Search results for: intelligent methods
14968 English Learning Speech Assistant Speak Application in Artificial Intelligence
Authors: Albatool Al Abdulwahid, Bayan Shakally, Mariam Mohamed, Wed Almokri
Abstract:
Artificial intelligence has infiltrated every part of our life and every field we can think of. With technical developments, artificial intelligence applications are becoming more prevalent. We chose ELSA speak because it is a magnificent example of Artificial intelligent applications, ELSA speak is a smartphone application that is free to download on both IOS and Android smartphones. ELSA speak utilizes artificial intelligence to help non-native English speakers pronounce words and phrases similar to a native speaker, as well as enhance their English skills. It employs speech-recognition technology that aids the application to excel the pronunciation of its users. This remarkable feature distinguishes ELSA from other voice recognition algorithms and increase the efficiency of the application. This study focused on evaluating ELSA speak application, by testing the degree of effectiveness based on survey questions. The results of the questionnaire were variable. The generality of the participants strongly agreed that ELSA has helped them enhance their pronunciation skills. However, a few participants were unconfident about the application’s ability to assist them in their learning journey.Keywords: ELSA speak application, artificial intelligence, speech-recognition technology, language learning, english pronunciation
Procedia PDF Downloads 10614967 Cultural Embeddedness of E-Participation Methods in Hungary
Authors: Hajnalka Szarvas
Abstract:
The research examines the effectiveness of e-participation tools and methods from a point of view of cultural fitting to the Hungarian community traditions. Participation can have very different meanings depending on the local cultural and historical traditions, experiences of the certain societies. Generally when it is about e-democracy or e-participation tools most of the researches are dealing with its technological sides and novelties, but there is not much said about the cultural and social context of the different platforms. However from the perspective of their success it would be essential to look at the human factor too, the actual users, how the certain DMS or any online platform is fitting to the way of thought, the way of functioning of the certain society. Therefore the paper will explore that to what extent the different online platforms like Loomio, Democracy OS, Your Priorities EVoks, Populus, miutcank.hu, Liquid Democracy, Brain Bar Budapest Lab are compatible with the Hungarian mental structures and community traditions, the contents of collective mind about community functioning. As a result the influence of cultural embeddedness of the logic of e-participation development tools on success of these methods will be clearly seen. Furthermore the most crucial factors in general which determine the efficiency of e-participation development tools in Hungary will be demonstrated.Keywords: cultural embeddedness, e-participation, local community traditions, mental structures
Procedia PDF Downloads 30314966 Multi-Objective Four-Dimensional Traveling Salesman Problem in an IoT-Based Transport System
Authors: Arindam Roy, Madhushree Das, Apurba Manna, Samir Maity
Abstract:
In this research paper, an algorithmic approach is developed to solve a novel multi-objective four-dimensional traveling salesman problem (MO4DTSP) where different paths with various numbers of conveyances are available to travel between two cities. NSGA-II and Decomposition algorithms are modified to solve MO4DTSP in an IoT-based transport system. This IoT-based transport system can be widely observed, analyzed, and controlled by an extensive distribution of traffic networks consisting of various types of sensors and actuators. Due to urbanization, most of the cities are connected using an intelligent traffic management system. Practically, for a traveler, multiple routes and vehicles are available to travel between any two cities. Thus, the classical TSP is reformulated as multi-route and multi-vehicle i.e., 4DTSP. The proposed MO4DTSP is designed with traveling cost, time, and customer satisfaction as objectives. In reality, customer satisfaction is an important parameter that depends on travel costs and time reflects in the present model.Keywords: multi-objective four-dimensional traveling salesman problem (MO4DTSP), decomposition, NSGA-II, IoT-based transport system, customer satisfaction
Procedia PDF Downloads 11014965 Study on the Transition to Pacemaker of Two Coupled Neurons
Authors: Sun Zhe, Ruggero Micheletto
Abstract:
The research of neural network is very important for the development of advanced next generation intelligent devices and the medical treatment. The most important part of the neural network research is the learning. The process of learning in our brain is essentially several adjustment processes of connection strength between neurons. It is very difficult to figure out how this mechanism works in the complex network and how the connection strength influences brain functions. For this reason, we made a model with only two coupled neurons and studied the influence of connection strength between them. To emulate the neuronal activity of realistic neurons, we prefer to use the Izhikevich neuron model. This model can simulate the neuron variables accurately and it’s simplicity is very suitable to implement on computers. In this research, the parameter ρ is used to estimate the correlation coefficient between spike train of two coupling neurons.We think the results is very important for figuring out the mechanism between synchronization of coupling neurons and synaptic plasticity. The result also presented the importance of the spike frequency adaptation in complex systems.Keywords: neural networks, noise, stochastic processes, coupled neurons, correlation coefficient, synchronization, pacemaker, synaptic plasticity
