Search results for: intuitionistic fuzzy graph
204 Formalizing a Procedure for Generating Uncertain Resource Availability Assumptions Based on Real Time Logistic Data Capturing with Auto-ID Systems for Reactive Scheduling
Authors: Lars Laußat, Manfred Helmus, Kamil Szczesny, Markus König
Abstract:
As one result of the project “Reactive Construction Project Scheduling using Real Time Construction Logistic Data and Simulation”, a procedure for using data about uncertain resource availability assumptions in reactive scheduling processes has been developed. Prediction data about resource availability is generated in a formalized way using real-time monitoring data e.g. from auto-ID systems on the construction site and in the supply chains. The paper focuses on the formalization of the procedure for monitoring construction logistic processes, for the detection of disturbance and for generating of new and uncertain scheduling assumptions for the reactive resource constrained simulation procedure that is and will be further described in other papers.Keywords: auto-ID, construction logistic, fuzzy, monitoring, RFID, scheduling
Procedia PDF Downloads 513203 Risk Prioritization in Tunneling Construction Projects
Authors: David Nantes, George Gilbert
Abstract:
There are a lot of risks that might crop up as a tunneling project develops, and it's crucial to be aware of them. Due to the unexpected nature of tunneling projects and the interconnectedness of risk occurrences, the risk assessment approach presents a significant challenge. The purpose of this study is to provide a hybrid FDEMATEL-ANP model to help prioritize risks during tunnel construction projects. The ambiguity in expert judgments and the relative severity of interdependencies across risk occurrences are both taken into consideration by this model, thanks to the Fuzzy Decision-Making Trial and Evaluation Laboratory (FDEMATEL). The Analytic Network Process (ANP) method is used to rank priorities and assess project risks. The authors provide a case study of a subway tunneling construction project to back up the validity of their methodology. The results showed that the proposed method successfully isolated key risk factors and elucidated their interplay in the case study. The proposed method has the potential to become a helpful resource for evaluating dangers associated with tunnel construction projects.Keywords: risk, prioritization, FDEMATEL, ANP, tunneling construction projects
Procedia PDF Downloads 92202 On a Transient Magnetohydrodynamics Heat Transfer Within Radiative Porous Channel Due to Convective Boundary Condition
Authors: Bashiru Abdullahi, Isah Bala Yabo, Ibrahim Yakubu Seini
Abstract:
In this paper, the steady/transient MHD heat transfer within radiative porous channel due to convective boundary conditions is considered. The solution of the steady-state and that of the transient version were conveyed by Perturbation and Finite difference methods respectively. The heat transfer mechanism of the present work ascertains the influence of Biot number〖(B〗_i1), magnetizing parameter (M), radiation parameter(R), temperature difference, suction/injection(S) Grashof number (Gr) and time (t) on velocity (u), temperature(θ), skin friction(τ), and Nusselt number (Nu). The results established were discussed with the help of a line graph. It was found that the velocity, temperature, and skin friction decay with increasing suction/injection and magnetizing parameters while the Nusselt number upsurges with suction/injection at y = 0 and falls at y =1. The steady-state solution was in perfect agreement with the transient version for a significant value of time t. It is interesting to report that the Biot number has a cogent influence consequently, as its values upsurge the result of the present work slant the extended literature.Keywords: heat transfer, thermal radiation, porous channel, MHD, transient, convective boundary condition
Procedia PDF Downloads 121201 Modeling and Analyzing Controversy in Large-Scale Cyber-Argumentation
Authors: Najla Althuniyan
Abstract:
Online discussions take place across different platforms. These discussions have the potential to extract crowd wisdom and capture the collective intelligence from a different perspective. However, certain phenomena, such as controversy, often appear in online argumentation that makes the discussion between participants heated. Heated discussions can be used to extract new knowledge. Therefore, detecting the presence of controversy is an essential task to determine if collective intelligence can be extracted from online discussions. This paper uses existing measures for estimating controversy quantitatively in cyber-argumentation. First, it defines controversy in different fields, and then it identifies the attributes of controversy in online discussions. The distributions of user opinions and the distance between opinions are used to calculate the controversial degree of a discussion. Finally, the results from each controversy measure are discussed and analyzed using an empirical study generated by a cyber-argumentation tool. This is an improvement over the existing measurements because it does not require ground-truth data or specific settings and can be adapted to distribution-based or distance-based opinions.Keywords: online argumentation, controversy, collective intelligence, agreement analysis, collaborative decision-making, fuzzy logic
Procedia PDF Downloads 116200 Adaptive Analysis of Housing Policies in Development Programming After 1970s (Case Study: Kermanshah City in the Western Iran)
Authors: Zeinab. Shahrokhifar, Abolfazl Meshkini, Seyed Ali. Alavi
Abstract:
