Search results for: hierarchical Bayesian framework
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5842

Search results for: hierarchical Bayesian framework

4882 Electrohydrodynamic Patterning for Surface Enhanced Raman Scattering for Point-of-Care Diagnostics

Authors: J. J. Rickard, A. Belli, P. Goldberg Oppenheimer

Abstract:

Medical diagnostics, environmental monitoring, homeland security and forensics increasingly demand specific and field-deployable analytical technologies for quick point-of-care diagnostics. Although technological advancements have made optical methods well-suited for miniaturization, a highly-sensitive detection technique for minute sample volumes is required. Raman spectroscopy is a well-known analytical tool, but has very weak signals and hence is unsuitable for trace level analysis. Enhancement via localized optical fields (surface plasmons resonances) on nanoscale metallic materials generates huge signals in surface-enhanced Raman scattering (SERS), enabling single molecule detection. This enhancement can be tuned by manipulation of the surface roughness and architecture at the sub-micron level. Nevertheless, the development and application of SERS has been inhibited by the irreproducibility and complexity of fabrication routes. The ability to generate straightforward, cost-effective, multiplex-able and addressable SERS substrates with high enhancements is of profound interest for SERS-based sensing devices. While most SERS substrates are manufactured by conventional lithographic methods, the development of a cost-effective approach to create nanostructured surfaces is a much sought-after goal in the SERS community. Here, a method is established to create controlled, self-organized, hierarchical nanostructures using electrohydrodynamic (HEHD) instabilities. The created structures are readily fine-tuned, which is an important requirement for optimizing SERS to obtain the highest enhancements. HEHD pattern formation enables the fabrication of multiscale 3D structured arrays as SERS-active platforms. Importantly, each of the HEHD-patterned individual structural units yield a considerable SERS enhancement. This enables each single unit to function as an isolated sensor. Each of the formed structures can be effectively tuned and tailored to provide high SERS enhancement, while arising from different HEHD morphologies. The HEHD fabrication of sub-micrometer architectures is straightforward and robust, providing an elegant route for high-throughput biological and chemical sensing. The superior detection properties and the ability to fabricate SERS substrates on the miniaturized scale, will facilitate the development of advanced and novel opto-fluidic devices, such as portable detection systems, and will offer numerous applications in biomedical diagnostics, forensics, ecological warfare and homeland security.

Keywords: hierarchical electrohydrodynamic patterning, medical diagnostics, point-of care devices, SERS

Procedia PDF Downloads 346
4881 Adoption and Diffusion of E-Government Services in India: The Impact of User Demographics and Service Quality

Authors: Sayantan Khanra, Rojers P. Joseph

Abstract:

This study attempts to analyze the impact of demography and service quality on the adoption and diffusion of e-Government services in the context of India. The objective of this paper is to study the users' perception about e-Government services and investigate the key variables that are most salient to the Indian populace. At the completion of this study, a research model that would help to understand the relationship involving the demographic variables and service quality dimensions, and the willingness to adopt e-Government services is expected to be developed. Dedicated authorities, particularly those in developing economies, may use that model or its augmented versions to design and update e-Government services and promote their use among citizens. After all, enhanced public participation is required to improve efficiency, engagement and transparency in the implementation of the aforementioned services.

Keywords: adoption and diffusion of e-government services, demographic variables, hierarchical regression analysis, service quality dimensions

Procedia PDF Downloads 290
4880 Simulation Aided Life Cycle Sustainability Assessment Framework for Manufacturing Design and Management

Authors: Mijoh A. Gbededo, Kapila Liyanage, Ilias Oraifige

Abstract:

Decision making for sustainable manufacturing design and management requires critical considerations due to the complexity and partly conflicting issues of economic, social and environmental factors. Although there are tools capable of assessing the combination of one or two of the sustainability factors, the frameworks have not adequately integrated all the three factors. Case study and review of existing simulation applications also shows the approach lacks integration of the sustainability factors. In this paper we discussed the development of a simulation based framework for support of a holistic assessment of sustainable manufacturing design and management. To achieve this, a strategic approach is introduced to investigate the strengths and weaknesses of the existing decision supporting tools. Investigation reveals that Discrete Event Simulation (DES) can serve as a rock base for other Life Cycle Analysis frameworks. Simio-DES application optimizes systems for both economic and competitive advantage, Granta CES EduPack and SimaPro collate data for Material Flow Analysis and environmental Life Cycle Assessment, while social and stakeholders’ analysis is supported by Analytical Hierarchy Process, a Multi-Criteria Decision Analysis method. Such a common and integrated framework creates a platform for companies to build a computer simulation model of a real system and assess the impact of alternative solutions before implementing a chosen solution.