Procedia PDF Downloads 28414964 Protein Remote Homology Detection by Using Profile-Based Matrix Transformation Approaches
Authors: Bin Liu
Abstract:
As one of the most important tasks in protein sequence analysis, protein remote homology detection has been studied for decades. Currently, the profile-based methods show state-of-the-art performance. Position-Specific Frequency Matrix (PSFM) is widely used profile. However, there exists noise information in the profiles introduced by the amino acids with low frequencies. In this study, we propose a method to remove the noise information in the PSFM by removing the amino acids with low frequencies called Top frequency profile (TFP). Three new matrix transformation methods, including Autocross covariance (ACC) transformation, Tri-gram, and K-separated bigram (KSB), are performed on these profiles to convert them into fixed length feature vectors. Combined with Support Vector Machines (SVMs), the predictors are constructed. Evaluated on two benchmark datasets, and experimental results show that these proposed methods outperform other state-of-the-art predictors.Keywords: protein remote homology detection, protein fold recognition, top frequency profile, support vector machines
Procedia PDF Downloads 12514963 Learning Fashion Construction and Manufacturing Methods from the Past: Cultural History and Genealogy at the Middle Tennessee State University Historic Clothing Collection
Authors: Teresa B. King
Abstract:
In the millennial age, with more students desiring a fashion major yet fewer having sewing and manufacturing knowledge, this increases demand on academicians to adequately educate. While fashion museums have a prominent place for historical preservation, the need for apparel education via working collections of handmade or mass manufactured apparel is lacking in most universities in the United States, especially in the Southern region. Created in 1988, Middle Tennessee State University’s historic clothing collection provides opportunities to study apparel construction methods throughout history, to compare and apply to today’s construction and manufacturing methods, as well as to learn the cyclical nature/importance of historic styles on current and upcoming fashion. In 2019, a class exercise experiment was implemented for which students researched their family genealogy using Ancestry.com, identified the oldest visual media (photographs, etc.) available, and analyzed the garment represented in said media. The student then located a comparable garment in the historic collection and evaluated the construction methods of the ancestor’s time period. A class 'fashion' genealogy tree was created and mounted for public viewing/education. Results of this exercise indicated that student learning increased due to the 'personal/familial connection' as it triggered more interest in historical garments as related to the student’s own personal culture. Students better identified garments regarding the historical time period, fiber content, fabric, and construction methods utilized, thus increasing learning and retention. Students also developed increased learning and recognition of custom construction methods versus current mass manufacturing techniques, which impact today’s fashion industry. A longitudinal effort will continue with the growth of the historic collection and as students continue to utilize the historic clothing collection.Keywords: ancestry, clothing history, fashion history, genealogy, historic fashion museum collection
Procedia PDF Downloads 13714962 Quantifying Product Impacts on Biodiversity: The Product Biodiversity Footprint
Authors: Leveque Benjamin, Rabaud Suzanne, Anest Hugo, Catalan Caroline, Neveux Guillaume
Abstract:
Human products consumption is one of the main drivers of biodiversity loss. However, few pertinent ecological indicators regarding product life cycle impact on species and ecosystems have been built. Life cycle assessment (LCA) methodologies are well under way to conceive standardized methods to assess this impact, by taking already partially into account three of the Millennium Ecosystem Assessment pressures (land use, pollutions, climate change). Coupling LCA and ecological data and methods is an emerging challenge to develop a product biodiversity footprint. This approach was tested on three case studies from food processing, textile, and cosmetic industries. It allowed first to improve the environmental relevance of the Potential Disappeared Fraction of species, end-point indicator typically used in life cycle analysis methods, and second to introduce new indicators on overexploitation and invasive species. This type of footprint is a major step in helping companies to identify their impacts on biodiversity and to propose potential improvements.Keywords: biodiversity, companies, footprint, life cycle assessment, products
Procedia PDF Downloads 32714961 Risk Measure from Investment in Finance by Value at Risk
Authors: Mohammed El-Arbi Khalfallah, Mohamed Lakhdar Hadji
Abstract:
Managing and controlling risk is a topic research in the world of finance. Before a risky situation, the stakeholders need to do comparison according to the positions and actions, and financial institutions must take measures of a particular market risk and credit. In this work, we study a model of risk measure in finance: Value at Risk (VaR), which is a new tool for measuring an entity's exposure risk. We explain the concept of value at risk, your average, tail, and describe the three methods for computing: Parametric method, Historical method, and numerical method of Monte Carlo. Finally, we briefly describe advantages and disadvantages of the three methods for computing value at risk.Keywords: average value at risk, conditional value at risk, tail value at risk, value at risk
Procedia PDF Downloads 44114960 Dimensionality Reduction in Modal Analysis for Structural Health Monitoring
Authors: Elia Favarelli, Enrico Testi, Andrea Giorgetti
Abstract:
Autonomous structural health monitoring (SHM) of many structures and bridges became a topic of paramount importance for maintenance purposes and safety reasons. This paper proposes a set of machine learning (ML) tools to perform automatic feature selection and detection of anomalies in a bridge from vibrational data and compare different feature extraction schemes to increase the accuracy and reduce the amount of data collected. As a case study, the Z-24 bridge is considered because of the extensive database of accelerometric data in both standard and damaged conditions. The proposed framework starts from the first four fundamental frequencies extracted through operational modal analysis (OMA) and clustering, followed by density-based time-domain filtering (tracking). The fundamental frequencies extracted are then fed to a dimensionality reduction block implemented through two different approaches: feature selection (intelligent multiplexer) that tries to estimate the most reliable frequencies based on the evaluation of some statistical features (i.e., mean value, variance, kurtosis), and feature extraction (auto-associative neural network (ANN)) that combine the fundamental frequencies to extract new damage sensitive features in a low dimensional feature space. Finally, one class classifier (OCC) algorithms perform anomaly detection, trained with standard condition points, and tested with normal and anomaly ones. In particular, a new anomaly detector strategy is proposed, namely one class classifier neural network two (OCCNN2), which exploit the classification capability of standard classifiers in an anomaly detection problem, finding the standard class (the boundary of the features space in normal operating conditions) through a two-step approach: coarse and fine boundary estimation. The coarse estimation uses classics OCC techniques, while the fine estimation is performed through a feedforward neural network (NN) trained that exploits the boundaries estimated in the coarse step. The detection algorithms vare then compared with known methods based on principal component analysis (PCA), kernel principal component analysis (KPCA), and auto-associative neural network (ANN). In many cases, the proposed solution increases the performance with respect to the standard OCC algorithms in terms of F1 score and accuracy. In particular, by evaluating the correct features, the anomaly can be detected with accuracy and an F1 score greater than 96% with the proposed method.Keywords: anomaly detection, frequencies selection, modal analysis, neural network, sensor network, structural health monitoring, vibration measurement
Procedia PDF Downloads 12314959 Meet Automotive Software Safety and Security Standards Expectations More Quickly
Authors: Jean-François Pouilly
Abstract:
This study addresses the growing complexity of embedded systems and the critical need for secure, reliable software. Traditional cybersecurity testing methods, often conducted late in the development cycle, struggle to keep pace. This talk explores how formal methods, integrated with advanced analysis tools, empower C/C++ developers to 1) Proactively address vulnerabilities and bugs, which includes formal methods and abstract interpretation techniques to identify potential weaknesses early in the development process, reducing the reliance on penetration and fuzz testing in later stages. 2) Streamline development by focusing on bugs that matter, with close to no false positives and catching flaws earlier, the need for rework and retesting is minimized, leading to faster development cycles, improved efficiency and cost savings. 3) Enhance software dependability which includes combining static analysis using abstract interpretation with full context sensitivity, with hardware memory awareness allows for a more comprehensive understanding of potential vulnerabilities, leading to more dependable and secure software. This approach aligns with industry best practices (ISO2626 or ISO 21434) and empowers C/C++ developers to deliver robust, secure embedded systems that meet the demands of today's and tomorrow's applications. We will illustrate this approach with the TrustInSoft analyzer to show how it accelerates verification for complex cases, reduces user fatigue, and improves developer efficiency, cost-effectiveness, and software cybersecurity. In summary, integrating formal methods and sound Analyzers enhances software reliability and cybersecurity, streamlining development in an increasingly complex environment.Keywords: safety, cybersecurity, ISO26262, ISO24434, formal methods
Procedia PDF Downloads 1914958 A Pedagogical Case Study on Consumer Decision Making Models: A Selection of Smart Phone Apps
Authors: Yong Bum Shin
Abstract:
This case focuses on Weighted additive difference, Conjunctive, Disjunctive, and Elimination by aspects methodologies in consumer decision-making models and the Simple additive weighting (SAW) approach in the multi-criteria decision-making (MCDM) area. Most decision-making models illustrate that the rank reversal phenomenon is unpreventable. This paper presents that rank reversal occurs in popular managerial methods such as Weighted Additive Difference (WAD), Conjunctive Method, Disjunctive Method, Elimination by Aspects (EBA) and MCDM methods as well as such as the Simple Additive Weighting (SAW) and finally Unified Commensurate Multiple (UCM) models which successfully addresses these rank reversal problems in most popular MCDM methods in decision-making area.Keywords: multiple criteria decision making, rank inconsistency, unified commensurate multiple, analytic hierarchy process
Procedia PDF Downloads 8114957 Effect of Residential Block Scale Envelope in Buildings Energy Consumption: A Vernacular Case Study in an Iranian Urban Context
Authors: M. Panahian
Abstract:
A global challenge which is of paramount significance today is the issue of devising innovative solutions to tackle the environmental issues, as well as more intelligent and foresightful consumption of and management of natural resources. Changes in global climate resulting from the burning of fossil fuel and the rise in the level of energy consumption are a few examples of environmental issues detrimental to any form of life on earth, which are aggravated year by year. Overall, energy-efficient designs and construction strategies can be studied at three scales: building, block, and city. Nevertheless, as the available literature suggests, the greatest emphasis has been on building and city scales, and little has been done as to the energy-efficient designs at block scale. Therefore, the aim of the current research is to investigate the influences of residential block scale envelope on the energy consumption in buildings. To this end, a case study of residential block scale has been selected in the city of Isfahan, in Iran, situated in a hot and dry climate with cold winters. Eventually, the most effective variables in energy consumption, concerning the block scale envelope, will be concluded.Keywords: sustainability, passive energy saving solutions, residential block scale, energy efficiency
Procedia PDF Downloads 24114956 Graph Based Traffic Analysis and Delay Prediction Using a Custom Built Dataset
Authors: Gabriele Borg, Alexei Debono, Charlie Abela
Abstract:
There on a constant rise in the availability of high volumes of data gathered from multiple sources, resulting in an abundance of unprocessed information that can be used to monitor patterns and trends in user behaviour. Similarly, year after year, Malta is also constantly experiencing ongoing population growth and an increase in mobilization demand. This research takes advantage of data which is continuously being sourced and converting it into useful information related to the traffic problem on the Maltese roads. The scope of this paper is to provide a methodology to create a custom dataset (MalTra - Malta Traffic) compiled from multiple participants from various locations across the island to identify the most common routes taken to expose the main areas of activity. This use of big data is seen being used in various technologies and is referred to as ITSs (Intelligent Transportation Systems), which has been concluded that there is significant potential in utilising such sources of data on a nationwide scale. Furthermore, a series of traffic prediction graph neural network models are conducted to compare MalTra to large-scale traffic datasets.Keywords: graph neural networks, traffic management, big data, mobile data patterns
Procedia PDF Downloads 13114955 Developing Learning in Organizations with Innovation Pedagogy Methods
Authors: T. Konst
Abstract:
Most jobs include training and communication tasks, but often the people in these jobs lack pedagogical competences to plan, implement and assess learning. This paper aims to discuss how a learning approach called innovation pedagogy developed in higher education can be utilized for learning development in various organizations. The methods presented how to implement innovation pedagogy such as process consultation and train the trainer model can provide added value to develop pedagogical knowhow in organizations and thus support their internal learning and development.Keywords: innovation pedagogy, learning, organizational development, process consultation
Procedia PDF Downloads 36714954 Arabic Handwriting Recognition Using Local Approach
Authors: Mohammed Arif, Abdessalam Kifouche
Abstract:
Optical character recognition (OCR) has a main role in the present time. It's capable to solve many serious problems and simplify human activities. The OCR yields to 70's, since many solutions has been proposed, but unfortunately, it was supportive to nothing but Latin languages. This work proposes a system of recognition of an off-line Arabic handwriting. This system is based on a structural segmentation method and uses support vector machines (SVM) in the classification phase. We have presented a state of art of the characters segmentation methods, after that a view of the OCR area, also we will address the normalization problems we went through. After a comparison between the Arabic handwritten characters & the segmentation methods, we had introduced a contribution through a segmentation algorithm.Keywords: OCR, segmentation, Arabic characters, PAW, post-processing, SVM