Considering the different dimensions of deprivation, housing supply is noted as a basic requirement in Iran after 1979 (coming to work of the new government). The government had built the constitution and obliged to meet this need in the form of five-year development programs in Iran’s provinces. This study focused on the adaptive analysis of housing policies in these five development programs in Kermanshah province located in western Iran. Our research is divided into two different analytical sections. In the first section, we collected the documentary information using approved plans and field studies. In the second section, a questionnaire was prepared and designed for the elite community (30) to support the documentary analysis. The results showed that various projects adopted in the form of strategic plans and implemented the policies included both quantitative and qualitative housing in Kermanshah province after 1979. The quality of housing, from the first to the fifth development plans has improved the situation in the housing indicators. The quantity of housing units for households has also been implemented through various policies that has desired results. The sequences of housing policies and plans do not overlap in the five development programs. According to the radar graph, the development programs overlapped in some policies, which shows the continuation of the previous policies, but this overlap is not perfect.Keywords: law enforcement policy, housing policy, development programs, housing indicators, the city of Kermanshah
Procedia PDF Downloads 73199 Network and Sentiment Analysis of U.S. Congressional Tweets
Authors: Chaitanya Kanakamedala, Hansa Pradhan, Carter Gilbert
Abstract:
Social media platforms, such as Twitter, are excellent datasets for understanding human interactions and sentiments. This report explores social dynamics among US Congressional members through a network analysis applied to a dataset of tweets spanning 2008 to 2017 from the ’US Congressional Tweets Dataset’. In this report, we preform network analysis where connections between users (edges) are established based on a similarity threshold: two tweets are connected if the tweets they post are similar. By utilizing the Natural Language Toolkit (NLTK) and NetworkX, we quantified tweet similarity and constructed a graph comprising various interconnected components. Each component represents a cluster of users with closely aligned content. We then preform sentiment analysis on each cluster to explore the prevalent emotions and opinions within these groups. Our findings reveal that despite the initial expectation of distinct ideological divisions typically aligning with party lines, the analysis exposed a high degree of topical convergence across tweets from different political affiliations. The analysis preformed in this report not only highlights the potential of social media as a tool for political communication but also suggests a complex layer of interaction that transcends traditional partisan boundaries, reflecting a complicated landscape of politics in the digital age.Keywords: natural language processing, sentiment analysis, centrality analysis, topic modeling
Procedia PDF Downloads 33198 Aggregation Scheduling Algorithms in Wireless Sensor Networks
Authors: Min Kyung An
Abstract:
In Wireless Sensor Networks which consist of tiny wireless sensor nodes with limited battery power, one of the most fundamental applications is data aggregation which collects nearby environmental conditions and aggregates the data to a designated destination, called a sink node. Important issues concerning the data aggregation are time efficiency and energy consumption due to its limited energy, and therefore, the related problem, named Minimum Latency Aggregation Scheduling (MLAS), has been the focus of many researchers. Its objective is to compute the minimum latency schedule, that is, to compute a schedule with the minimum number of timeslots, such that the sink node can receive the aggregated data from all the other nodes without any collision or interference. For the problem, the two interference models, the graph model and the more realistic physical interference model known as Signal-to-Interference-Noise-Ratio (SINR), have been adopted with different power models, uniform-power and non-uniform power (with power control or without power control), and different antenna models, omni-directional antenna and directional antenna models. In this survey article, as the problem has proven to be NP-hard, we present and compare several state-of-the-art approximation algorithms in various models on the basis of latency as its performance measure.Keywords: data aggregation, convergecast, gathering, approximation, interference, omni-directional, directional
Procedia PDF Downloads 229197 Design and Motion Control of a Two-Wheel Inverted Pendulum Robot
Authors: Shiuh-Jer Huang, Su-Shean Chen, Sheam-Chyun Lin
Abstract:
Two-wheel inverted pendulum robot (TWIPR) is designed with two-hub DC motors for human riding and motion control evaluation. In order to measure the tilt angle and angular velocity of the inverted pendulum robot, accelerometer and gyroscope sensors are chosen. The mobile robot’s moving position and velocity were estimated based on DC motor built in hall sensors. The control kernel of this electric mobile robot is designed with embedded Arduino Nano microprocessor. A handle bar was designed to work as steering mechanism. The intelligent model-free fuzzy sliding mode control (FSMC) was employed as the main control algorithm for this mobile robot motion monitoring with different control purpose adjustment. The intelligent controllers were designed for balance control, and moving speed control purposes of this robot under different operation conditions and the control performance were evaluated based on experimental results.Keywords: balance control, speed control, intelligent controller, two wheel inverted pendulum