Keywords: discrete event simulation, life cycle sustainability analysis, manufacturing, sustainability

Procedia PDF Downloads 279
4879 A Secure System for Handling Information from Heterogeous Sources

Authors: Shoohira Aftab, Hammad Afzal

Abstract:

Information integration is a well known procedure to provide consolidated view on sets of heterogeneous information sources. It not only provides better statistical analysis of information but also facilitates users to query without any knowledge on the underlying heterogeneous information sources The problem of providing a consolidated view of information can be handled using Semantic data (information stored in such a way that is understandable by machines and integrate-able without manual human intervention). However, integrating information using semantic web technology without any access management enforced, will results in increase of privacy and confidentiality concerns. In this research we have designed and developed a framework that would allow information from heterogeneous formats to be consolidated, thus resolving the issue of interoperability. We have also devised an access control system for defining explicit privacy constraints. We designed and applied our framework on both semantic and non-semantic data from heterogeneous resources. Our approach is validated using scenario based testing.

Keywords: information integration, semantic data, interoperability, security, access control system

Procedia PDF Downloads 357
4878 Ethical Framework in Organ Transplantation and the Priority Line between Law and Life

Authors: Abel Sichinava

Abstract:

The need for organ transplantation is vigorously increasing worldwide. The numbers on the waiting lists grow, but the number of donors is not keeping up with the demand even though there is a legal possibility of decreasing the gap between the demand and supply. Most countries around the globe are facing an organ donation problem (living or deceased); however, the extent of the problem differs based on how well developed a country is. The determining issues seem to be centered on how aware the society is about the concept of organ donation, as well as cultural and religious factors. Even if people are aware of the benefits of organ donation, they may still have fears that keep them from being in complete agreement with the idea. Some believe that in the case of deceased organ donation: “the brain dead human body may recover from its injuries” or “the sick might get less appropriate treatment if doctors know they are potential donors.” In the case of living organ donations, people sometimes fear that after the donation, “it might reduce work efficiency, cause health deterioration or even death.” Another major obstacle in the organ shortage is a lack of a well developed ethical framework. In reality, there are truly an immense number of people on the waiting list, and they have only two options in order to receive a suitable organ. First is the legal way, which is to wait until their turn. Sadly, numerous patients die while on the waiting list before an appropriate organ becomes available for transplant. The second option is an illegal way: seeking an organ in a country where they can possibly get. To tell the truth, in people’s desire to live, they may choose the second option if their resources are sufficient. This process automatically involves “organ brokers.” These are people who get organs from vulnerable poor people by force or betrayal. As mentioned earlier, the high demand and low supply leads to human trafficking. The subject of the study was the large number of society from different backgrounds of their belief, culture, nationality, level of education, socio-economic status. The great majority of them interviewed online used “Google Drive Survey” and others in person. All statistics and information gathered from trusted sources annotated in the reference list and above mentioned considerable testimonies shared by the respondents are the fundamental evidence of a lack of the well developed ethical framework. In conclusion, the continuously increasing number of people on the waiting list and an irrelevant ethical framework, lead people to commit to atrocious, dehumanizing crimes. Therefore, world society should be equally obligated to think carefully and make vital decisions together for the advancement of an organ donations and its ethical framework.

Keywords: donation, ethical framwork, organ, transplant

Procedia PDF Downloads 150
4877 A Framework for Evaluating the QoS and Cost of Web Services Based on Its Functional Performance

Authors: M. Mohemmed Sha, T. Manesh, A. Ahmed Mohamed Mustaq

Abstract:

In this corporate world, the technology of Web services has grown rapidly and its significance for the development of web based applications gradually rises over time. The success of Business to Business integration rely on finding novel partners and their services in a global business environment. But the selection of the most suitable Web service from the list of services with the identical functionality is more vital. The satisfaction level of the customer and the provider’s reputation of the Web service are primarily depending on the range it reaches the customer’s requirements. In most cases the customer of the Web service feels that he is spending for the service which is undelivered. This is because the customer always thinks that the real functionality of the web service is not reached. This will lead to change of the service frequently. In this paper, a framework is proposed to evaluate the Quality of Service (QoS) and its cost that makes the optimal correlation between each other. Also this research work proposes some management decision against the functional deviancy of the web service that are guaranteed at time of selection.

Keywords: web service, service level agreement, quality of a service, cost of a service, QoS, CoS, SOA, WSLA, WsRF

Procedia PDF Downloads 419
4876 Statistical Classification, Downscaling and Uncertainty Assessment for Global Climate Model Outputs

Authors: Queen Suraajini Rajendran, Sai Hung Cheung

Abstract:

Statistical down scaling models are required to connect the global climate model outputs and the local weather variables for climate change impact prediction. For reliable climate change impact studies, the uncertainty associated with the model including natural variability, uncertainty in the climate model(s), down scaling model, model inadequacy and in the predicted results should be quantified appropriately. In this work, a new approach is developed by the authors for statistical classification, statistical down scaling and uncertainty assessment and is applied to Singapore rainfall. It is a robust Bayesian uncertainty analysis methodology and tools based on coupling dependent modeling error with classification and statistical down scaling models in a way that the dependency among modeling errors will impact the results of both classification and statistical down scaling model calibration and uncertainty analysis for future prediction. Singapore data are considered here and the uncertainty and prediction results are obtained. From the results obtained, directions of research for improvement are briefly presented.

