Search results for: long short-term memory networks (LSTM)
8524 Convolutional Neural Networks Architecture Analysis for Image Captioning
Authors: Jun Seung Woo, Shin Dong Ho
Abstract:
The Image Captioning models with Attention technology have developed significantly compared to previous models, but it is still unsatisfactory in recognizing images. We perform an extensive search over seven interesting Convolutional Neural Networks(CNN) architectures to analyze the behavior of different models for image captioning. We compared seven different CNN Architectures, according to batch size, using on public benchmarks: MS-COCO datasets. In our experimental results, DenseNet and InceptionV3 got about 14% loss and about 160sec training time per epoch. It was the most satisfactory result among the seven CNN architectures after training 50 epochs on GPU.Keywords: deep learning, image captioning, CNN architectures, densenet, inceptionV3
Procedia PDF Downloads 1308523 The Contemporary Dynamics of Board Composition and Executive Compensation for R&D Spending
Authors: Farheen Akram
Abstract:
Research and Development (R&D) is the most crucial element of the firm’s survival in a competitive business environment. R&D is a long-term investment; therefore, executives having the power to make the investment decisions may be pessimistic when their compensation is closely linked with short-term firm performance. Thus, the current study investigates the impact of board composition and executives’ compensation (cash or short-term benefits and LTIs) on R&D spending using a sample of 85 S&P/100 firms listed on the Australian Stock Exchange (ASX) in 2017. SmartPLS (v.3.2.7) was used to evaluate the proposed model of current research. The empirical findings of this study indicate that board composition has a significant and positive effect on R&D spending. While, as expected, executive cash compensation has negative and Long-Term-Incentives (LTIs) has a positive impact on R&D spending. Based on current findings, the study suggested that myopic behavior of CEOs and top management towards long-term value creation investment like R&D can be controlled by using long-term compensation rewards.Keywords: cash compensation, LTIs, board composition, R&D spending
Procedia PDF Downloads 1918522 Wireless Sensor Networks for Water Quality Monitoring: Prototype Design
Authors: Cesar Eduardo Hernández Curiel, Victor Hugo Benítez Baltazar, Jesús Horacio Pacheco Ramírez
Abstract:
This paper is devoted to present the advances in the design of a prototype that is able to supervise the complex behavior of water quality parameters such as pH and temperature, via a real-time monitoring system. The current water quality tests that are performed in government water quality institutions in Mexico are carried out in problematic locations and they require taking manual samples. The water samples are then taken to the institution laboratory for examination. In order to automate this process, a water quality monitoring system based on wireless sensor networks is proposed. The system consists of a sensor node which contains one pH sensor, one temperature sensor, a microcontroller, and a ZigBee radio, and a base station composed by a ZigBee radio and a PC. The progress in this investigation shows the development of a water quality monitoring system. Due to recent events that affected water quality in Mexico, the main motivation of this study is to address water quality monitoring systems, so in the near future, a more robust, affordable, and reliable system can be deployed.Keywords: pH measurement, water quality monitoring, wireless sensor networks, ZigBee
Procedia PDF Downloads 4028521 Exploring the Psychosocial Brain: A Retrospective Analysis of Personality, Social Networks, and Dementia Outcomes
Authors: Felicia N. Obialo, Aliza Wingo, Thomas Wingo
Abstract:
Psychosocial factors such as personality traits and social networks influence cognitive aging and dementia outcomes both positively and negatively. The inherent complexity of these factors makes defining the underlying mechanisms of their influence difficult; however, exploring their interactions affords promise in the field of cognitive aging. The objective of this study was to elucidate some of these interactions by determining the relationship between social network size and dementia outcomes and by determining whether personality traits mediate this relationship. The longitudinal Alzheimer’s Disease (AD) database provided by Rush University’s Religious Orders Study/Memory and Aging Project was utilized to perform retrospective regression and mediation analyses on 3,591 participants. Participants who were cognitively impaired at baseline were excluded, and analyses were adjusted for age, sex, common chronic diseases, and vascular risk factors. Dementia outcome measures included cognitive trajectory, clinical dementia diagnosis, and postmortem beta-amyloid plaque (AB), and neurofibrillary tangle (NT) accumulation. Personality traits included agreeableness (A), conscientiousness (C), extraversion (E), neuroticism (N), and openness (O). The results show a positive correlation between social network size and cognitive trajectory (p-value = 0.004) and a negative relationship between social network size and odds of dementia diagnosis (p = 0.024/ Odds Ratio (OR) = 0.974). Only neuroticism mediates the positive relationship between social network size and cognitive trajectory (p < 2e-16). Agreeableness, extraversion, and neuroticism all mediate the negative relationship between social network size and dementia diagnosis (p=0.098, p=0.054, and p < 2e-16, respectively). All personality traits are independently associated with dementia diagnosis (A: p = 0.016/ OR = 0.959; C: p = 0.000007/ OR = 0.945; E: p = 0.028/ OR = 0.961; N: p = 0.000019/ OR = 1.036; O: p = 0.027/ OR = 0.972). Only conscientiousness and neuroticism are associated with postmortem AD pathologies; specifically, conscientiousness is negatively associated (AB: p = 0.001, NT: p = 0.025) and neuroticism is positively associated with pathologies (AB: p = 0.002, NT: p = 0.002). These results support the study’s objectives, demonstrating that social network size and personality traits are strongly associated with dementia outcomes, particularly the odds of receiving a clinical diagnosis of dementia. Personality traits interact significantly and beneficially with social network size to influence the cognitive trajectory and future dementia diagnosis. These results reinforce previous literature linking social network size to dementia risk and provide novel insight into the differential roles of individual personality traits in cognitive protection.Keywords: Alzheimer’s disease, cognitive trajectory, personality traits, social network size