Procedia PDF Downloads 224196 Create a Brand Value Assessment Model to Choosing a Cosmetic Brand in Tehran Combining DEMATEL Techniques and Multi-Stage ANFIS
Authors: Hamed Saremi, Suzan Taghavy, Seyed Mohammad Hanif Sanjari, Mostafa Kahali
Abstract:
One of the challenges in manufacturing and service companies to provide a product or service is recognized Brand to consumers in target markets. They provide most of their processes under the same capacity. But the constant threat of devastating internal and external resources to prevent a rise Brands and more companies are recognizing the stages are bankrupt. This paper has tried to identify and analyze effective indicators of brand equity and focuses on indicators and presents a model of intelligent create a model to prevent possible damage. In this study, the identified indicators of brand equity are based on literature study and according to expert opinions, set of indicators By techniques DEMATEL Then to used Multi-Step Adaptive Neural-Fuzzy Inference system (ANFIS) to design a multi-stage intelligent system for assessment of brand equity.Keywords: brand, cosmetic product, ANFIS, DEMATEL
Procedia PDF Downloads 417195 Application of Supervised Deep Learning-based Machine Learning to Manage Smart Homes
Authors: Ahmed Al-Adaileh
Abstract:
Renewable energy sources, domestic storage systems, controllable loads and machine learning technologies will be key components of future smart homes management systems. An energy management scheme that uses a Deep Learning (DL) approach to support the smart home management systems, which consist of a standalone photovoltaic system, storage unit, heating ventilation air-conditioning system and a set of conventional and smart appliances, is presented. The objective of the proposed scheme is to apply DL-based machine learning to predict various running parameters within a smart home's environment to achieve maximum comfort levels for occupants, reduced electricity bills, and less dependency on the public grid. The problem is using Reinforcement learning, where decisions are taken based on applying the Continuous-time Markov Decision Process. The main contribution of this research is the proposed framework that applies DL to enhance the system's supervised dataset to offer unlimited chances to effectively support smart home systems. A case study involving a set of conventional and smart appliances with dedicated processing units in an inhabited building can demonstrate the validity of the proposed framework. A visualization graph can show "before" and "after" results.Keywords: smart homes systems, machine learning, deep learning, Markov Decision Process
Procedia PDF Downloads 202194 Design of an Ensemble Learning Behavior Anomaly Detection Framework
Authors: Abdoulaye Diop, Nahid Emad, Thierry Winter, Mohamed Hilia
Abstract:
Data assets protection is a crucial issue in the cybersecurity field. Companies use logical access control tools to vault their information assets and protect them against external threats, but they lack solutions to counter insider threats. Nowadays, insider threats are the most significant concern of security analysts. They are mainly individuals with legitimate access to companies information systems, which use their rights with malicious intents. In several fields, behavior anomaly detection is the method used by cyber specialists to counter the threats of user malicious activities effectively. In this paper, we present the step toward the construction of a user and entity behavior analysis framework by proposing a behavior anomaly detection model. This model combines machine learning classification techniques and graph-based methods, relying on linear algebra and parallel computing techniques. We show the utility of an ensemble learning approach in this context. We present some detection methods tests results on an representative access control dataset. The use of some explored classifiers gives results up to 99% of accuracy.Keywords: cybersecurity, data protection, access control, insider threat, user behavior analysis, ensemble learning, high performance computing
Procedia PDF Downloads 128193 Research on the Teaching Quality Evaluation of China’s Network Music Education APP
Authors: Guangzhuang Yu, Chun-Chu Liu
Abstract:
With the advent of the Internet era in recent years, social music education has gradually shifted from the original entity education mode to the mode of entity plus network teaching. No matter for school music education, professional music education or social music education, the teaching quality is the most important evaluation index. Regarding the research on teaching quality evaluation, scholars at home and abroad have contributed a lot of research results on the basis of multiple methods and evaluation subjects. However, to our best knowledge the complete evaluation model for the virtual teaching interaction mode of the emerging network music education Application (APP) has not been established. This research firstly found out the basic dimensions that accord with the teaching quality required by the three parties, constructing the quality evaluation index system; and then, on the basis of expounding the connotation of each index, it determined the weight of each index by using method of fuzzy analytic hierarchy process, providing ideas and methods for scientific, objective and comprehensive evaluation of the teaching quality of network education APP.Keywords: network music education APP, teaching quality evaluation, index and connotation