Keywords: statistical downscaling, global climate model, climate change, uncertainty

Procedia PDF Downloads 369
4875 A Green Approach towards the Production of CaCO₃ Scaffolds for Bone Tissue Engineering

Authors: Sudhir Kumar Sharma, Abiy D. Woldetsadik, Mazin Magzoub, Ramesh Jagannathan

Abstract:

It is well known that bioactive ceramics exhibit specific biological affinities, especially in the area of tissue re-generation. In this context, we report the development of an eminently scalable, novel, supercritical CO₂ based process for the fabrication of hierarchically porous 'soft' CaCO₃ scaffolds. Porosity at the macro, micro, and nanoscales was obtained through process optimization of the so-called 'coffee-ring effect'. Exposure of these CaCO₃ scaffolds to monocytic THP-1 cells yielded negligible levels of tumor necrosis factor-alpha (TNF-α) thereby confirming the lack of immunogenicity of the scaffolds. ECM protein treatment of the scaffolds showed enhanced adsorption comparable to standard control such as glass. In vitro studies using osteoblast precursor cell line, MC3T3, also demonstrated the cytocompatibility of hierarchical porous CaCO₃ scaffolds.

Keywords: supercritical CO2, CaCO3 scaffolds, coffee-ring effect, ECM proteins

Procedia PDF Downloads 303
4874 Semi-Supervised Outlier Detection Using a Generative and Adversary Framework

Authors: Jindong Gu, Matthias Schubert, Volker Tresp

Abstract:

In many outlier detection tasks, only training data belonging to one class, i.e., the positive class, is available. The task is then to predict a new data point as belonging either to the positive class or to the negative class, in which case the data point is considered an outlier. For this task, we propose a novel corrupted Generative Adversarial Network (CorGAN). In the adversarial process of training CorGAN, the Generator generates outlier samples for the negative class, and the Discriminator is trained to distinguish the positive training data from the generated negative data. The proposed framework is evaluated using an image dataset and a real-world network intrusion dataset. Our outlier-detection method achieves state-of-the-art performance on both tasks.

Keywords: one-class classification, outlier detection, generative adversary networks, semi-supervised learning

Procedia PDF Downloads 151
4873 Scattered Places in Stories Singularity and Pattern in Geographic Information

Authors: I. Pina, M. Painho

Abstract:

Increased knowledge about the nature of place and the conditions under which space becomes place is a key factor for better urban planning and place-making. Although there is a broad consensus on the relevance of this knowledge, difficulties remain in relating the theoretical framework about place and urban management. Issues related to representation of places are among the greatest obstacles to overcome this gap. With this critical discussion, based on literature review, we intended to explore, in a common framework for geographical analysis, the potential of stories to spell out place meanings, bringing together qualitative text analysis and text mining in order to capture and represent the singularity contained in each person's life history, and the patterns of social processes that shape places. The development of this reasoning is based on the extensive geographical thought about place, and in the theoretical advances in the field of Geographic Information Science (GISc).

Keywords: discourse analysis, geographic information science place, place-making, stories

Procedia PDF Downloads 198
4872 Data-driven Decision-Making in Digital Entrepreneurship

Authors: Abeba Nigussie Turi, Xiangming Samuel Li

Abstract:

Data-driven business models are more typical for established businesses than early-stage startups that strive to penetrate a market. This paper provided an extensive discussion on the principles of data analytics for early-stage digital entrepreneurial businesses. Here, we developed data-driven decision-making (DDDM) framework that applies to startups prone to multifaceted barriers in the form of poor data access, technical and financial constraints, to state some. The startup DDDM framework proposed in this paper is novel in its form encompassing startup data analytics enablers and metrics aligning with startups' business models ranging from customer-centric product development to servitization which is the future of modern digital entrepreneurship.

Keywords: startup data analytics, data-driven decision-making, data acquisition, data generation, digital entrepreneurship

Procedia PDF Downloads 329
4871 Transcription Skills and Written Composition in Chinese

Authors: Pui-sze Yeung, Connie Suk-han Ho, David Wai-ock Chan, Kevin Kien-hoa Chung

Abstract:

Background: Recent findings have shown that transcription skills play a unique and significant role in Chinese word reading and spelling (i.e. word dictation), and written composition development. The interrelationships among component skills of transcription, word reading, word spelling, and written composition in Chinese have rarely been examined in the literature. Is the contribution of component skills of transcription to Chinese written composition mediated by word level skills (i.e., word reading and spelling)? Methods: The participants in the study were 249 Chinese children in Grade 1, Grade 3, and Grade 5 in Hong Kong. They were administered measures of general reasoning ability, orthographic knowledge, stroke sequence knowledge, word spelling, handwriting fluency, word reading, and Chinese narrative writing. Orthographic knowledge- orthographic knowledge was assessed by a task modeled after the lexical decision subtest of the Hong Kong Test of Specific Learning Difficulties in Reading and Writing (HKT-SpLD). Stroke sequence knowledge: The participants’ performance in producing legitimate stroke sequences was measured by a stroke sequence knowledge task. Handwriting fluency- Handwriting fluency was assessed by a task modeled after the Chinese Handwriting Speed Test. Word spelling: The stimuli of the word spelling task consist of fourteen two-character Chinese words. Word reading: The stimuli of the word reading task consist of 120 two-character Chinese words. Written composition: A narrative writing task was used to assess the participants’ text writing skills. Results: Analysis of covariance results showed that there were significant between-grade differences in the performance of word reading, word spelling, handwriting fluency, and written composition. Preliminary hierarchical multiple regression analysis results showed that orthographic knowledge, word spelling, and handwriting fluency were unique predictors of Chinese written composition even after controlling for age, IQ, and word reading. The interaction effects between grade and each of these three skills (orthographic knowledge, word spelling, and handwriting fluency) were not significant. Path analysis results showed that orthographic knowledge contributed to written composition both directly and indirectly through word spelling, while handwriting fluency contributed to written composition directly and indirectly through both word reading and spelling. Stroke sequence knowledge only contributed to written composition indirectly through word spelling. Conclusions: Preliminary hierarchical regression results were consistent with previous findings about the significant role of transcription skills in Chinese word reading, spelling and written composition development. The fact that orthographic knowledge contributed both directly and indirectly to written composition through word reading and spelling may reflect the impact of the script-sound-meaning convergence of Chinese characters on the composing process. The significant contribution of word spelling and handwriting fluency to Chinese written composition across elementary grades highlighted the difficulty in attaining automaticity of transcription skills in Chinese, which limits the working memory resources available for other composing processes.

Keywords: orthographic knowledge, transcription skills, word reading, writing

Procedia PDF Downloads 424
4870 Design of a Computational Model to Support the Calculation of a Structural Health Index for Bridges

Authors: Jeison Sánchez Araya, Cesar Garita, Giannina Ortiz

Abstract:

In many Latin American countries, including Costa Rica, the poor condition of national road bridges significantly hinders socioeconomic progress. Addressing this issue, this article introduces a computational method designed to evaluate and monitor bridge health over time. It outlines a business intelligence model that facilitates data storage from bridge inspections and supports structural health index calculations. A Power BI prototype displays crucial visualizations that improve decision making on infrastructure investments. This approach leverages business intelligence and hierarchical visualization techniques, offering a solution to quantitatively assess bridge health and prioritize investments in national infrastructure efficiently.

Keywords: bridges, business intelligence, structural health index, structural health monitoring

Procedia PDF Downloads 2
4869 Towards a Mandatory Frame of ADR in Divorce Cases: Key Elements from a Comparative Perspective for Belgium

Authors: Celine Jaspers

Abstract:

The Belgian legal system is slowly evolving to mandatory mediation to promote ADR. One of the reasons for this evolution is the lack of use of alternative methods in relation to their possible benefits. Especially in divorce cases, ADR can play a beneficial role in resolving disputes, since the emotional component is very much present. When children are involved, a solution provided by the parent may be more adapted to the child’s best interest than a court order. In the first part, the lack of use of voluntary ADR and the evolution toward mandatory ADR in Belgium will be indicated by sources of legislation, jurisprudence and social-scientific sources, with special attention to divorce cases. One of the reasons is lack of knowledge on ADR, despite the continuing efforts of the Belgian legislator to promote ADR. One of the last acts of ADR-promotion, was the implementation of an Act in 2018 which gives the judge the possibility to refer parties to mediation if at least one party wants to during the judicial procedure. This referral is subject to some conditions. The parties will be sent to a private mediator, recognized by the Federal Mediation Commission, to try to resolve their conflict. This means that at least one party can be mandated to try mediation (indicated as “semi-mandatory mediation”). The main goal is to establish the factors and elements that Belgium has to take into account in their further development of mandatory ADR, with consideration of the human rights perspective and the EU perspective. Furthermore it is also essential to detect some dangerous pitfalls other systems have encountered with their process design. Therefore, the second part, the comparative component, will discuss the existing framework in California, USA to establish the necessary elements, possible pitfalls and considerations the Belgian legislator can take into account when further developing the framework of mandatory ADR. The contrasting and functional method will be used to create key elements and possible pitfalls, to help Belgium improve its existing framework. The existing mandatory system in California has been in place since 1981 and is still up and running, and can thus provide valuable lessons and considerations for the Belgian system. Thirdly, the key elements from a human rights perspective and from a European Union perspective (e.g. the right to access to a judge, the right to privacy) will be discussed too, since the basic human rights and European legislation and jurisprudence play a significant part in Belgian legislation as well. The main sources for this part will be the international and European treaties, legislation, jurisprudence and soft law. In the last and concluding part, the paper will list the most important elements of a mandatory ADR-system design with special attention to the dangers of these elements (e.g. to include or exclude domestic violence cases in the mandatory ADR-framework and the consequences thereof), and with special attention for the necessary the international and European rights, prohibitions and guidelines.