Procedia PDF Downloads 1268520 The Cases Studies of Eyewitness Misidentifications during Criminal Investigation in Taiwan
Authors: Chih Hung Shih
Abstract:
Eyewitness identification is one of the efficient information to identify suspects during criminal investigation. However eyewitness identification is improved frequently, inaccurate and plays vital roles in wrongful convictions. Most eyewitness misidentifications are made during police criminal investigation stage and then accepted by juries. Four failure investigation case studies in Taiwan are conduct to demonstrate how misidentifications are caused during the police investigation context. The result shows that there are several common grounds among these cases: (1) investigators lacked for knowledge about eyewitness memory so that they couldn’t evaluate the validity of the eyewitnesses’ accounts and identifications, (2) eyewitnesses were always asked to filter out several suspects during the investigation, and received investigation information which contaminated the eyewitnesses’ memory, (3) one to one live individual identifications were made in most of cases, (4) eyewitness identifications were always used to support the hypotheses of investigators, and exaggerated theirs powers when conform with the investigation lines, (5) the eyewitnesses’ confidence didn’t t reflect the validity of their identifications , but always influence the investigators’ beliefs for the identifications, (6) the investigators overestimated the power of the eyewitness identifications and ignore the inconsistency with other evidence. Recommendations have been proposed for future academic research and police practice of eyewitness identification in Taiwan.Keywords: criminal investigation, eyewitness identification, investigative bias, investigative failures
Procedia PDF Downloads 2438519 Comparison between Hardy-Cross Method and Water Software to Solve a Pipe Networking Design Problem for a Small Town
Authors: Ahmed Emad Ahmed, Zeyad Ahmed Hussein, Mohamed Salama Afifi, Ahmed Mohammed Eid
Abstract:
Water has a great importance in life. In order to deliver water from resources to the users, many procedures should be taken by the water engineers. One of the main procedures to deliver water to the community is by designing pressurizer pipe networks for water. The main aim of this work is to calculate the water demand of a small town and then design a simple water network to distribute water resources among the town with the smallest losses. Literature has been mentioned to cover the main point related to water distribution. Moreover, the methodology has introduced two approaches to solve the research problem, one by the iterative method of Hardy-cross and the other by water software Pipe Flow. The results have introduced two main designs to satisfy the same research requirements. Finally, the researchers have concluded that the use of water software provides more abilities and options for water engineers.Keywords: looping pipe networks, hardy cross networks accuracy, relative error of hardy cross method
Procedia PDF Downloads 1638518 Survey on Fiber Optic Deployment for Telecommunications Operators in Ghana: Coverage Gap, Recommendations and Research Directions
Authors: Francis Padi, Solomon Nunoo, John Kojo Annan
Abstract:
The paper "Survey on Fiber Optic Deployment for Telecommunications Operators in Ghana: Coverage Gap, Recommendations and Research Directions" presents a comprehensive survey on the deployment of fiber optic networks for telecommunications operators in Ghana. It addresses the challenges encountered by operators using microwave transmission systems for backhauling traffic and emphasizes the advantages of deploying fiber optic networks. The study delves into the coverage gap, provides recommendations, and outlines research directions to enhance the telecommunications infrastructure in Ghana. Additionally, it evaluates next-generation optical access technologies and architectures tailored to operators' needs. The paper also investigates current technological solutions and regulatory, technical, and economical dimensions related to sharing mobile telecommunication networks in emerging countries. Overall, this paper offers valuable insights into fiber optic network deployment for telecommunications operators in Ghana and suggests strategies to meet the increasing demand for data and mobile applications.Keywords: survey on fiber optic deployment, coverage gap, recommendations, research directions
Procedia PDF Downloads 208517 Development and Investigation of Sustainable Wireless Sensor Networks for forest Ecosystems
Authors: Shathya Duobiene, Gediminas Račiukaitis
Abstract:
Solar-powered wireless sensor nodes work best when they operate continuously with minimal energy consumption. Wireless Sensor Networks (WSNs) are a new technology opens up wide studies, and advancements are expanding the prevalence of numerous monitoring applications and real-time aid for environments. The Selective Surface Activation Induced by Laser (SSAIL) technology is an exciting development that gives the design of WSNs more flexibility in terms of their shape, dimensions, and materials. This research work proposes a methodology for using SSAIL technology for forest ecosystem monitoring by wireless sensor networks. WSN monitoring the temperature and humidity were deployed, and their architectures are discussed. The paper presents the experimental outcomes of deploying newly built sensor nodes in forested areas. Finally, a practical method is offered to extend the WSN's lifespan and ensure its continued operation. When operational, the node is independent of the base station's power supply and uses only as much energy as necessary to sense and transmit data.Keywords: internet of things (IoT), wireless sensor network, sensor nodes, SSAIL technology, forest ecosystem
Procedia PDF Downloads 728516 Quantum Graph Approach for Energy and Information Transfer through Networks of Cables
Authors: Mubarack Ahmed, Gabriele Gradoni, Stephen C. Creagh, Gregor Tanner
Abstract:
High-frequency cables commonly connect modern devices and sensors. Interestingly, the proportion of electric components is rising fast in an attempt to achieve lighter and greener devices. Modelling the propagation of signals through these cable networks in the presence of parameter uncertainty is a daunting task. In this work, we study the response of high-frequency cable networks using both Transmission Line and Quantum Graph (QG) theories. We have successfully compared the two theories in terms of reflection spectra using measurements on real, lossy cables. We have derived a generalisation of the vertex scattering matrix to include non-uniform networks – networks of cables with different characteristic impedances and propagation constants. The QG model implicitly takes into account the pseudo-chaotic behavior, at the vertices, of the propagating electric signal. We have successfully compared the asymptotic growth of eigenvalues of the Laplacian with the predictions of Weyl law. We investigate the nearest-neighbour level-spacing distribution of the resonances and compare our results with the predictions of Random Matrix Theory (RMT). To achieve this, we will compare our graphs with the generalisation of Wigner distribution for open systems. The problem of scattering from networks of cables can also provide an analogue model for wireless communication in highly reverberant environments. In this context, we provide a preliminary analysis of the statistics of communication capacity for communication across cable networks, whose eventual aim is to enable detailed laboratory testing of information transfer rates using software defined radio. We specialise this analysis in particular for the case of MIMO (Multiple-Input Multiple-Output) protocols. We have successfully validated our QG model with both TL model and laboratory measurements. The growth of Eigenvalues compares well with Weyl’s law and the level-spacing distribution agrees so well RMT predictions. The results we achieved in the MIMO application compares favourably with the prediction of a parallel on-going research (sponsored by NEMF21.)Keywords: eigenvalues, multiple-input multiple-output, quantum graph, random matrix theory, transmission line
Procedia PDF Downloads 1728515 Optimized Deep Learning-Based Facial Emotion Recognition System
Authors: Erick C. Valverde, Wansu Lim
Abstract:
Facial emotion recognition (FER) system has been recently developed for more advanced computer vision applications. The ability to identify human emotions would enable smart healthcare facility to diagnose mental health illnesses (e.g., depression and stress) as well as better human social interactions with smart technologies. The FER system involves two steps: 1) face detection task and 2) facial emotion recognition task. It classifies the human expression in various categories such as angry, disgust, fear, happy, sad, surprise, and neutral. This system requires intensive research to address issues with human diversity, various unique human expressions, and variety of human facial features due to age differences. These issues generally affect the ability of the FER system to detect human emotions with high accuracy. Early stage of FER systems used simple supervised classification task algorithms like K-nearest neighbors (KNN) and artificial neural networks (ANN). These conventional FER systems have issues with low accuracy due to its inefficiency to extract significant features of several human emotions. To increase the accuracy of FER systems, deep learning (DL)-based methods, like convolutional neural networks (CNN), are proposed. These methods can find more complex features in the human face by means of the deeper connections within its architectures. However, the inference speed and computational costs of a DL-based FER system is often disregarded in exchange for higher accuracy results. To cope with this drawback, an optimized DL-based FER system is proposed in this study.An extreme version of Inception V3, known as Xception model, is leveraged by applying different network optimization methods. Specifically, network pruning and quantization are used to enable lower computational costs and reduce memory usage, respectively. To support low resource requirements, a 68-landmark face detector from Dlib is used in the early step of the FER system.Furthermore, a DL compiler is utilized to incorporate advanced optimization techniques to the Xception model to improve the inference speed of the FER system. In comparison to VGG-Net and ResNet50, the proposed optimized DL-based FER system experimentally demonstrates the objectives of the network optimization methods used. As a result, the proposed approach can be used to create an efficient and real-time FER system.Keywords: deep learning, face detection, facial emotion recognition, network optimization methods
Procedia PDF Downloads 1188514 Image Classification with Localization Using Convolutional Neural Networks
Authors: Bhuyain Mobarok Hossain
Abstract:
Image classification and localization research is currently an important strategy in the field of computer vision. The evolution and advancement of deep learning and convolutional neural networks (CNN) have greatly improved the capabilities of object detection and image-based classification. Target detection is important to research in the field of computer vision, especially in video surveillance systems. To solve this problem, we will be applying a convolutional neural network of multiple scales at multiple locations in the image in one sliding window. Most translation networks move away from the bounding box around the area of interest. In contrast to this architecture, we consider the problem to be a classification problem where each pixel of the image is a separate section. Image classification is the method of predicting an individual category or specifying by a shoal of data points. Image classification is a part of the classification problem, including any labels throughout the image. The image can be classified as a day or night shot. Or, likewise, images of cars and motorbikes will be automatically placed in their collection. The deep learning of image classification generally includes convolutional layers; the invention of it is referred to as a convolutional neural network (CNN).Keywords: image classification, object detection, localization, particle filter
Procedia PDF Downloads 3028513 Data Collection with Bounded-Sized Messages in Wireless Sensor Networks
Authors: Min Kyung An
Abstract:
In this paper, we study the data collection problem in Wireless Sensor Networks (WSNs) adopting the two interference models: The graph model and the more realistic physical interference model known as Signal-to-Interference-Noise-Ratio (SINR). The main issue of the problem is to compute schedules with the minimum number of timeslots, that is, to compute the minimum latency schedules, such that data from every node can be collected without any collision or interference to a sink node. While existing works studied the problem with unit-sized and unbounded-sized message models, we investigate the problem with the bounded-sized message model, and introduce a constant factor approximation algorithm. To the best known of our knowledge, our result is the first result of the data collection problem with bounded-sized model in both interference models.Keywords: data collection, collision-free, interference-free, physical interference model, SINR, approximation, bounded-sized message model, wireless sensor networks
Procedia PDF Downloads 2218512 Survey of Potential Adverse Health Effects of Mobile Phones, and Wireless Base Stations in Nigeria
Authors: Nureni A. Yekini, Isaac T. Babalola, Edwin E. Aighokhan, Agnes K. Akinwole, N. Stephen Igwe
Abstract:
Survey was conducted to gather information on potential adverse health effects of Mobile Phones, and Telecommunication Tower Base Stations in Nigeria. Data was sourced from two sampled populations. Firstly from the people living in close proximity to base stations, and secondly from cell phone users. Questionnaire was used to gathered information from 574 people on thirteen non-specific health symptoms. Data obtained was presented and analyzed. The analysis shows that people living close to the based stations over a long period of time with or without cell phone, and also the heavy phone users with close proximity to the base stations are liable to have some potential health hazards, such as fatigue, sleep disturbances, headaches, feeling of discomfort, difficulty in concentrating, depression, memory loss, visual disruptions, irritability, hearing disruptions, skin problems, cardiovascular disorders, and dizziness.Keywords: health hazards, wireless base stations, phone users, mobile phones, Nigeria
Procedia PDF Downloads 3178511 Managing the Cognitive Load of Medical Students during Anatomy Lecture
Authors: Siti Nurma Hanim Hadie, Asma’ Hassan, Zul Izhar Ismail, Ahmad Fuad Abdul Rahim, Mohd. Zarawi Mat Nor, Hairul Nizam Ismail
Abstract:
Anatomy is a medical subject, which contributes to high cognitive load during learning. Despite its complexity, anatomy remains as the most important basic sciences subject with high clinical relevancy. Although anatomy knowledge is required for safe practice, many medical students graduated without having sufficient knowledge. In fact, anatomy knowledge among the medical graduates was reported to be declining and this had led to various medico-legal problems. Applying cognitive load theory (CLT) in anatomy teaching particularly lecture would be able to address this issue since anatomy information is often perceived as cognitively challenging material. CLT identifies three types of loads which are intrinsic, extraneous and germane loads, which combine to form the total cognitive load. CLT describe that learning can only occur when the total cognitive load does not exceed human working memory capacity. Hence, managing these three types of loads with the aim of optimizing the working memory capacity would be beneficial to the students in learning anatomy and retaining the knowledge for future application.Keywords: cognitive load theory, intrinsic load, extraneous load, germane load
Procedia PDF Downloads 4628510 Building Green Infrastructure Networks Based on Cadastral Parcels Using Network Analysis
Authors: Gon Park
Abstract:
Seoul in South Korea established the 2030 Seoul City Master Plan that contains green-link projects to connect critical green areas within the city. However, the plan does not have detailed analyses for green infrastructure to incorporate land-cover information to many structural classes. This study maps green infrastructure networks of Seoul for complementing their green plans with identifying and raking green areas. Hubs and links of main elements of green infrastructure have been identified from incorporating cadastral data of 967,502 parcels to 135 of land use maps using geographic information system. Network analyses were used to rank hubs and links of a green infrastructure map with applying a force-directed algorithm, weighted values, and binary relationships that has metrics of density, distance, and centrality. The results indicate that network analyses using cadastral parcel data can be used as the framework to identify and rank hubs, links, and networks for the green infrastructure planning under a variable scenarios of green areas in cities.Keywords: cadastral data, green Infrastructure, network analysis, parcel data
Procedia PDF Downloads 2048509 The Effects of Spatial Dimensions and Relocation and Dimensions of Sound Absorbers in a Space on the Objective Parameters of Sound
Authors: Mustafa Kavraz
Abstract:
This study investigated the differences in the objective parameters of sound depending on the changes in the lengths of the lateral surfaces of a space and on the replacement of the sound absorbers that are placed on these surfaces. To this end, three models of room were chosen. The widths and heights of these rooms were the same but the lengths of the rooms were changed. The smallest room was 8 m. wide and 10 m. long. The lengths of the other two rooms were 15 m. and 20 m. For each model, the differences in the objective parameters of sound were determined by keeping all the material in the space intact and by changing only the positions of the sound absorbers that were placed on the walls. The sound absorbers that were used on the walls were of two different sizes. The sound absorbers that were placed on the walls were 4 m and 8 m. long and story-height (3 m.). In all model room types, the sound absorbers were placed on the long walls in three different ways: at the end of the long walls where the long walls meet the front wall; at the end of the long walls where the long walls meet the back wall; and in the middle part of the long walls. Except for the specially placed sound absorbers, the ground, wall and ceiling surfaces were covered with three different materials. There were no constructional elements such as doors and windows on the walls. On the surfaces, the materials specified in the Odeon 10 material library were used as coating material. Linoleum was used as flooring material, painted plaster as wall coating material and gypsum boards as ceiling covering (2 layers with a total of 32 mm. thickness). These were preferred due to the fact that they are the commonly used materials for these purposes. This study investigated the differences in the objective parameters of sound depending on the changes in the lengths of the lateral surfaces of a space and on the replacement of the sound absorbers that are placed on these