Procedia PDF Downloads 128192 Leveraging the Power of Dual Spatial-Temporal Data Scheme for Traffic Prediction
Authors: Yang Zhou, Heli Sun, Jianbin Huang, Jizhong Zhao, Shaojie Qiao
Abstract:
Traffic prediction is a fundamental problem in urban environment, facilitating the smart management of various businesses, such as taxi dispatching, bike relocation, and stampede alert. Most earlier methods rely on identifying the intrinsic spatial-temporal correlation to forecast. However, the complex nature of this problem entails a more sophisticated solution that can simultaneously capture the mutual influence of both adjacent and far-flung areas, with the information of time-dimension also incorporated seamlessly. To tackle this difficulty, we propose a new multi-phase architecture, DSTDS (Dual Spatial-Temporal Data Scheme for traffic prediction), that aims to reveal the underlying relationship that determines future traffic trend. First, a graph-based neural network with an attention mechanism is devised to obtain the static features of the road network. Then, a multi-granularity recurrent neural network is built in conjunction with the knowledge from a grid-based model. Subsequently, the preceding output is fed into a spatial-temporal super-resolution module. With this 3-phase structure, we carry out extensive experiments on several real-world datasets to demonstrate the effectiveness of our approach, which surpasses several state-of-the-art methods.Keywords: traffic prediction, spatial-temporal, recurrent neural network, dual data scheme
Procedia PDF Downloads 117191 Optimization of Hate Speech and Abusive Language Detection on Indonesian-language Twitter using Genetic Algorithms
Authors: Rikson Gultom
Abstract:
Hate Speech and Abusive language on social media is difficult to detect, usually, it is detected after it becomes viral in cyberspace, of course, it is too late for prevention. An early detection system that has a fairly good accuracy is needed so that it can reduce conflicts that occur in society caused by postings on social media that attack individuals, groups, and governments in Indonesia. The purpose of this study is to find an early detection model on Twitter social media using machine learning that has high accuracy from several machine learning methods studied. In this study, the support vector machine (SVM), Naïve Bayes (NB), and Random Forest Decision Tree (RFDT) methods were compared with the Support Vector machine with genetic algorithm (SVM-GA), Nave Bayes with genetic algorithm (NB-GA), and Random Forest Decision Tree with Genetic Algorithm (RFDT-GA). The study produced a comparison table for the accuracy of the hate speech and abusive language detection model, and presented it in the form of a graph of the accuracy of the six algorithms developed based on the Indonesian-language Twitter dataset, and concluded the best model with the highest accuracy.Keywords: abusive language, hate speech, machine learning, optimization, social media
Procedia PDF Downloads 128190 Methylprednisolone Injection Did Not Inhibit Anti-Hbs Response Following Hepatitis B Vaccination in Mice
Authors: P. O. Ughachukwu, P. O. Okonkwo, P. C. Unekwe, J. O. Ogamba
Abstract:
Background: The prevalence of hepatitis B viral infection is high worldwide with liver cirrhosis and hepatocellular carcinoma as important complications. Cases of poor antibody response to hepatitis B vaccination abound. Immunosuppression, especially from glucocorticoids, is often cited as a cause of poor antibody response and there are documented evidences of irrational administration of glucocorticoids to children and adults. The study was, therefore, designed to find out if administration of glucocorticoids affects immune response to vaccination against hepatitis B in mice. Methods: Mice of both sexes were randomly divided into 2 groups. Daily intramuscular methylprednisolone injections, (15 mg kg-1), were given to the test group while sterile deionized water (0.1ml) was given to control mice for 30 days. On day 6 all mice were given 2 μg (0.1ml) hepatitis B vaccine and a booster dose on day 27. On day 34, blood samples were collected and analyzed for anti-HBs titres using enzyme-linked immunosorbent assay (ELISA). Statistical analysis was done using Graph Pad Prism 5.0 and the results taken as statistically significant at p value < 0.05. Results: There were positive serum anti-HBs responses in all mice groups but the differences in titres were not statistically significant. Conclusions: At the dosages and length of exposure used in this study, methylprednisolone injection did not significantly inhibit anti-HBs response in mice following immunization against hepatitis B virus. By extrapolation, methylprednisolone, when used in the usual clinical doses and duration of therapy, is not likely to inhibit immune response to hepatitis B vaccinations in man.Keywords: anti-HBs, hepatitis B vaccine, immune response, methylprednisolone, mice
Procedia PDF Downloads 323189 An Approaching Index to Evaluate a forward Collision Probability
Authors: Yuan-Lin Chen
Abstract:
This paper presents an approaching forward collision probability index (AFCPI) for alerting and assisting driver in keeping safety distance to avoid the forward collision accident in highway driving. The time to collision (TTC) and time headway (TH) are used to evaluate the TTC forward collision probability index (TFCPI) and the TH forward collision probability index (HFCPI), respectively. The Mamdani fuzzy inference algorithm is presented combining TFCPI and HFCPI to calculate the approaching collision probability index of the vehicle. The AFCPI is easier to understand for the driver who did not even have any professional knowledge in vehicle professional field. At the same time, the driver’s behavior is taken into account for suiting each driver. For the approaching index, the value 0 is indicating the 0% probability of forward collision, and the values 0.5 and 1 are indicating the 50% and 100% probabilities of forward collision, respectively. The AFCPI is useful and easy-to-understand for alerting driver to avoid the forward collision accidents when driving in highway.Keywords: approaching index, forward collision probability, time to collision, time headway
Procedia PDF Downloads 293188 ParkedGuard: An Efficient and Accurate Parked Domain Detection System Using Graphical Locality Analysis and Coarse-To-Fine Strategy
Authors: Chia-Min Lai, Wan-Ching Lin, Hahn-Ming Lee, Ching-Hao Mao
Abstract:
As world wild internet has non-stop developments, making profit by lending registered domain names emerges as a new business in recent years. Unfortunately, the larger the market scale of domain lending service becomes, the riskier that there exist malicious behaviors or malwares hiding behind parked domains will be. Also, previous work for differentiating parked domain suffers two main defects: 1) too much data-collecting effort and CPU latency needed for features engineering and 2) ineffectiveness when detecting parked domains containing external links that are usually abused by hackers, e.g., drive-by download attack. Aiming for alleviating above defects without sacrificing practical usability, this paper proposes ParkedGuard as an efficient and accurate parked domain detector. Several scripting behavioral features were analyzed, while those with special statistical significance are adopted in ParkedGuard to make feature engineering much more cost-efficient. On the other hand, finding memberships between external links and parked domains was modeled as a graph mining problem, and a coarse-to-fine strategy was elaborately designed by leverage the graphical locality such that ParkedGuard outperforms the state-of-the-art in terms of both recall and precision rates.Keywords: coarse-to-fine strategy, domain parking service, graphical locality analysis, parked domain
Procedia PDF Downloads 409187 Investigating the Regulation System of the Synchronous Motor Excitation Mode Serving as a Reactive Power Source
Authors: Baghdasaryan Marinka, Ulikyan Azatuhi
Abstract:
The efficient usage of the compensation abilities of the electrical drive synchronous motors used in production processes can essentially improve the technical and economic indices of the process. Reducing the flows of the reactive electrical energy due to the compensation of reactive power allows to significantly reduce the load losses of power in the electrical networks. As a result of analyzing the scientific works devoted to the issues of regulating the excitation of the synchronous motors, the need for comprehensive investigation and estimation of the excitation mode has been substantiated. By means of the obtained transmission functions, in the Simulink environment of the software package MATLAB, the transition processes of the excitation mode have been studied. As a result of obtaining and estimating the graph of the Nyquist plot and the transient process, the necessity of developing the Proportional-Integral-Derivative (PID) regulator has been justified. The transient processes of the system of the PID regulator have been investigated, and the amplitude–phase characteristics of the system have been estimated. The analysis of the obtained results has shown that the regulation indices of the developed system have been improved. The developed system can be successfully applied for regulating the excitation voltage of different-power synchronous motors, operating with a changing load, ensuring a value of the power coefficient close to 1.Keywords: transition process, synchronous motor, excitation mode, regulator, reactive power
Procedia PDF Downloads 235186 Product Form Bionic Design Based on Eye Tracking Data: A Case Study of Desk Lamp
Authors: Huan Lin, Liwen Pang
Abstract:
In order to reduce the ambiguity and uncertainty of product form bionic design, a product form bionic design method based on eye tracking is proposed. The eye-tracking experiment is designed to calculate the average time ranking of the specific parts of the bionic shape that the subjects are looking at. Key bionic shape is explored through the experiment and then applied to a desk lamp bionic design. During the design case, FAHP (Fuzzy Analytic Hierachy Process) and SD (Semantic Differential) method are firstly used to identify consumer emotional perception model toward desk lamp before product design. Through investigating different desk lamp design elements and consumer views, the form design factors on the desk lamp product are reflected and all design schemes are sequenced after caculation. Desk lamp form bionic design method is combined the key bionic shape extracted from eye-tracking experiment and priority of desk lamp design schemes. This study provides an objective and rational method to product form bionic design.Keywords: Bionic design; Form; Eye tracking; FAHP; Desk lamp
Procedia PDF Downloads 226185 Optimization and Simulation Models Applied in Engineering Planning and Management
Authors: Abiodun Ladanu Ajala, Wuyi Oke
Abstract:
Mathematical simulation and optimization models packaged within interactive computer programs provide a common way for planners and managers to predict the behaviour of any proposed water resources system design or management policy before it is implemented. Modeling presents a principal technique of predicting the behaviour of the proposed infrastructural designs or management policies. Models can be developed and used to help identify specific alternative plans that best meet those objectives. This study discusses various types of models, their development, architecture, data requirements, and applications in the field of engineering. It also outlines the advantages and limitations of each the optimization and simulation models presented. The techniques explored in this review include; dynamic programming, linear programming, fuzzy optimization, evolutionary algorithms and finally artificial intelligence techniques. Previous studies carried out using some of the techniques mentioned above were reviewed, and most of the results from different researches showed that indeed optimization and simulation provides viable alternatives and predictions which form a basis for decision making in building engineering structures and also in engineering planning and management.Keywords: linear programming, mutation, optimization, simulation
Procedia PDF Downloads 590184 The Use of Layered Neural Networks for Classifying Hierarchical Scientific Fields of Study
Authors: Colin Smith, Linsey S Passarella
Abstract:
Due to the proliferation and decentralized nature of academic publication, no widely accepted scheme exists for organizing papers by their scientific field of study (FoS) to the author’s best knowledge. While many academic journals require author provided keywords for papers, these keywords range wildly in scope and are not consistent across papers, journals, or field domains, necessitating alternative approaches to paper classification. Past attempts to perform field-of-study (FoS) classification on scientific texts have largely used a-hierarchical FoS schemas or ignored the schema’s inherently hierarchical structure, e.g. by compressing the structure into a single layer for multi-label classification. In this paper, we introduce an application of a Layered Neural Network (LNN) to the problem of performing supervised hierarchical classification of scientific fields of study (FoS) on research papers. In this approach, paper embeddings from a pretrained language model are fed into a top-down LNN. Beginning with a single neural network (NN) for the highest layer of the class hierarchy, each node uses a separate local NN to classify the subsequent subfield child node(s) for an input embedding of concatenated paper titles and abstracts. We compare our LNN-FOS method to other recent machine learning methods using the Microsoft Academic Graph (MAG) FoS hierarchy and find that the LNN-FOS offers increased classification accuracy at each FoS hierarchical level.Keywords: hierarchical classification, layer neural network, scientific field of study, scientific taxonomy
Procedia PDF Downloads 133183 Traffic Prediction with Raw Data Utilization and Context Building
Authors: Zhou Yang, Heli Sun, Jianbin Huang, Jizhong Zhao, Shaojie Qiao
Abstract:
Traffic prediction is essential in a multitude of ways in modern urban life. The researchers of earlier work in this domain carry out the investigation chiefly with two major focuses: (1) the accurate forecast of future values in multiple time series and (2) knowledge extraction from spatial-temporal correlations. However, two key considerations for traffic prediction are often missed: the completeness of raw data and the full context of the prediction timestamp. Concentrating on the two drawbacks of earlier work, we devise an approach that can address these issues in a two-phase framework. First, we utilize the raw trajectories to a greater extent through building a VLA table and data compression. We obtain the intra-trajectory features with graph-based encoding and the intertrajectory ones with a grid-based model and the technique of back projection that restore their surrounding high-resolution spatial-temporal environment. To the best of our knowledge, we are the first to study direct feature extraction from raw trajectories for traffic prediction and attempt the use of raw data with the least degree of reduction. In the prediction phase, we provide a broader context for the prediction timestamp by taking into account the information that are around it in the training dataset. Extensive experiments on several well-known datasets have verified the effectiveness of our solution that combines the strength of raw trajectory data and prediction context. In terms of performance, our approach surpasses several state-of-the-art methods for traffic prediction.Keywords: traffic prediction, raw data utilization, context building, data reduction
Procedia PDF Downloads 128182 Ontology Expansion via Synthetic Dataset Generation and Transformer-Based Concept Extraction
Authors: Andrey Khalov
Abstract:
The rapid proliferation of unstructured data in IT infrastructure management demands innovative approaches for extracting actionable knowledge. This paper presents a framework for ontology-based knowledge extraction that combines relational graph neural networks (R-GNN) with large language models (LLMs). The proposed method leverages the DOLCE framework as the foundational ontology, extending it with concepts from ITSMO for domain-specific applications in IT service management and outsourcing. A key component of this research is the use of transformer-based models, such as DeBERTa-v3-large, for automatic entity and relationship extraction from unstructured texts. Furthermore, the paper explores how transfer learning techniques can be applied to fine-tune large language models (LLaMA) for using to generate synthetic datasets to improve precision in BERT-based entity recognition and ontology alignment. The resulting IT Ontology (ITO) serves as a comprehensive knowledge base that integrates domain-specific insights from ITIL processes, enabling more efficient decision-making. Experimental results demonstrate significant improvements in knowledge extraction and relationship mapping, offering a cutting-edge solution for enhancing cognitive computing in IT service environments.Keywords: ontology expansion, synthetic dataset, transformer fine-tuning, concept extraction, DOLCE, BERT, taxonomy, LLM, NER