Keywords: Belgium, divorce, framework, mandatory ADR

Procedia PDF Downloads 156
4868 A Qualitative Study Exploring Factors Influencing the Uptake of and Engagement with Health and Wellbeing Smartphone Apps

Authors: D. Szinay, O. Perski, A. Jones, T. Chadborn, J. Brown, F. Naughton

Abstract:

Background: The uptake of health and wellbeing smartphone apps is largely influenced by popularity indicators (e.g., rankings), rather than evidence-based content. Rapid disengagement is common. This study aims to explore how and why potential users 1) select and 2) engage with such apps, and 3) how increased engagement could be promoted. Methods: Semi-structured interviews and a think-aloud approach were used to allow participants to verbalise their thoughts whilst searching for a health or wellbeing app online, followed by a guided search in the UK National Health Service (NHS) 'Apps Library' and Public Health England’s (PHE) 'One You' website. Recruitment took place between June and August 2019. Adults interested in using an app for behaviour change were recruited through social media. Data were analysed using the framework approach. The analysis is both inductive and deductive, with the coding framework being informed by the Theoretical Domains Framework. The results are further mapped onto the COM-B (Capability, Opportunity, Motivation - Behaviour) model. The study protocol is registered on the Open Science Framework (https://osf.io/jrkd3/). Results: The following targets were identified as playing a key role in increasing the uptake of and engagement with health and wellbeing apps: 1) psychological capability (e.g., reduced cognitive load); 2) physical opportunity (e.g., low financial cost); 3) social opportunity (e.g., embedded social media); 4) automatic motivation (e.g., positive feedback). Participants believed that the promotion of evidence-based apps on NHS-related websites could be enhanced through active promotion on social media, adverts on the internet, and in general practitioner practices. Future Implications: These results can inform the development of interventions aiming to promote the uptake of and engagement with evidence-based health and wellbeing apps, a priority within the UK NHS Long Term Plan ('digital first'). The targets identified across the COM-B domains could help organisations that provide platforms for such apps to increase impact through better selection of apps.

Keywords: behaviour change, COM-B model, digital health, mhealth

Procedia PDF Downloads 165
4867 Psychological Contract Violation and Occupational Stressors amongst UK Police Officers

Authors: Fazeelat Duran, Darren Bishopp, Jessica Woodhams

Abstract:

Psychological contract refers to the perceptions of an employee and their employer regarding their mutual obligations towards each other. The rationale for applying the psychological contract theory in UK policing was to investigate its impact on their wellbeing because the psychological contract is a useful tool in identifying factors having a negative effect on the wellbeing of employees. The paper will report on a study, which examined how occupational stressors and psychological contract violation may influence the wellbeing (e.g. Physical Stress and General Health) of a sample of police officers (N=127). The design of the study was cross-sectional and based on data collected through a self-report survey. The results of hierarchical regression analyses and structural equation model, suggest that occupational stressors and psychological contract violation play a critical role in both physical and psychological health. The implications of these findings and the utility of considering the psychological contract will be discussed.

Keywords: police officers, psychological contract, occupational stressors, wellbeing

Procedia PDF Downloads 434
4866 Management of Intellectual Property Rights: Strategic Patenting

Authors: Waheed Oseni

Abstract:

This article reviews emergent global trends in intellectual property protection and identifies patenting as a strategic initiative. Recent developments in software and method of doing business patenting are fast transforming the e‐business landscape. The article discusses the emergent global regulatory framework concerning intellectual property rights and the strategic value of patenting. Important features of a corporate patenting portfolio are described. Superficially, the e‐commerce landscape appears to be dominated by dotcom start-ups or the “dotcomization” of existing brick and mortar companies. But, in reality, at its very bedrock is intellectual property (IP). In this connection, the recent avalanche of patenting of software and method‐of‐doing‐business (MDB) in the USA is a very significant development with regard to rules governing IP rights and, therefore, e‐commerce. Together with the World Trade Organization’s (WTO) IP rules, there is an emerging global regulatory framework for IP rights, an understanding of which is necessary for designing effective e‐commerce strategies.

Keywords: intellectual property, patents, methods, computer software

Procedia PDF Downloads 526
4865 Investigation on Performance of Change Point Algorithm in Time Series Dynamical Regimes and Effect of Data Characteristics

Authors: Farhad Asadi, Mohammad Javad Mollakazemi

Abstract:

In this paper, Bayesian online inference in models of data series are constructed by change-points algorithm, which separated the observed time series into independent series and study the change and variation of the regime of the data with related statistical characteristics. variation of statistical characteristics of time series data often represent separated phenomena in the some dynamical system, like a change in state of brain dynamical reflected in EEG signal data measurement or a change in important regime of data in many dynamical system. In this paper, prediction algorithm for studying change point location in some time series data is simulated. It is verified that pattern of proposed distribution of data has important factor on simpler and smother fluctuation of hazard rate parameter and also for better identification of change point locations. Finally, the conditions of how the time series distribution effect on factors in this approach are explained and validated with different time series databases for some dynamical system.