surfaces. To this end, three models of room were chosen. The widths and heights of these rooms were the same but the lengths of the rooms were changed. The smallest room was 8 m. wide and 10 m. long. The lengths of the other two rooms were 15 m. and 20 m. For each model, the differences in the objective parameters of sound were determined by keeping all the material in the space intact and by changing only the positions of the sound absorbers that were placed on the walls. The sound absorbers that were used on the walls were of two different sizes. The sound absorbers that were placed on the walls were 4 m and 8 m. long and story-height (3 m.). In all model room types, the sound absorbers were placed on the long walls in three different ways: at the end of the long walls where the long walls meet the front wall; at the end of the long walls where the long walls meet the back wall; and in the middle part of the long walls. Except for the specially placed sound absorbers, the ground, wall and ceiling surfaces were covered with three different materials. There were no constructional elements such as doors and windows on the walls. On the surfaces, the materials specified in the Odeon 10 material library were used as coating material. Linoleum was used as flooring material, painted plaster as wall coating material and gypsum boards as ceiling covering (2 layers with a total of 32 mm. thickness). These were preferred due to the fact that they are the commonly used materials for these purposes.Keywords: sound absorber, room model, objective parameters of sound, jnd
Procedia PDF Downloads 3738508 Energy-Efficient Contact Selection Method for CARD in Wireless Ad-Hoc Networks
Authors: Mehdi Assefi, Keihan Hataminezhad
Abstract:
One of the efficient architectures for exploring the resources in wireless ad-hoc networks is contact-based architecture. In this architecture, each node assigns a unique zone for itself and each node keeps all information from inside the zone, as well as some from outside the zone, which is called contact. Reducing the overlap between different zones of a node and its contacts increases its performance, therefore Edge Method (EM) is designed for this purpose. Contacts selected by EM do not have any overlap with their sources, but for choosing the contact a vast amount of information must be transmitted. In this article, we will offer a new protocol for contact selection, which is called PEM. The objective would be reducing the volume of transmitted information, using Non-Uniform Dissemination Probabilistic Protocols. Consumed energy for contact selection is a function of the size of transmitted information between nodes. Therefore, by reducing the content of contact selection message using the PEM will decrease the consumed energy. For evaluation of the PEM we applied the simulation method. Results indicated that PEM consumes less energy compared to EM, and by increasing the number of nodes (level of nodes), performance of PEM will improve in comparison with EM.Keywords: wireless ad-hoc networks, contact selection, method for CARD, energy-efficient
Procedia PDF Downloads 2888507 Disease Level Assessment in Wheat Plots Using a Residual Deep Learning Algorithm
Authors: Felipe A. Guth, Shane Ward, Kevin McDonnell
Abstract:
The assessment of disease levels in crop fields is an important and time-consuming task that generally relies on expert knowledge of trained individuals. Image classification in agriculture problems historically has been based on classical machine learning strategies that make use of hand-engineered features in the top of a classification algorithm. This approach tends to not produce results with high accuracy and generalization to the classes classified by the system when the nature of the elements has a significant variability. The advent of deep convolutional neural networks has revolutionized the field of machine learning, especially in computer vision tasks. These networks have great resourcefulness of learning and have been applied successfully to image classification and object detection tasks in the last years. The objective of this work was to propose a new method based on deep learning convolutional neural networks towards the task of disease level monitoring. Common RGB images of winter wheat were obtained during a growing season. Five categories of disease levels presence were produced, in collaboration with agronomists, for the algorithm classification. Disease level tasks performed by experts provided ground truth data for the disease score of the same winter wheat plots were RGB images were acquired. The system had an overall accuracy of 84% on the discrimination of the disease level classes.Keywords: crop disease assessment, deep learning, precision agriculture, residual neural networks
Procedia PDF Downloads 3318506 The Making of a Community: Perception versus Reality of Neighborhood Resources
Authors: Kirstie Smith
Abstract:
This paper elucidates the value of neighborhood perception as it contributes to the advancement of well-being for individuals and families within a neighborhood. Through in-depth interviews with city residents, this paper examines the degree to which key stakeholders’ (residents) evaluate their neighborhood and perception of resources and identify, access, and utilize local assets existing in the community. Additionally, the research objective included conducting a community inventory that qualified the community assets and resources of lower-income neighborhoods of a medium-sized industrial city. Analysis of the community’s assets was compared with the interview results to allow for a better understanding of the community’s condition. Community mapping revealed the key informants’ reflections of assets were somewhat validated. In each neighborhood, there were more assets mapped than reported in the interviews. Another chief supposition drawn from this study was the identification of key development partners and social networks that offer the potential to facilitate locally-driven community development. Overall, the participants provided invaluable local knowledge of the perception of neighborhood assets, the well-being of residents, the condition of the community, and suggestions for responding to the challenges of the entire community in order to mobilize the present assets and networks.Keywords: community mapping, family, resource allocation, social networks
Procedia PDF Downloads 3518505 Transit-Oriented Development as a Tool for Building Social Capital
Authors: Suneet Jagdev
Abstract:
Rapid urbanization has resulted in informal settlements on the periphery of nearly all big cities in the developing world due to lack of affordable housing options in the city. Residents of these communities have to travel long distances to get to work or search for jobs in these cities, and women, children and elderly people are excluded from urban opportunities. Affordable and safe public transport facilities can help them expand their possibilities. The aim of this research is to identify social capital as another important element of livable cities that can be protected and nurtured through transit-oriented development, as a tool to provide real resources that can help these transit-oriented communities become self-sustainable. Social capital has been referred to the collective value of all social networks and the inclinations that arise from these networks to do things for each other. It is one of the key component responsible to build and maintain democracy. Public spaces, pedestrian amenities and social equity are the other essential part of Transit Oriented Development models that will be analyzed in this research. The data has been collected through the analysis of several case studies, the urban design strategies implemented and their impact on the perception and on the community´s experience, and, finally, how these focused on the social capital. Case studies have been evaluated on several metrics, namely ecological, financial, energy consumption, etc. A questionnaire and other tools were designed to collect data to analyze the research objective and reflect the dimension of social capital. The results of the questionnaire indicated that almost all the participants have a positive attitude towards this dimensions of building a social capital with the aid of transit-oriented development. Statistical data of the identified key motivators against against demographic characteristics have been generated based on the case studies used for the paper. The findings suggested that there is a direct relation between urbanization, transit-oriented developments, and social capital.Keywords: better opportunities, low-income settlements, social capital, social inclusion, transit oriented development
Procedia PDF Downloads 3318504 Analysing the Moderating Effect of Customer Loyalty on Long Run Repurchase Intentions
Authors: John Akpesiri Olotewo
Abstract:
One of the controversies in existing marketing literatures is on how to retain existing and new customers to have repurchase intention in the long-run; however, empirical answer to this question is scanty in existing studies. Thus, this study investigates the moderating effect of consumer loyalty on long-run repurchase intentions in telecommunication industry using Lagos State environs. The study adopted field survey research design using questionnaire to elicit responses from 250 respondents who were selected using random and stratified random sampling techniques from the telecommunication industry in Lagos State, Nigeria. The internal consistency of the research instrument was verified using the Cronbach’s alpha, the result of 0.89 implies the acceptability of the internal consistency of the survey instrument. The test of the research hypotheses were analyzed using Pearson Product Method of Correlation (PPMC), simple regression analysis and inferential statistics with the aid of Statistical Package for Social Science version 20.0 (SPSS). The study confirmed that customer satisfaction has a significant relationship with customer loyalty in the telecommunication industry; also Service quality has a significant relationship with customer loyalty to a brand; loyalty programs have a significant relationship with customer loyalty to a network operator in Nigeria and Customer loyalty has a significant effect on the long run repurchase intentions of the customer. The study concluded that one of the determinants of long term profitability of a business entity is the long run repurchase intentions of its customers which hinges on the level of brand loyalty of the customer. Thus, it was recommended that service providers in Nigeria should improve on factors like customer satisfaction, service quality, and loyalty programs in order to increase the loyalty of their customer to their brands thereby increasing their repurchase intentions.Keywords: customer loyalty, long run repurchase intentions, brands, service quality and customer satisfaction
Procedia PDF Downloads 2328503 Minimizing Fresh and Wastewater Using Water Pinch Technique in Petrochemical Industries
Authors: Wasif Mughees, Malik Al-Ahmad, Muhammad Naeem
Abstract:
This research involves the design and analysis of pinch-based water/wastewater networks to minimize water utility in the petrochemical and petroleum industries. A study has been done on Tehran Oil Refinery to analyze feasibilities of regeneration, reuse and recycling of water network. COD is considered as a single key contaminant. Amount of freshwater was reduced about 149m3/h (43.8%) regarding COD. Re-design (or retrofitting) of water allocation in the networks was undertaken. The results were analyzed through graphical method and mathematical programming technique which clearly demonstrated that amount of required water would be determined by mass transfer of COD.Keywords: minimization, water pinch, water management, pollution prevention
Procedia PDF Downloads 4478502 Optimizing the Probabilistic Neural Network Training Algorithm for Multi-Class Identification
Authors: Abdelhadi Lotfi, Abdelkader Benyettou
Abstract:
In this work, a training algorithm for probabilistic neural networks (PNN) is presented. The algorithm addresses one of the major drawbacks of PNN, which is the size of the hidden layer in the network. By using a cross-validation training algorithm, the number of hidden neurons is shrunk to a smaller number consisting of the most representative samples of the training set. This is done without affecting the overall architecture of the network. Performance of the network is compared against performance of standard PNN for different databases from the UCI database repository. Results show an important gain in network size and performance.Keywords: classification, probabilistic neural networks, network optimization, pattern recognition
Procedia PDF Downloads 2608501 The Influence of Strategic Networks and Logistics Integration on Company Performance among Small and Medium Enterprises
Authors: Jeremiah Madzimure
Abstract:
In order to stay competitive in business and improve performance, Small and Medium Enterprises (SMEs) need to make use of business networking and logistics integration. Strategic networking and logistics integration in business companies have become critical as they allow supplier partnering, exchange of vital information/ access to valuable resources allowing innovation, gaining access to additional resources, sharing risks and costs which is required for enhancing company performance. The purpose of this study was to examine the influence of strategic networks and logistics integration on company performance: the case of small and medium enterprises in South Africa. A quantitative research design was adopted in this study, and 137 SMEs owners and managers completed and returned the survey questionnaire. Confirmatory Factor Analysis (CFA) was conducted using the Analysis of Moment Structures (AMOS), version 24.0 to assess psychometric properties of the measurement scales. Path modelling techniques were used to test the proposed hypothesis. Three research hypotheses were postulated. The results indicate that strategic networks had a positive and significant influence on logistics integration and company performance. As well logistics integration had a strong positive and significant influence on company performance. This study provides a useful model for analysing the relationship between strategic networks and logistics integration on company performance. Moreover, the findings of the study provide useful insights into how SMEs should benefit from business networking and logistics integration so as to improve their performance. The implications of the study are discussed, and finally, limitations and recommendations are indicated.Keywords: strategic networking, logistics integration, company performance, SMEs
Procedia PDF Downloads 2978500 Impacts and Implications: Exploring the Long-Term Health Benefits of Regular Physical Activity
Authors: Muhammad Wahb
Abstract:
Physical activity is increasingly recognized as a significant factor in maintaining optimal health and preventing chronic diseases. This research scrutinizes the long-term health benefits of sustained physical activity, employing a systematic review of epidemiological studies and randomized control trials conducted over the past decade. The study illuminates the protective effects of regular physical activity against cardiovascular disease, obesity, diabetes, and mental health disorders, with a special focus on the mechanisms involved. Furthermore, the paper provides insights into how public health initiatives can effectively promote physical activity among diverse populations, contributing to improved community health outcomes.Keywords: physical activity, long-term health benefits, chronic disease prevention, public health
Procedia PDF Downloads 948499 ISMARA: Completely Automated Inference of Gene Regulatory Networks from High-Throughput Data
Authors: Piotr J. Balwierz, Mikhail Pachkov, Phil Arnold, Andreas J. Gruber, Mihaela Zavolan, Erik van Nimwegen
Abstract:
Understanding the key players and interactions in the regulatory networks that control gene expression and chromatin state across different cell types and tissues in metazoans remains one of the central challenges in systems biology. Our laboratory has pioneered a number of methods for automatically inferring core gene regulatory networks directly from high-throughput data by modeling gene expression (RNA-seq) and chromatin state (ChIP-seq) measurements in terms of genome-wide computational predictions of regulatory sites for hundreds of transcription factors and micro-RNAs. These methods have now been completely automated in an integrated webserver called ISMARA that allows researchers to analyze their own data by simply uploading RNA-seq or ChIP-seq data sets and provides results in an integrated web interface as well as in downloadable flat form. For any data set, ISMARA infers the key regulators in the system, their activities across the input samples, the genes and pathways they target, and the core interactions between the regulators. We believe that by empowering experimental researchers to apply cutting-edge computational systems biology tools to their data in a completely automated manner, ISMARA can play an important role in developing our understanding of regulatory networks across metazoans.Keywords: gene expression analysis, high-throughput sequencing analysis, transcription factor activity, transcription regulation
Procedia PDF Downloads 658498 The Relationships between Carbon Dioxide (CO2) Emissions, Energy Consumption and GDP for Iran: Time Series Analysis, 1980-2010
Authors: Jinhoa Lee
Abstract:
The relationships between environmental quality, energy use and economic output have created growing attention over the past decades among researchers and policy makers. Focusing on the empirical aspects of the role of carbon dioxide (CO2) emissions and energy use in affecting the economic output, this paper is an effort to fulfill the gap in a comprehensive case study at a country level using modern econometric techniques. To achieve the goal, this country-specific study examines the short-run and long-run relationships among energy consumption (using disaggregated energy sources: Crude oil, coal, natural gas, and electricity), CO2 emissions and gross domestic product (GDP) for Iran using time series analysis from the year 1980-2010. To investigate the relationships between the variables, this paper employs the Augmented Dickey-Fuller (ADF) test for stationarity, Johansen’s maximum likelihood method for cointegration and a Vector Error Correction Model (VECM) for both short- and long-run causality among the research variables for the sample. All the variables in this study show very strong significant effects on GDP in the country for the long term. The long-run equilibrium in VECM suggests that all energy consumption variables in this study have significant impacts on GDP in the long term. The consumption of petroleum products and the direct combustion of crude oil and natural gas decrease GDP, while the coal and electricity use enhanced the GDP between 1980-2010 in Iran. In the short term, only electricity use enhances the GDP as well as its long-run effects. All variables of this study, except the CO2 emissions, show significant effects on the GDP in the country for the long term. The long-run equilibrium in VECM suggests that the consumption of petroleum products and the direct combustion of crude oil and natural gas use have positive impacts on the GDP while the consumptions of electricity and coal have adverse impacts on the GDP in the long term. In the short run, electricity use enhances the GDP over period of 1980-2010 in Iran. Overall, the results partly support arguments that there are relationships between energy use and economic output, but the associations can be differed by the sources of energy in the case of Iran over period of 1980-2010. However, there is no significant relationship between the CO2 emissions and the GDP and between the CO2 emissions and the energy use both in the short term and long term.Keywords: CO2 emissions, energy consumption, GDP, Iran, time series analysis
