with ontology to solve the semantic problem and mine the meaning behind the words in documents. Furthermore, we use the closed frequent itemsets instead of only use frequent itemsets, which increases efficiency and scalability. The experimental results show that our method is more accurate than those of well-known document clustering algorithms.Keywords: FIHC, documents clustering, ontology, closed frequent itemset
Procedia PDF Downloads 399356 Application of Latent Class Analysis and Self-Organizing Maps for the Prediction of Treatment Outcomes for Chronic Fatigue Syndrome
Authors: Ben Clapperton, Daniel Stahl, Kimberley Goldsmith, Trudie Chalder
Abstract:
Chronic fatigue syndrome (CFS) is a condition characterised by chronic disabling fatigue and other symptoms that currently can't be explained by any underlying medical condition. Although clinical trials support the effectiveness of cognitive behaviour therapy (CBT), the success rate for individual patients is modest. Patients vary in their response and little is known which factors predict or moderate treatment outcomes. The aim of the project is to develop a prediction model from baseline characteristics of patients, such as demographics, clinical and psychological variables, which may predict likely treatment outcome and provide guidance for clinical decision making and help clinicians to recommend the best treatment. The project is aimed at identifying subgroups of patients with similar baseline characteristics that are predictive of treatment effects using modern cluster analyses and data mining machine learning algorithms. The characteristics of these groups will then be used to inform the types of individuals who benefit from a specific treatment. In addition, results will provide a better understanding of for whom the treatment works. The suitability of different clustering methods to identify subgroups and their response to different treatments of CFS patients is compared.Keywords: chronic fatigue syndrome, latent class analysis, prediction modelling, self-organizing maps
Procedia PDF Downloads 226355 A Critical Geography of Reforestation Program in Ghana
Authors: John Narh
Abstract:
There is high rate of deforestation in Ghana due to agricultural expansion, illegal mining and illegal logging. While it is attempting to address the illegalities, Ghana has also initiated a reforestation program known as the Modified Taungya System (MTS). Within the MTS framework, farmers are allocated degraded forestland and provided with tree seedlings to practice agroforestry until the trees form canopy. Yet, the political, ecological and economic models that inform the selection of tree species, the motivations of participating farmers as well as the factors that accounts for differential access to the land and performance of farmers engaged in the program lie underexplored. Using a sequential explanatory mixed methods approach in five forest-fringe communities in the Eastern Region of Ghana, the study reveals that economic factors and Ghana’s commitment to international conventions on the environment underpin the selection of tree species for the MTS program. Social network and access to remittances play critical roles in having access to, and enhances poor farmers’ chances in the program respectively. Farmers are more motivated by the access to degraded forestland to cultivate food crops than having a share in the trees that they plant. As such, in communities where participating farmers are not informed about their benefit in the tree that they plant, the program is largely unsuccessful.Keywords: translocality, deforestation, forest management, social network
Procedia PDF Downloads 97354 Leaching Properties of Phosphate Rocks in the Nile River
Authors: Abdelkader T. Ahmed
Abstract:
Phosphate Rocks (PR) are natural sediment rocks. These rocks contain several chemical compositions of heavy metals and radioactive elements. Mining and transportation these rocks beside or through the natural water streams may lead to water contamination. When PR is in contact with water in the field, as a consequence of precipitation events, changes in water table or sinking in water streams, elements such as salts and heavy metals, may be released to the water. In this work, the leaching properties of PR in Nile River water was investigated by experimental lab work. The study focused on evaluating potential environmental impacts of some constituents, including phosphors, cadmium, curium and lead of PR on the water quality of Nile by applying tank leaching tests. In these tests the potential impact of changing conditions, such as phosphate content in PR, liquid to solid ratio (L/S) and pH value, was studied on the long-term release of heavy metals and salts. Experimental results showed that cadmium and lead were released in very low concentrations but curium and phosphors were in high concentrations. Results showed also that the release rate from PR for all constituents was low even in long periods.Keywords: leaching tests, Nile river, phosphate rocks, water quality
Procedia PDF Downloads 325353 Convergence and Stability in Federated Learning with Adaptive Differential Privacy Preservation
Authors: Rizwan Rizwan
Abstract:
This paper provides an overview of Federated Learning (FL) and its application in enhancing data security, privacy, and efficiency. FL utilizes three distinct architectures to ensure privacy is never compromised. It involves training individual edge devices and aggregating their models on a server without sharing raw data. This approach not only provides secure models without data sharing but also offers a highly efficient privacy--preserving solution with improved security and data access. Also we discusses various frameworks used in FL and its integration with machine learning, deep learning, and data mining. In order to address the challenges of multi--party collaborative modeling scenarios, a brief review FL scheme combined with an adaptive gradient descent strategy and differential privacy mechanism. The adaptive learning rate algorithm adjusts the gradient descent process to avoid issues such as model overfitting and fluctuations, thereby enhancing modeling efficiency and performance in multi-party computation scenarios. Additionally, to cater to ultra-large-scale distributed secure computing, the research introduces a differential privacy mechanism that defends against various background knowledge attacks.Keywords: federated learning, differential privacy, gradient descent strategy, convergence, stability, threats
Procedia PDF Downloads 33352 Balance Transfer of Heavy Metals in Marine Environments Subject to Natural and Anthropogenic Inputs: A Case Study on the Mejerda River Delta
Authors: Mohamed Amine Helali, Walid Oueslati, Ayed Added
Abstract:
Sedimentation rates and total fluxes of heavy metals (Fe, Mn, Pb, Zn and Cu) was measured in three different depths (10m, 20m and 40m) during March and August 2012, offshore of the Mejerda River outlet (Gulf of Tunis, Tunisia). The sedimentation rates are estimated from the fluxes of the suspended particulate matter at 7.32, 5.45 and 4.39 mm y⁻¹ respectively at 10m, 20m and 40m depth. Heavy metals sequestration in sediments was determined by chemical speciation and the total metal contents in each core collected from 10, 20 and 40m depth. Heavy metals intake to the sediment was measured also from the suspended particulate matter, while the fluxes from the sediment to the water column was determined using the benthic chambers technique and from the diffusive fluxes in the pore water. Results shown that iron is the only metal for which the balance transfer between intake/uptake (45 to 117 / 1.8 to 5.8 g m² y⁻¹) and sequestration (277 to 378 g m² y⁻¹) was negative, at the opposite of the Lead which intake fluxes (360 to 480 mg m² y⁻¹) are more than sequestration fluxes (50 to 92 mg m² y⁻¹). The balance transfer is neutral for Mn, Zn, and Cu. These clearly indicate that the contributions of Mejerda have consistently varied over time, probably due to the migration of the River mouth and to the changes in the mining activity in the Mejerda catchment and the recent human activities which affect the delta area.Keywords: delta, fluxes, heavy metals, sediments, sedimentation rates
Procedia PDF Downloads 203351 Data-Driven Decision Making: A Reference Model for Organizational, Educational and Competency-Based Learning Systems
Authors: Emanuel Koseos
Abstract:
Data-Driven Decision Making (DDDM) refers to making decisions that are based on historical data in order to inform practice, develop strategies and implement policies that benefit organizational settings. In educational technology, DDDM facilitates the implementation of differential educational learning approaches such as Educational Data Mining (EDM) and Competency-Based Education (CBE), which commonly target university classrooms. There is a current need for DDDM models applied to middle and secondary schools from a concern for assessing the needs, progress and performance of students and educators with respect to regional standards, policies and evolution of curriculums. To address these concerns, we propose a DDDM reference model developed using educational key process initiatives as inputs to a machine learning framework implemented with statistical software (SAS, R) to provide a best-practices, complex-free and automated approach for educators at their regional level. We assessed the efficiency of the model over a six-year period using data from 45 schools and grades K-12 in the Langley, BC, Canada regional school district. We concluded that the model has wider appeal, such as business learning systems.Keywords: competency-based learning, data-driven decision making, machine learning, secondary schools
Procedia PDF Downloads 174350 Human Digital Twin for Personal Conversation Automation Using Supervised Machine Learning Approaches
Authors: Aya Salama
Abstract:
Digital Twin is an emerging research topic that attracted researchers in the last decade. It is used in many fields, such as smart manufacturing and smart healthcare because it saves time and money. It is usually related to other technologies such as Data Mining, Artificial Intelligence, and Machine Learning. However, Human digital twin (HDT), in specific, is still a novel idea that still needs to prove its feasibility. HDT expands the idea of Digital Twin to human beings, which are living beings and different from the inanimate physical entities. The goal of this research was to create a Human digital twin that is responsible for real-time human replies automation by simulating human behavior. For this reason, clustering, supervised classification, topic extraction, and sentiment analysis were studied in this paper. The feasibility of the HDT for personal replies generation on social messaging applications was proved in this work. The overall accuracy of the proposed approach in this paper was 63% which is a very promising result that can open the way for researchers to expand the idea of HDT. This was achieved by using Random Forest for clustering the question data base and matching new questions. K-nearest neighbor was also applied for sentiment analysis.Keywords: human digital twin, sentiment analysis, topic extraction, supervised machine learning, unsupervised machine learning, classification, clustering