Keywords: time series, fluctuation in statistical characteristics, optimal learning, change-point algorithm

Procedia PDF Downloads 427
4864 Analysis of Expression Data Using Unsupervised Techniques

Authors: M. A. I Perera, C. R. Wijesinghe, A. R. Weerasinghe

Abstract:

his study was conducted to review and identify the unsupervised techniques that can be employed to analyze gene expression data in order to identify better subtypes of tumors. Identifying subtypes of cancer help in improving the efficacy and reducing the toxicity of the treatments by identifying clues to find target therapeutics. Process of gene expression data analysis described under three steps as preprocessing, clustering, and cluster validation. Feature selection is important since the genomic data are high dimensional with a large number of features compared to samples. Hierarchical clustering and K Means are often used in the analysis of gene expression data. There are several cluster validation techniques used in validating the clusters. Heatmaps are an effective external validation method that allows comparing the identified classes with clinical variables and visual analysis of the classes.

Keywords: cancer subtypes, gene expression data analysis, clustering, cluster validation

Procedia PDF Downloads 149
4863 Genetic Algorithm and Multi-Parametric Programming Based Cascade Control System for Unmanned Aerial Vehicles

Authors: Dao Phuong Nam, Do Trong Tan, Pham Tam Thanh, Le Duy Tung, Tran Hoang Anh

Abstract:

This paper considers the problem of cascade control system for unmanned aerial vehicles (UAVs). Due to the complicated modelling technique of UAV, it is necessary to separate them into two subsystems. The proposed cascade control structure is a hierarchical scheme including a robust control for inner subsystem based on H infinity theory and trajectory generator using genetic algorithm (GA), outer loop control law based on multi-parametric programming (MPP) technique to overcome the disadvantage of a big amount of calculations. Simulation results are presented to show that the equivalent path has been found and obtained by proposed cascade control scheme.

Keywords: genetic algorithm, GA, H infinity, multi-parametric programming, MPP, unmanned aerial vehicles, UAVs

Procedia PDF Downloads 213
4862 Teachers' Technological Pedagogical and Content Knowledge and Technology Integration in Teaching and Learning in a Small Island Developing State: A Concept Paper

Authors: Aminath Waseela, Vinesh Chandra, Shaun Nykvist,

Abstract:

The success of technology integration initiatives hinges on the knowledge and skills of teachers to effectively integrate technology in classroom teaching. Consequently, gaining an understanding of teachers' technology knowledge and its integration can provide useful insights on strategies that can be adopted to enhance teaching and learning, especially in developing country contexts where research is scant. This paper extends existing knowledge on teachers' use of technology by developing a conceptual framework that recognises how three key types of knowledge; content, pedagogy, technology, and their integration are at the crux of teachers' technology use while at the same time is amenable to empirical studies. Although the aforementioned knowledge is important for effective use of technology that can result in enhanced student engagement, literature on how this knowledge leads to effective technology use and enhanced student engagement is limited. Thus, this theoretical paper proposes a framework to explore teachers' knowledge through the lens of the Technological Pedagogical and Content Knowledge (TPACK); the integration of technology in classroom teaching through the Substitution Augmentation Modification and Redefinition (SAMR) model and how this affects students' learning through the Bloom's Digital Taxonomy (BDT) lens. Studies using this framework could inform the design of professional development to support teachers to develop skills for effective use of available technology that can enhance student learning engagement.

Keywords: information and communication technology, ICT, in-service training, small island developing states, SIDS, student engagement, technology integration, technology professional development training, technological pedagogical and content knowledge, TPACK

Procedia PDF Downloads 147
4861 The Role of Goal Orientation on the Structural-Psychological Empowerment Link in the Public Sector

Authors: Beatriz Garcia-Juan, Ana B. Escrig-Tena, Vicente Roca-Puig

Abstract:

The aim of this article is to conduct a theoretical and empirical study in order to examine how the goal orientation (GO) of public employees affects the relationship between the structural and psychological empowerment that they experience at their workplaces. In doing so, we follow structural empowerment (SE) and psychological empowerment (PE) conceptualizations, and relate them to the public administration framework. Moreover, we review arguments from GO theories, and previous related contributions. Empowerment has emerged as an important issue in the public sector organization setting in the wake of mainstream New Public Management (NPM), the new orientation in the public sector that aims to provide a better service for citizens. It is closely linked to the drive to improve organizational effectiveness through the wise use of human resources. Nevertheless, it is necessary to combine structural (managerial) and psychological (individual) approaches in an integrative study of empowerment. SE refers to a set of initiatives that aim the transference of power from managerial positions to the rest of employees. PE is defined as psychological state of competence, self-determination, impact, and meaning that an employee feels at work. Linking these two perspectives will lead to arrive at a broader understanding of the empowerment process. Specifically in the public sector, empirical contributions on this relationship are therefore important, particularly as empowerment is a very useful tool with which to face the challenges of the new public context. There is also a need to examine the moderating variables involved in this relationship, as well as to extend research on work motivation in public management. It is proposed the study of the effect of individual orientations, such as GO. GO concept refers to the individual disposition toward developing or confirming one’s capacity in achievement situations. Employees’ GO may be a key factor at work and in workforce selection processes, since it explains the differences in personal work interests, and in receptiveness to and interpretations of professional development activities. SE practices could affect PE feelings in different ways, depending on employees’ GO, since they perceive and respond differently to such practices, which is likely to yield distinct PE results. The model is tested on a sample of 521 Spanish local authority employees. Hierarchical regression analysis was conducted to test the research hypotheses using SPSS 22 computer software. The results do not confirm the direct link between SE and PE, but show that learning goal orientation has considerable moderating power in this relationship, and its interaction with SE affects employees’ PE levels. Therefore, the combination of SE practices and employees’ high levels of LGO are important factors for creating psychologically empowered staff in public organizations.