Procedia PDF Downloads 7114953 Research of Data Cleaning Methods Based on Dependency Rules
Authors: Yang Bao, Shi Wei Deng, WangQun Lin
Abstract:
This paper introduces the concept and principle of data cleaning, analyzes the types and causes of dirty data, and proposes several key steps of typical cleaning process, puts forward a well scalability and versatility data cleaning framework, in view of data with attribute dependency relation, designs several of violation data discovery algorithms by formal formula, which can obtain inconsistent data to all target columns with condition attribute dependent no matter data is structured (SQL) or unstructured (NoSQL), and gives 6 data cleaning methods based on these algorithms.Keywords: data cleaning, dependency rules, violation data discovery, data repair
Procedia PDF Downloads 56414952 Auditing of Building Information Modeling Application in Decoration Engineering Projects in China
Authors: Lan Luo
Abstract:
In China’s construction industry, it is a normal practice to separately subcontract the decoration engineering part from construction engineering, and Building Information Modeling (BIM) is also done separately. Application of BIM in decoration engineering should be integrated with other disciplines, but Chinese current practice makes this very difficult and complicated. Currently, there are three barriers in the auditing of BIM application in decoration engineering in China: heavy workload; scarcity of qualified professionals; and lack of literature concerning audit contents, standards, and methods. Therefore, it is significant to perform research on what (contents) should be evaluated, in which phase, and by whom (professional qualifications) in BIM application in decoration construction so that the application of BIM can be promoted in a better manner. Based on this consideration, four principles of BIM auditing are proposed: Comprehensiveness of information, accuracy of data, aesthetic attractiveness of appearance, and scheme optimization. In the model audit, three methods should be used: Collision, observation, and contrast. In addition, BIM auditing at six stages is discussed and a checklist for work items and results to be submitted is proposed. This checklist can be used for reference by decoration project participants.Keywords: audit, evaluation, dimensions, methods, standards, BIM application in decoration engineering projects
Procedia PDF Downloads 34314951 Parallel Multisplitting Methods for DAE’s
Authors: Ahmed Machmoum, Malika El Kyal
Abstract:
We consider iterative parallel multi-splitting method for differential algebraic equations. The main feature of the proposed idea is to use the asynchronous form. We prove that the multi-splitting technique can effectively accelerate the convergent performance of the iterative process. The main characteristic of an asynchronous mode is that the local algorithm not have to wait at predetermined messages to become available. We allow some processors to communicate more frequently than others, and we allow the communication delays tobe substantial and unpredictable. Note that synchronous algorithms in the computer science sense are particular cases of our formulation of asynchronous one.Keywords: computer, multi-splitting methods, asynchronous mode, differential algebraic systems
Procedia PDF Downloads 54914950 Impact Tensile Mechanical Properties of 316L Stainless Steel at Different Strain Rates
Authors: Jiawei Chen, Jia Qu, Dianwei Ju
Abstract:
316L stainless steel has good mechanical and technological properties, has been widely used in shipbuilding and aerospace manufacturing. In order to understand the effect of strain rate on the yield limit of 316L stainless steel and the constitutive relationship of the materials at different strain rates, this paper used the INSTRON-4505 electronic universal testing machine to study the mechanical properties of the tensile specimen under quasi-static conditions. Meanwhile, the Zwick-Roell RKP450 intelligent oscillometric impact tester was used to test the tensile specimens at different strain rates. Through the above two kinds of experimental researches, the relationship between the true stress-strain and the engineering stress-strain at different strain rates is obtained. The result shows that the tensile yield point of 316L stainless steel increases with the increase of strain rate, and the real stress-strain curve of the 316L stainless steel has a better normalization than that of the engineering stress-strain curve. The real stress-strain curves can be used in the practical engineering of impact stretch to improve its safety.Keywords: impact stretch, 316L stainless steel, strain rate, real stress-strain, normalization
Procedia PDF Downloads 28014949 Effect of Brewing on the Bioactive Compounds of Coffee
Authors: Ceyda Dadali, Yeşim Elmaci
Abstract:
Coffee was introduced as an economic crop during the fifteenth century; nowadays it is the most important food commodity ranking second after crude oil. Desirable sensory properties make coffee one of the most often consumed and most popular beverages in the world. The coffee preparation method has a significant effect on flavor and composition of coffee brews. Three different extraction methodologies namely decoction, infusion and pressure methods have been used for coffee brew preparation. Each of these methods is related to specific granulation (coffee grind) of coffee powder, water-coffee ratio temperature and brewing time. Coffee is a mixture of 1500 chemical compounds. Chemical composition of coffee highly depends on brewing methods, coffee bean species and roasting time-temperature. Coffee contains a wide number of very important bioactive compounds, such as diterpenes: cafestol and kahweol, alkaloids: caffeine, theobromine and trigonelline, melanoidins, phenolic compounds. The phenolic compounds of coffee include chlorogenic acids (quinyl esters of hidroxycinnamic acids), caffeic, ferulic, p-coumaric acid. In coffee caffeoylquinic acids, feruloylquinic acids and di-caffeoylquinic acids are three main groups of chlorogenic acids constitues 6% -10% of dry weight of coffee. The bioavailability of chlorogenic acids in coffee depends on the absorption and metabolization to biomarkers in individuals. Also, the interaction of coffee polyphenols with other compounds such as dietary proteins affects the biomarkers. Since bioactive composition of coffee depends on brewing methods effect of coffee brewing method on bioactive compounds of coffee will be discussed in this study.Keywords: bioactive compounds of coffee, biomarkers, coffee brew, effect of brewing
Procedia PDF Downloads 19614948 Bayesian Parameter Inference for Continuous Time Markov Chains with Intractable Likelihood
Authors: Randa Alharbi, Vladislav Vyshemirsky
Abstract:
Systems biology is an important field in science which focuses on studying behaviour of biological systems. Modelling is required to produce detailed description of the elements of a biological system, their function, and their interactions. A well-designed model requires selecting a suitable mechanism which can capture the main features of the system, define the essential components of the system and represent an appropriate law that can define the interactions between its components. Complex biological systems exhibit stochastic behaviour. Thus, using probabilistic models are suitable to describe and analyse biological systems. Continuous-Time Markov Chain (CTMC) is one of the probabilistic models that describe the system as a set of discrete states with continuous time transitions between them. The system is then characterised by a set of probability distributions that describe the transition from one state to another at a given time. The evolution of these probabilities through time can be obtained by chemical master equation which is analytically intractable but it can be simulated. Uncertain parameters of such a model can be inferred using methods of Bayesian inference. Yet, inference in such a complex system is challenging as it requires the evaluation of the likelihood which is intractable in most cases. There are different statistical methods that allow simulating from the model despite intractability of the likelihood. Approximate Bayesian computation is a common approach for tackling inference which relies on simulation of the model to approximate the intractable likelihood. Particle Markov chain Monte Carlo (PMCMC) is another approach which is based on using sequential Monte Carlo to estimate intractable likelihood. However, both methods are computationally expensive. In this paper we discuss the efficiency and possible practical issues for each method, taking into account the computational time for these methods. We demonstrate likelihood-free inference by performing analysing a model of the Repressilator using both methods. Detailed investigation is performed to quantify the difference between these methods in terms of efficiency and computational cost.Keywords: Approximate Bayesian computation(ABC), Continuous-Time Markov Chains, Sequential Monte Carlo, Particle Markov chain Monte Carlo (PMCMC)
Procedia PDF Downloads 20214947 Intelligent Wireless Patient Monitoring and Tracking System
Authors: Ch. Sandeep Kumar Subudhi, S. Sivanandam
Abstract:
Our system is to monitor the human body temperature, blood pressure (BP), Pulse Rate and ECG and tracking the patient location. In our system the body temperature is detected by using LM35 temperature sensor, blood pressure is detected by the BP sensor, pulse rate is detected by the ear plug pulse sensor and the ECG is detected by the three lead ECG sensor in the working environment of the patient. The sensed information is sent to the PIC16F877 microcontroller through signal conditioning circuit. A desired amount of sensor value is set and if it is exceeded preliminary steps should be taken by indication by buzzer. The sensor information will be transmitted from the patient unit to the main controller unit with the help of Zigbee communication medium which is connected with the microcontrollers in the both units. The main controller unit will send those sensor data as well as the location of that patient by the help of GPS module to the observer/doctor. The observer/doctor can receive the SMS sent by GSM module and further decision can be taken. The message is sent to a cell phone using global system mobile (GSM) Modem. MAX232 acts as a driver between microcontroller and modem.Keywords: LM35, heart beat sensor, ECG Sensor, BP Sensor, Zigbee module, GSM module, GPS module, PIC16F877A microcontroller
Procedia PDF Downloads 38214946 Long Short-Term Memory Based Model for Modeling Nicotine Consumption Using an Electronic Cigarette and Internet of Things Devices
Authors: Hamdi Amroun, Yacine Benziani, Mehdi Ammi
Abstract:
In this paper, we want to determine whether the accurate prediction of nicotine concentration can be obtained by using a network of smart objects and an e-cigarette. The approach consists of, first, the recognition of factors influencing smoking cessation such as physical activity recognition and participant’s behaviors (using both smartphone and smartwatch), then the prediction of the configuration of the e-cigarette (in terms of nicotine concentration, power, and resistance of e-cigarette). The study uses a network of commonly connected objects; a smartwatch, a smartphone, and an e-cigarette transported by the participants during an uncontrolled experiment. The data obtained from sensors carried in the three devices were trained by a Long short-term memory algorithm (LSTM). Results show that our LSTM-based model allows predicting the configuration of the e-cigarette in terms of nicotine concentration, power, and resistance with a root mean square error percentage of 12.9%, 9.15%, and 11.84%, respectively. This study can help to better control consumption of nicotine and offer an intelligent configuration of the e-cigarette to users.Keywords: Iot, activity recognition, automatic classification, unconstrained environment
Procedia PDF Downloads 22414945 Intelligent Tooling Embedded Sensors for Monitoring the Wear of Cutting Tools in Turning Applications
Authors: Hatim Laalej, Jon Stammers
Abstract:
In machining, monitoring of tool wear is essential for achieving the desired dimensional accuracy and surface finish of a machined workpiece. Currently, the task of monitoring the wear on the cutting tool is carried out by the operator who performs manual inspections of the cutting tool, causing undesirable stoppages of machine tools and consequently resulting in costs incurred from loss of productivity. The cutting tool consumable costs may also be higher than necessary when tools are changed before the end of their useful life. Furthermore, damage can be caused to the workpiece when tools are not changed soon enough leading to a significant increase in the costs of manufacturing. The present study is concerned with the development of break sensor printed on the flank surface of poly-crystalline diamond (PCD) cutting to perform on-line condition monitoring of the cutting tool used to machine Titanium Ti-6al-4v bar. The results clearly show that there is a strong correlation between the break sensor measurements and the amount of wear in the cutting tool. These findings are significant in that they help the user/operator of the machine tool to determine the condition of the cutting tool without the need of performing manual inspection, thereby reducing the manufacturing costs such as the machine down time.Keywords: machining, manufacturing, tool wear, signal processing
Procedia PDF Downloads 24514944 A Review on Application of Waste Tire in Concrete
Authors: M. A. Yazdi, J. Yang, L. Yihui, H. Su
Abstract:
The application of recycle waste tires into civil engineering practices, namely asphalt paving mixtures and cementbased materials has been gaining ground across the world. This review summarizes and compares the recent achievements in the area of plain rubberized concrete (PRC), in details. Different treatment methods have been discussed to improve the performance of rubberized Portland cement concrete. The review also includes the effects of size and amount of tire rubbers on mechanical and durability properties of PRC. The microstructure behaviour of the rubberized concrete was detailed.Keywords: waste rubber aggregates, microstructure, treatment methods, size and content effects
Procedia PDF Downloads 33214943 Optical Whitening of Textiles: Teaching and Learning Materials
Authors: C. W. Kan
Abstract:
This study examines the results of optical whitening process of different textiles such as cotton, wool and polyester. The optical whitening agents used are commercially available products, and the optical whitening agents were applied to the textiles with manufacturers’ suggested methods. The aim of this study is to illustrate the proper application methods of optical whitening agent to different textiles and hence to provide guidance note to the students in learning this topic. Acknowledgment: Authors would like to thank the financial support from the Hong Kong Polytechnic University for this work.Keywords: learning materials, optical whitening agent, wool, cotton, polyester
Procedia PDF Downloads 42514942 A Critical Reflection of Ableist Methodologies: Approaching Interviews and Go-Along Interviews
Authors: Hana Porkertová, Pavel Doboš
Abstract:
Based on a research project studying the experience of visually disabled people with urban space in the Czech Republic, the conference contribution discusses the limits of social-science methodologies used in sociology and human geography. It draws on actor-network theory, assuming that science does not describe reality but produces it. Methodology connects theory, research questions, ways to answer them (methods), and results. A research design utilizing ableist methodologies can produce ableist realities. Therefore, it was necessary to adjust the methods so that they could mediate blind experience to the scientific community without reproducing ableism. The researchers faced multiple challenges, ranging from questionable validity to how to research experience that differs from that of the researchers who are able-bodied. Finding a suitable theory that could be used as an analytical tool that would demonstrate space and blind experience as multiple, dynamic, and mutually constructed was the first step that could offer a range of potentially productive methods and research questions, as well as bring critically reflected results. Poststructural theory, mainly Deleuze-Guattarian philosophy, was chosen, and two methods were used: interviews and go-along interviews that had to be adjusted to be able to explore blind experience. In spite of a thorough