Procedia PDF Downloads 89349 Automatic Identification and Classification of Contaminated Biodegradable Plastics using Machine Learning Algorithms and Hyperspectral Imaging Technology
Authors: Nutcha Taneepanichskul, Helen C. Hailes, Mark Miodownik
Abstract:
Plastic waste has emerged as a critical global environmental challenge, primarily driven by the prevalent use of conventional plastics derived from petrochemical refining and manufacturing processes in modern packaging. While these plastics serve vital functions, their persistence in the environment post-disposal poses significant threats to ecosystems. Addressing this issue necessitates approaches, one of which involves the development of biodegradable plastics designed to degrade under controlled conditions, such as industrial composting facilities. It is imperative to note that compostable plastics are engineered for degradation within specific environments and are not suited for uncontrolled settings, including natural landscapes and aquatic ecosystems. The full benefits of compostable packaging are realized when subjected to industrial composting, preventing environmental contamination and waste stream pollution. Therefore, effective sorting technologies are essential to enhance composting rates for these materials and diminish the risk of contaminating recycling streams. In this study, it leverage hyperspectral imaging technology (HSI) coupled with advanced machine learning algorithms to accurately identify various types of plastics, encompassing conventional variants like Polyethylene terephthalate (PET), Polypropylene (PP), Low density polyethylene (LDPE), High density polyethylene (HDPE) and biodegradable alternatives such as Polybutylene adipate terephthalate (PBAT), Polylactic acid (PLA), and Polyhydroxyalkanoates (PHA). The dataset is partitioned into three subsets: a training dataset comprising uncontaminated conventional and biodegradable plastics, a validation dataset encompassing contaminated plastics of both types, and a testing dataset featuring real-world packaging items in both pristine and contaminated states. Five distinct machine learning algorithms, namely Partial Least Squares Discriminant Analysis (PLS-DA), Support Vector Machine (SVM), Convolutional Neural Network (CNN), Logistic Regression, and Decision Tree Algorithm, were developed and evaluated for their classification performance. Remarkably, the Logistic Regression and CNN model exhibited the most promising outcomes, achieving a perfect accuracy rate of 100% for the training and validation datasets. Notably, the testing dataset yielded an accuracy exceeding 80%. The successful implementation of this sorting technology within recycling and composting facilities holds the potential to significantly elevate recycling and composting rates. As a result, the envisioned circular economy for plastics can be established, thereby offering a viable solution to mitigate plastic pollution.Keywords: biodegradable plastics, sorting technology, hyperspectral imaging technology, machine learning algorithms
Procedia PDF Downloads 82348 Development of Prediction Models of Day-Ahead Hourly Building Electricity Consumption and Peak Power Demand Using the Machine Learning Method
Authors: Dalin Si, Azizan Aziz, Bertrand Lasternas
Abstract:
To encourage building owners to purchase electricity at the wholesale market and reduce building peak demand, this study aims to develop models that predict day-ahead hourly electricity consumption and demand using artificial neural network (ANN) and support vector machine (SVM). All prediction models are built in Python, with tool Scikit-learn and Pybrain. The input data for both consumption and demand prediction are time stamp, outdoor dry bulb temperature, relative humidity, air handling unit (AHU), supply air temperature and solar radiation. Solar radiation, which is unavailable a day-ahead, is predicted at first, and then this estimation is used as an input to predict consumption and demand. Models to predict consumption and demand are trained in both SVM and ANN, and depend on cooling or heating, weekdays or weekends. The results show that ANN is the better option for both consumption and demand prediction. It can achieve 15.50% to 20.03% coefficient of variance of root mean square error (CVRMSE) for consumption prediction and 22.89% to 32.42% CVRMSE for demand prediction, respectively. To conclude, the presented models have potential to help building owners to purchase electricity at the wholesale market, but they are not robust when used in demand response control.Keywords: building energy prediction, data mining, demand response, electricity market
Procedia PDF Downloads 317347 Geomechanical Technologies for Assessing Three-Dimensional Stability of Underground Excavations Utilizing Remote-Sensing, Finite Element Analysis, and Scientific Visualization
Authors: Kwang Chun, John Kemeny
Abstract:
Light detection and ranging (LiDAR) has been a prevalent remote-sensing technology applied in the geological fields due to its high precision and ease of use. One of the major applications is to use the detailed geometrical information of underground structures as a basis for the generation of a three-dimensional numerical model that can be used in a geotechnical stability analysis such as FEM or DEM. To date, however, straightforward techniques in reconstructing the numerical model from the scanned data of the underground structures have not been well established or tested. In this paper, we propose a comprehensive approach integrating all the various processes, from LiDAR scanning to finite element numerical analysis. The study focuses on converting LiDAR 3D point clouds of geologic structures containing complex surface geometries into a finite element model. This methodology has been applied to Kartchner Caverns in Arizona, where detailed underground and surface point clouds can be used for the analysis of underground stability. Numerical simulations were performed using the finite element code Abaqus and presented by 3D computing visualization solution, ParaView. The results are useful in studying the stability of all types of underground excavations including underground mining and tunneling.Keywords: finite element analysis, LiDAR, remote-sensing, scientific visualization, underground stability
Procedia PDF Downloads 177346 The South Looking East: The New Geopolitics of Latin America
Authors: Heike Pintor Pirzkall
Abstract:
The positive economic evolution of many countries in the Latin American Continent, mainly in South America, has changed the geopolitical position of the region in the world. It is no longer the Hinterland or backyard of the United States, now it has become the Heartland for Europe and Asia. This position has favored the interest of countries like China or India, who are combining trade agreements with special assistance and aid agreements in many fields like agriculture, alternative energy resources, defense and mining. As many countries in the region are no longer low income countries, a more equal relationship in development aid has been created were the donor and the recipient have become partners and where new actors intervene in a triangular relationship that promotes new alternative aid structures. Triangular co-operation brings together the best of different actors who are providers of development co-operation, partners in SouthSouth co-operation and international organizations. The objective is to share knowledge and implement projects that support the common goal of reducing poverty and promoting development. The intention of this paper is to explain the reasons for Latin America´s “virage” to the east and to give examples of projects and agreements between Latin American countries, China and India which will help to understand the intensification of south-east relations in recent years.Keywords: development cooperation, China, Latin America, triangular cooperation, natural resources, partnership
Procedia PDF Downloads 384345 Evaluating the Business Improvement District Redevelopment Model: An Ethnography of a Tokyo Shopping Mall
Authors: Stefan Fuchs
Abstract:
Against the backdrop of the proliferation of shopping malls in Japan during the last two decades, this paper presents the results of an ethnography conducted at a recently built suburban shopping mall in Western Tokyo. Through the analysis of the lived experiences of local residents, mall customers and the mall management this paper evaluates the benefits and disadvantages of the Business Improvement District (BID) model, which was implemented as urban redevelopment strategy in the area surrounding the shopping mall. The results of this research project show that while the BID model has in some respects contributed to the economic prosperity and to the perceived convenience of the area, it has led to gentrification and the redevelopment shows some deficiencies with regard to the inclusion of the elderly population as well as to the democratization of the decision-making process within the area. In Japan, shopping malls have been steadily growing both in size and number since a series of deregulation policies was introduced in the year 2000 in an attempt to push the domestic economy and to rejuvenate urban landscapes. Shopping malls have thereby become defining spaces of the built environment and are arguably important places of social interaction. Notwithstanding the vital role they play as factors of urban transformation, they have been somewhat overlooked in the research on Japan; especially with respect to their meaning for people’s everyday lives. By examining the ways, people make use of space in a shopping mall the research project presented in this paper addresses this gap in the research. Moreover, the research site of this research project is one of the few BIDs of Japan and the results presented in this paper can give indication on the scope of the future applicability of this urban redevelopment model. The data presented in this research was collected during a nine-months ethnographic fieldwork in and around the shopping mall. This ethnography includes semi-structured interviews with ten key informants as well as direct and participant observations examining the lived experiences and perceptions of people living, shopping or working at the shopping mall. The analysis of the collected data focused on recurring themes aiming at ultimately capturing different perspectives on the same aspects. In this manner, the research project documents the social agency of different groups within one communal network. The analysis of the perceptions towards the urban redevelopment around the shopping mall has shown that mainly the mall customers and large businesses benefit from the BID redevelopment model. While local residents benefit to some extent from their neighbourhood becoming more convenient for shopping they perceive themselves as being disadvantaged by changing demographics due to rising living expenses, the general noise level and the prioritisation of a certain customer segment or age group at the shopping mall. Although the shopping mall examined in this research project is just an example, the findings suggest that in future urban redevelopment politics have to provide incentives for landowners and developing companies to think of other ways of transforming underdeveloped areas.Keywords: business improvement district, ethnography, shopping mall, urban redevelopment