Keywords: goal orientation, moderating effect, psychological empowerment, structural empowerment

Procedia PDF Downloads 281
4860 From Proficiency to High Accomplishment: Transformative Inquiry and Institutionalization of Mentoring Practices in Teacher Education in South-Western Nigeria

Authors: Michael A. Ifarajimi

Abstract:

The transition from being a graduate teacher to a highly accomplished teacher has been widely portrayed in literature as challenging. Pre-service teachers are troubled with complex issues such as implementing, assessment, meeting prescribed learning outcomes, taking risks, supporting eco sustainability, etc. This list is not exhaustive as they are further complicated when the concerns extend beyond the classroom into the broader school setting and community. Meanwhile, the pre-service teacher education programme as is currently run in Nigeria, cannot adequately prepare newly trained teachers for the realities of classroom teaching. And there appears to be no formal structure in place for mentoring such teachers by the more seasoned teachers in schools. The central research question of the study, therefore, is which institutional framework can be distinguished for enactment in mentoring practices in teacher education? The study was conducted in five colleges of education in South-West Nigeria, and a sample of 1000 pre-service teachers on their final year practicum was randomly selected from the colleges of education. A pre-service teacher mentorship programme (PTMP) framework was designed and implemented, with a focus on the impact of transformative inquiry on the pre-service teacher support system. The study discovered a significant impact of mentoring on pre-service teacher’s professional transformation. The study concluded that institutionalizing mentorship through transformative inquiry is a means to sustainable teacher education, professional growth, and effective classroom practice. The study recommended that the government should enact policies that will promote mentoring in teacher education and establish a framework for the implementation of mentoring practices in the colleges of education in Nigeria.

Keywords: institutionalization, mentoring, pre-service teachers teacher education, transformative inquiry

Procedia PDF Downloads 133
4859 The Relationships Between Citizenship Acquisition and Ethnic Identity of Immigrant Women in Taiwan

Authors: Yuan-Yu Chiang, Yu-Han Tseng, Chin-Chen Wen

Abstract:

Many southeast-Asia women migrate to Taiwan by marriage, and it usually takes 4 to 8 years for them to acquire Taiwanese citizenship. This study investigates the relationships between their citizenship acquisition and whether they develop Taiwanese identities. One hundred and ninety-two immigrant women were measured using Multigroup Ethnic Identity Measure-Revised and a global 10-point ethnic identity question. Correlation tests and hierarchical regression were performed to explore whether acquiring citizenship would help immigrant women to develop Taiwanese identities. The results revealed that citizenship acquisition does help immigrant women to identify with Taiwanese society symbolically. However, the results also indicated that acquiring citizenship would not help these immigrant women become involved in deeper cultural exploration of Taiwan nor would it encourage them to make commitments to the host society.

Keywords: immigrants, international marriage, ethnic identity, Taiwan

Procedia PDF Downloads 418
4858 Automatic Detection of Traffic Stop Locations Using GPS Data

Authors: Areej Salaymeh, Loren Schwiebert, Stephen Remias, Jonathan Waddell

Abstract:

Extracting information from new data sources has emerged as a crucial task in many traffic planning processes, such as identifying traffic patterns, route planning, traffic forecasting, and locating infrastructure improvements. Given the advanced technologies used to collect Global Positioning System (GPS) data from dedicated GPS devices, GPS equipped phones, and navigation tools, intelligent data analysis methodologies are necessary to mine this raw data. In this research, an automatic detection framework is proposed to help identify and classify the locations of stopped GPS waypoints into two main categories: signalized intersections or highway congestion. The Delaunay triangulation is used to perform this assessment in the clustering phase. While most of the existing clustering algorithms need assumptions about the data distribution, the effectiveness of the Delaunay triangulation relies on triangulating geographical data points without such assumptions. Our proposed method starts by cleaning noise from the data and normalizing it. Next, the framework will identify stoppage points by calculating the traveled distance. The last step is to use clustering to form groups of waypoints for signalized traffic and highway congestion. Next, a binary classifier was applied to find distinguish highway congestion from signalized stop points. The binary classifier uses the length of the cluster to find congestion. The proposed framework shows high accuracy for identifying the stop positions and congestion points in around 99.2% of trials. We show that it is possible, using limited GPS data, to distinguish with high accuracy.