Procedia PDF Downloads 5918497 Low Frequency Sound Intervention: Therapeutic Impact and Applications
Authors: Heidi Ahonen
Abstract:
Since antiquity, many cultures have seemingly known the power of low frequencies, incorporating them in healing practices through drumming, singing, humming, etc. Many music therapists recognize there is something in music that is transformative enough to make a difference in people’s lives. This paper summarizes the key findings of several low-frequency research with various client populations conducted by the author. Utilizing low-frequency sound (30 or 40 Hz) may have diverse therapeutic impacts: (1) Calming effect – decreased agitation (autism, brain injury, AD, dementia) (2) Muscle relaxation (CP & spasticity & pain/after surgery patients, MS, fibromyalgia) (3) Relaxation/stress release (anxiety, stress, PTSD, trauma, insomnia) (4) Muscular/motor functioning/ decrease of tremor (CP, MS, Parkinson) (5) Increase in alertness, cognitive awareness & short-term memory function (brain injury, severe global developmental delay, AD) (6) Increased focus (AD, PTSD, trauma). The paper will conclude by presenting ideas informing the clinical practice. Future studies need to investigate what frequencies are effective for particular client populations and why, what theories can explain the effect, and finally, something that has been long debated - is it auditive or kinaesthetic stimulation or the combination of both that is effective?Keywords: low frequency, 40 Hz, sound, neuro disability
Procedia PDF Downloads 1108496 Port Miami in the Caribbean and Mesoamerica: Data, Spatial Networks and Trends
Authors: Richard Grant, Landolf Rhode-Barbarigos, Shouraseni Sen Roy, Lucas Brittan, Change Li, Aiden Rowe
Abstract:
Ports are critical for the US economy, connecting farmers, manufacturers, retailers, consumers and an array of transport and storage operators. Port facilities vary widely in terms of their productivity, footprint, specializations, and governance. In this context, Port Miami is considered as one of the busiest ports providing both cargo and cruise services in connecting the wider region of the Caribbean and Mesoamerica to the global networks. It is considered as the “Cruise Capital of the World and Global Gateway of the Americas” and “leading container port in Florida.” Furthermore, it has also been ranked as one of the top container ports in the world and the second most efficient port in North America. In this regard, Port Miami has made significant investments in the strategic and capital infrastructure of about US$1 billion, including increasing the channel depth and other onshore infrastructural enhancements. Therefore, this study involves a detailed analysis of Port Miami’s network, using publicly available multiple years of data about marine vessel traffic, cargo, and connectivity and performance indices from 2015-2021. Through the analysis of cargo and cruise vessels to and from Port Miami and its relative performance at the global scale from 2015 to 2021, this study examines the port’s long-term resilience and future growth potential. The main results of the analyses indicate that the top category for both inbound and outbound cargo is manufactured products and textiles. In addition, there are a lot of fresh fruits, vegetables, and produce for inbound and processed food for outbound cargo. Furthermore, the top ten port connections for Port Miami are all located in the Caribbean region, the Gulf of Mexico, and the Southeast USA. About half of the inbound cargo comes from Savannah, Saint Thomas, and Puerto Plata, while outbound cargo is from Puerto Corte, Freeport, and Kingston. Additionally, for cruise vessels, a significantly large number of vessels originate from Nassau, followed by Freeport. The number of passenger's vessels pre-COVID was almost 1,000 per year, which dropped substantially in 2020 and 2021 to around 300 vessels. Finally, the resilience and competitiveness of Port Miami were also assessed in terms of its network connectivity by examining the inbound and outbound maritime vessel traffic. It is noteworthy that the most frequent port connections for Port Miami were Freeport and Savannah, followed by Kingston, Nassau, and New Orleans. However, several of these ports, Puerto Corte, Veracruz, Puerto Plata, and Santo Thomas, have low resilience and are highly vulnerable, which needs to be taken into consideration for the long-term resilience of Port Miami in the future.Keywords: port, Miami, network, cargo, cruise
Procedia PDF Downloads 798495 Effect of Different Parameters on the Swelling Behaviour of Thermo-Responsive Elastomers in a Nematogenic Solvent
Authors: Nouria Bouchikhi, Soufiane Bedjaoui, C. Tewfik Bouchaour, Lamia Alachaher Bedjaoui, Ulrich Maschke
Abstract:
Swelling properties and phase diagrams of binary systems composed of liquid crystalline networks and a low molecular mass liquid crystal (LMWLC) have been investigated. The networks were prepared by ultraviolet (UV) irradiation of reactive mixtures including a monomer, a cross-linking agent and a photo-initiator. These networks were prepared using two cross-linking agents: 1,6 hexanedioldiacrylate (HDDA) and a mesogenic acrylic acid 6-(4’-(6-acryloyloxy-hexyloxy) biphenyl-4-yl oxy) hexyl ester (AHBH). The obtained dry networks were characterized by differential scanning calorimetry, and immersed in an excess of a LMWLC solvent 4-cyano-4’-pentylbiphenyl (5CB), forming polymer gels. A detailed study by polarized optical microscopy allowed to determine the swelling degree of the gels and to follow the phase behavior of the solvent inside the polymer matrix in a wide range of temperature. It has been found that the gels undergo a sharp decrease of their swelling degree in response to an infinitesimal change of temperature. This finding adds new and interesting aspects on the actuators applications. We have subsequently explored the effect of different parameters on volume phase transition of these liquid crystalline materials. Such as the cross-linking density (CD), a nature of cross-linking agent and the photo initiator concentration.Keywords: cross-linking density, liquid crystalline elastomers, phase diagrams, swelling
Procedia PDF Downloads 331