Procedia PDF Downloads 14181 Optimization of Solar Tracking Systems
Authors: A. Zaher, A. Traore, F. Thiéry, T. Talbert, B. Shaer
Abstract:
In this paper, an intelligent approach is proposed to optimize the orientation of continuous solar tracking systems on cloudy days. Considering the weather case, the direct sunlight is more important than the diffuse radiation in case of clear sky. Thus, the panel is always pointed towards the sun. In case of an overcast sky, the solar beam is close to zero, and the panel is placed horizontally to receive the maximum of diffuse radiation. Under partly covered conditions, the panel must be pointed towards the source that emits the maximum of solar energy and it may be anywhere in the sky dome. Thus, the idea of our approach is to analyze the images, captured by ground-based sky camera system, in order to detect the zone in the sky dome which is considered as the optimal source of energy under cloudy conditions. The proposed approach is implemented using experimental setup developed at PROMES-CNRS laboratory in Perpignan city (France). Under overcast conditions, the results were very satisfactory, and the intelligent approach has provided efficiency gains of up to 9% relative to conventional continuous sun tracking systems.Keywords: clouds detection, fuzzy inference systems, images processing, sun trackers
Procedia PDF Downloads 192180 Movement Optimization of Robotic Arm Movement Using Soft Computing
Authors: V. K. Banga
Abstract:
Robots are now playing a very promising role in industries. Robots are commonly used in applications in repeated operations or where operation by human is either risky or not feasible. In most of the industrial applications, robotic arm manipulators are widely used. Robotic arm manipulator with two link or three link structures is commonly used due to their low degrees-of-freedom (DOF) movement. As the DOF of robotic arm increased, complexity increases. Instrumentation involved with robotics plays very important role in order to interact with outer environment. In this work, optimal control for movement of various DOFs of robotic arm using various soft computing techniques has been presented. We have discussed about different robotic structures having various DOF robotics arm movement. Further stress is on kinematics of the arm structures i.e. forward kinematics and inverse kinematics. Trajectory planning of robotic arms using soft computing techniques is demonstrating the flexibility of this technique. The performance is optimized for all possible input values and results in optimized movement as resultant output. In conclusion, soft computing has been playing very important role for achieving optimized movement of robotic arm. It also requires very limited knowledge of the system to implement soft computing techniques.Keywords: artificial intelligence, kinematics, robotic arm, neural networks, fuzzy logic
Procedia PDF Downloads 297179 Hot Corrosion and Oxidation Degradation Mechanism of Turbine Materials in a Water Vapor Environment at a Higher Temperature
Authors: Mairaj Ahmad, L. Paglia, F. Marra, V. Genova, G. Pulci
Abstract:
This study employed Rene N4 and FSX 414 superalloys, which are used in numerous turbine engine components due of their high strength, outstanding fatigue, creep, thermal, and corrosion-resistant properties. An in-depth examination of corrosion mechanisms with vapor present at high temperature is necessary given the industrial trend toward introducing increasing amounts of hydrogen into combustion chambers in order to boost power generation and minimize pollution in contrast to conventional fuels. These superalloys were oxidized in recent tests for 500, 1000, 2000, 3000 and 4000 hours at 982±5°C temperatures with a steady airflow at a flow rate of 10L/min and 1.5 bar pressure. These superalloys were also examined for wet corrosion for 500, 1000, 2000, 3000, and 4000 hours in a combination of air and water vapor flowing at a 10L/min rate. Weight gain, X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive x-ray spectroscopy (EDS) were used to assess the oxidation and heat corrosion resistance capabilities of these alloys before and after 500, 1000, and 2000 hours. The oxidation/corrosion processes that accompany the formation of these oxide scales are shown in the graph of mass gain vs time. In both dry and wet oxidation, oxides like Al2O3, TiO2, NiCo2O4, Ni3Al, Ni3Ti, Cr2O3, MnCr2O4, CoCr2O4, and certain volatile compounds notably CrO2(OH)2, Cr(OH)3, Fe(OH)2, and Si(OH)4 are formed.Keywords: hot corrosion, oxidation, turbine materials, high temperature corrosion, super alloys
Procedia PDF Downloads 87178 DGA Data Interpretation Using Extension Theory for Power Transformer Diagnostics
Authors: O. P. Rahi, Manoj Kumar
Abstract:
Power transformers are essential and expensive equipments in electrical power system. Dissolved gas analysis (DGA) is one of the most useful techniques to detect incipient faults in power transformers. However, the identification of the faulted location by conventional method is not always an easy task due to variability of gas data and operational variables. In this paper, an extension theory based power transformer fault diagnosis method is presented. Extension theory tries to solve contradictions and incompatibility problems. This paper first briefly introduces the basic concept of matter element theory, establishes the matter element models for three-ratio method, and then briefly discusses extension set theory. Detailed analysis is carried out on the extended relation function (ERF) adopted in this paper for transformer fault diagnosis. The detailed diagnosing steps are offered. Simulation proves that the proposed method can overcome the drawbacks of the conventional three-ratio method, such as no matching and failure to diagnose multi-fault. It enhances diagnosing accuracy.Keywords: DGA, extension theory, ERF, fault diagnosis power transformers, fault diagnosis, fuzzy logic
Procedia PDF Downloads 412177 Geochemistry Identification of Volcanic Rocks Product of Krakatau Volcano Eruption for Katastropis Mitigation Planning
Authors: Agil Gemilang Ramadhan, Novian Triandanu
Abstract:
Since 1929, the first appearance in sea level, Anak Krakatau volcano growth relatively quickly. During the 80 years up to 2010 has reached the height of 320 meter above sea level. The possibility of catastrophic explosive eruption could happen again if the chemical composition of rocks from the eruption changed from alkaline magma into acid magma. Until now Anak Krakatau volcanic activity is still quite active as evidenced by the frequency of eruptions that produced ash sized pyroclastic deposits - bomb. Purpose of this study was to identify changes in the percentage of rock geochemistry any results eruption of Anak Krakatau volcano to see consistency change the percentage content of silica in the magma that affect the type of volcanic eruptions. Results from this study will be produced in the form of a diagram the data changes the chemical composition of rocks of Anak Krakatau volcano. Changes in the composition of any silica eruption are illustrated in a graph. If the increase in the percentage of silica is happening consistently and it is assumed to increase in the time scale of a few percent, then to achieve silica content of 68 % (acid composition) that will produce an explosive eruption will know the approximate time. All aspects of the factors driving the increased threat of danger to the public should be taken into account. Catastrophic eruption katatropis mitigation can be planned early so that when these disasters happen later, casualties can be minimized.Keywords: Krakatau volcano, rock geochemistry, catastrophic eruption, mitigation
Procedia PDF Downloads 281176 Geospatial Modeling of Dry Snow Avalanches Distribution Using Geographic Information Systems and Remote Sensing: A Case Study of the Šar Mountains (Balkan Peninsula)
Authors: Uroš Durlević, Ivan Novković, Nina Čegar, Stefanija Stojković
Abstract:
Snow avalanches represent one of the most dangerous natural phenomena in mountain regions worldwide. Material and human casualties caused by snow avalanches can be very significant. In this study, using geographic information systems and remote sensing, the natural conditions of the Šar Mountains were analyzed for geospatial modeling of dry slab avalanches. For this purpose, the Fuzzy Analytic Hierarchy Process (FAHP) multi-criteria analysis method was used, within which fifteen environmental criteria were analyzed and evaluated. Based on the existing analyzes and results, it was determined that a significant area of the Šar Mountains is very highly susceptible to the occurrence of dry slab avalanches. The obtained data can be of significant use to local governments, emergency services, and other institutions that deal with natural disasters at the local level. To our best knowledge, this is one of the first research in the Republic of Serbia that uses the FAHP method for geospatial modeling of dry slab avalanches.Keywords: GIS, FAHP, Šar Mountains, snow avalanches, environmental protection
Procedia PDF Downloads 92175 Frontier Dynamic Tracking in the Field of Urban Plant and Habitat Research: Data Visualization and Analysis Based on Journal Literature
Authors: Shao Qi
Abstract:
The article uses the CiteSpace knowledge graph analysis tool to sort and visualize the journal literature on urban plants and habitats in the Web of Science and China National Knowledge Infrastructure databases. Based on a comprehensive interpretation of the visualization results of various data sources and the description of the intrinsic relationship between high-frequency keywords using knowledge mapping, the research hotspots, processes and evolution trends in this field are analyzed. Relevant case studies are also conducted for the hotspot contents to explore the means of landscape intervention and synthesize the understanding of research theories. The results show that (1) from 1999 to 2022, the research direction of urban plants and habitats gradually changed from focusing on plant and animal extinction and biological invasion to the field of human urban habitat creation, ecological restoration, and ecosystem services. (2) The results of keyword emergence and keyword growth trend analysis show that habitat creation research has shown a rapid and stable growth trend since 2017, and ecological restoration has gained long-term sustained attention since 2004. The hotspots of future research on urban plants and habitats in China may focus on habitat creation and ecological restoration.Keywords: research trends, visual analysis, habitat creation, ecological restoration
Procedia PDF Downloads 61