preparation of these methods, new difficulties kept emerging, which exposed the ableist character of scientific knowledge. From the beginning of data collecting, there was an agreement to work in teams with slightly different roles of each of the researchers, which was significant especially during go-along interviews. In some cases, the anticipations of the researchers and participants differed, which led to unexpected and potentially dangerous situations. These were not caused only by the differences between scientific and lay communities but also between able-bodied and disabled people. Researchers were sometimes assigned to the assistants’ roles, and this new position – doing research together – required further negotiations, which also opened various ethical questions.Keywords: ableist methodology, blind experience, go-along interviews, research ethics, scientific knowledge
Procedia PDF Downloads 16514941 A Guide to User-Friendly Bash Prompt: Adding Natural Language Processing Plus Bash Explanation to the Command Interface
Authors: Teh Kean Kheng, Low Soon Yee, Burra Venkata Durga Kumar
Abstract:
In 2022, as the future world becomes increasingly computer-related, more individuals are attempting to study coding for themselves or in school. This is because they have discovered the value of learning code and the benefits it will provide them. But learning coding is difficult for most people. Even senior programmers that have experience for a decade year still need help from the online source while coding. The reason causing this is that coding is not like talking to other people; it has the specific syntax to make the computer understand what we want it to do, so coding will be hard for normal people if they don’t have contact in this field before. Coding is hard. If a user wants to learn bash code with bash prompt, it will be harder because if we look at the bash prompt, we will find that it is just an empty box and waiting for a user to tell the computer what we want to do, if we don’t refer to the internet, we will not know what we can do with the prompt. From here, we can conclude that the bash prompt is not user-friendly for new users who are learning bash code. Our goal in writing this paper is to give an idea to implement a user-friendly Bash prompt in Ubuntu OS using Artificial Intelligent (AI) to lower the threshold of learning in Bash code, to make the user use their own words and concept to write and learn Bash code.Keywords: user-friendly, bash code, artificial intelligence, threshold, semantic similarity, lexical similarity
Procedia PDF Downloads 14214940 Emotion Oriented Students' Opinioned Topic Detection for Course Reviews in Massive Open Online Course
Authors: Zhi Liu, Xian Peng, Monika Domanska, Lingyun Kang, Sannyuya Liu
Abstract:
Massive Open education has become increasingly popular among worldwide learners. An increasing number of course reviews are being generated in Massive Open Online Course (MOOC) platform, which offers an interactive feedback channel for learners to express opinions and feelings in learning. These reviews typically contain subjective emotion and topic information towards the courses. However, it is time-consuming to artificially detect these opinions. In this paper, we propose an emotion-oriented topic detection model to automatically detect the students’ opinioned aspects in course reviews. The known overall emotion orientation and emotional words in each review are used to guide the joint probabilistic modeling of emotion and aspects in reviews. Through the experiment on real-life review data, it is verified that the distribution of course-emotion-aspect can be calculated to capture the most significant opinioned topics in each course unit. This proposed technique helps in conducting intelligent learning analytics for teachers to improve pedagogies and for developers to promote user experiences.Keywords: Massive Open Online Course (MOOC), course reviews, topic model, emotion recognition, topical aspects
Procedia PDF Downloads 26214939 Towards a Large Scale Deep Semantically Analyzed Corpus for Arabic: Annotation and Evaluation
Authors: S. Alansary, M. Nagi
Abstract:
This paper presents an approach of conducting semantic annotation of Arabic corpus using the Universal Networking Language (UNL) framework. UNL is intended to be a promising strategy for providing a large collection of semantically annotated texts with formal, deep semantics rather than shallow. The result would constitute a semantic resource (semantic graphs) that is editable and that integrates various phenomena, including predicate-argument structure, scope, tense, thematic roles and rhetorical relations, into a single semantic formalism for knowledge representation. The paper will also present the Interactive Analysis tool for automatic semantic annotation (IAN). In addition, the cornerstone of the proposed methodology which are the disambiguation and transformation rules, will be presented. Semantic annotation using UNL has been applied to a corpus of 20,000 Arabic sentences representing the most frequent structures in the Arabic Wikipedia. The representation, at different linguistic levels was illustrated starting from the morphological level passing through the syntactic level till the semantic representation is reached. The output has been evaluated using the F-measure. It is 90% accurate. This demonstrates how powerful the formal environment is, as it enables intelligent text processing and search.Keywords: semantic analysis, semantic annotation, Arabic, universal networking language
Procedia PDF Downloads 582