Procedia PDF Downloads 139344 The Mineralogy of Shales from the Pilbara and How Chemical Weathering Affects the Intact Strength
Authors: Arturo Maldonado
Abstract:
In the iron ore mining industry, the intact strength of rock units is defined using the uniaxial compressive strength (UCS). This parameter is very important for the classification of shale materials, allowing the split between rock and cohesive soils based on the magnitude of UCS. For this research, it is assumed that UCS less than or equal to 1 MPa is representative of soils. Several researchers have anticipated that the magnitude of UCS reduces with weathering progression, also since UCS is a directional property, its magnitude depends upon the rock fabric orientation. Thus, the paper presents how the UCS of shales is affected by both weathering grade and bedding orientation. The mineralogy of shales has been defined using Hyper-spectral and chemical assays to define the mineral constituents of shale and other non-shale materials. Geological classification tools have been used to define distinct lithological types, and in this manner, the author uses mineralogical datasets to recognize and isolate shales from other rock types and develop tertiary plots for fresh and weathered shales. The mineralogical classification of shales has reduced the contamination of lithology types and facilitated the study of the physical factors affecting the intact strength of shales, like anisotropic strength due to bedding orientation. The analysis of mineralogical characteristics of shales is perhaps the most important contribution of this paper to other researchers who may wish to explore similar methods.Keywords: rock mechanics, mineralogy, shales, weathering, anisotropy
Procedia PDF Downloads 65343 Examining Coping Resources and Ways of Strategic Coping for Individuals with Spinal Cord Injury During the COVID-19 Crisis
Authors: Se-Hyuk Park, Hee-Jung Seo
Abstract:
Previous studies have investigated effective coping strategies for excessive stress, positive adaptation, resilience, mental health, and personal growth. However, to the best of the authors' knowledge, little research has been conducted to investigate how Koreans with physical disabilities deal with the COVID-19 pandemic. The purpose of this study was to identify coping strategies and coping resources that Koreans with physical disabilities utilized during the COVID-19 crisis. This study used semi-structured, in-depth interviews with 15 participants. Data were qualitatively analyzed using the constant comparative method with content mapping and content mining questions. We identified three salient themes that were used by participants as coping strategies to deal with various COVID-related challenges: (a) engagement in meaningful activities, (b) improvement of social and emotional support, and (c) experience of resilience. The findings of the present study highlighted that Korean adults with SCI actively engaged in various leisure activities, maintained and developed closer social relationships, and experienced resilience to face COVID-19-related stressors. These coping strategies were noted as a catalyst for physical health as well as psychological well-being of individuals with SCI.Keywords: spinal cord injury, covid-19 pandemic, coping strategies, coping resources, leisure
Procedia PDF Downloads 45342 Reduction in Hot Metal Silicon through Statistical Analysis at G-Blast Furnace, Tata Steel Jamshedpur
Authors: Shoumodip Roy, Ankit Singhania, Santanu Mallick, Abhiram Jha, M. K. Agarwal, R. V. Ramna, Uttam Singh
Abstract:
The quality of hot metal at any blast furnace is judged by the silicon content in it. Lower hot metal silicon not only enhances process efficiency at steel melting shops but also reduces hot metal costs. The Hot metal produced at G-Blast furnace Tata Steel Jamshedpur has a significantly higher Si content than Benchmark Blast furnaces. The higher content of hot metal Si is mainly due to inferior raw material quality than those used in benchmark blast furnaces. With minimum control over raw material quality, the only option left to control hot metal Si is via optimizing the furnace parameters. Therefore, in order to identify the levers to reduce hot metal Si, Data mining was carried out, and multiple regression models were developed. The statistical analysis revealed that Slag B3{(CaO+MgO)/SiO2}, Slag Alumina and Hot metal temperature are key controllable parameters affecting hot metal silicon. Contour Plots were used to determine the optimum range of levels identified through statistical analysis. A trial plan was formulated to operate relevant parameters, at G blast furnace, in the identified range to reduce hot metal silicon. This paper details out the process followed and subsequent reduction in hot metal silicon by 15% at G blast furnace.Keywords: blast furnace, optimization, silicon, statistical tools
Procedia PDF Downloads 223