Keywords: Delaunay triangulation, clustering, intelligent transportation systems, GPS data

Procedia PDF Downloads 275
4857 The Role of Formal and Informal Social Support in Predicting the Involvement of Mothers and Fathers of Young Children with Autism Spectrum Disorder

Authors: Adi Sharabi, Dafna Marom-Golan

Abstract:

Parents’ involvement in the care of their children with Autism Spectrum Disorder (ASD) and its beneficial effect on the children’s developmental and educational outcomes is well documented. At the same time, parents of children with ASD tend to experience greater psychological distress than parents of children with other developmental disabilities or with typical development. Positive social support is an important resource used by parents to reduce their psychological distress. The goal of the current research was to examine the contribution of formal and informal social support in explaining mothers’ and fathers’ involvement with their young children with ASD. The sample consisted of 107 parents who live in Israel (61 mothers and 46 fathers) of children aged between 2 and 7, all diagnosed with ASD and attending special kindergartens or special day care for children with ASD. Parental involvement and social support perception were assessed. Initial analysis focused on the relations between involvement, support, and demographic variables. In addition, analysis of variance (ANOVA) was conducted to test differences between mothers and fathers. Two hierarchical multiple regression analyses were performed to examine the predicted factors in the involvement model while controlling for group (mothers/fathers). Results indicate that mothers reported significantly higher levels of parenting involvement than fathers. Mothers reported higher levels of general involvement and all sub-types of involvement. For example, mothers reported that they were more interested in and have higher levels of attendance in their child’s educational program. They were also more collaborative in their child’s educational therapeutic program, and socialized with other parents of children from their child’s kindergarten than fathers. Mothers’ involvement was found to be related to their informal support (non-formal relatives). Findings also reveal significant differences between mothers and fathers on the formal support subscale measure of specializes services. Fathers, more than mothers, reported more specializes services support such as social workers or professional therapists. Separate hierarchical multiple regression analyses revealed a unique gender difference in the factors that explained parental involvement. Specifically, informal support only had a unique positive contribution in explaining mothers’, but not fathers’ involvement. This study highlights the central role of mothers in maintaining constant contact with the educational system and the professionals who help care for their child with ASD. At the same time, this research emphasizes the crucial role of both mothers and fathers in their child's development and well-being at every development stage, particularly in early development. Further, different kinds of social support seem to relate to the different kinds of parental involvement. It is in the best interest of educators and family therapists who work with families with children with ASD to support the cohesiveness of the family and the collaboration of the parents by understanding and respecting the way each member addresses the responsibilities of parenting a child with ASD, and her or his need for different types of social support.

Keywords: parental differences, parental involvement, social support, specialized support services

Procedia PDF Downloads 247
4856 An Artificial Intelligence Framework to Forecast Air Quality

Authors: Richard Ren

Abstract:

Air pollution is a serious danger to international well-being and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.

Keywords: air quality prediction, air pollution, artificial intelligence, machine learning algorithms

Procedia PDF Downloads 127
4855 Framework Development of Carbon Management Software Tool in Sustainable Supply Chain Management of Indian Industry

Authors: Sarbjit Singh

Abstract:

This framework development explored the status of GSCM in manufacturing SMEs and concluded that there was a significant gap w.r.t carbon emissions measurement in the supply chain activities. The measurement of carbon emissions within supply chains is important green initiative toward its reduction. The majority of the SMEs were facing the problem to quantify the green house gas emissions in its supply chain & to make it a low carbon supply chain or GSCM. Thus, the carbon management initiatives were amalgamated with the supply chain activities in order to measure and reduce the carbon emissions, confirming the GHG protocol scopes. Henceforth, it covers the development of carbon management software (CMS) tool to quantify carbon emissions for effective carbon management. This tool is cheap and easy to use for the industries for the management of their carbon emissions within the supply chain.

Keywords: w.r.t carbon emissions, carbon management software, supply chain management, Indian Industry

Procedia PDF Downloads 469
4854 Modular Data and Calculation Framework for a Technology-based Mapping of the Manufacturing Process According to the Value Stream Management Approach

Authors: Tim Wollert, Fabian Behrendt

Abstract:

Value Stream Management (VSM) is a widely used methodology in the context of Lean Management for improving end-to-end material and information flows from a supplier to a customer from a company’s perspective. Whereas the design principles, e.g. Pull, value-adding, customer-orientation and further ones are still valid against the background of an increasing digitalized and dynamic environment, the methodology itself for mapping a value stream is characterized as time- and resource-intensive due to the high degree of manual activities. The digitalization of processes in the context of Industry 4.0 enables new opportunities to reduce these manual efforts and make the VSM approach more agile. The paper at hand aims at providing a modular data and calculation framework, utilizing the available business data, provided by information and communication technologies for automizing the value stream mapping process with focus on the manufacturing process.

Keywords: lean management 4.0, value stream management (VSM) 4.0, dynamic value stream mapping, enterprise resource planning (ERP)

Procedia PDF Downloads 150
4853 China-Africa Diplomatic Discourse: Reconstructing the Principle of “Yi” as a Framework for Analyzing Sino-Africa Cooperation

Authors: Modestus Queen

Abstract:

As we know, diplomatic languages carry the political ideology and cultural stance of the country. Knowing that China's diplomatic discourse is complicated and is heavily flavored with Chinese characteristics, one of the core goals of President Xi's administration is to properly tell the story of China. This cannot be done without proper translation or interpretation of major Chinese diplomatic concepts. Therefore, this research seeks to interpret the relevance of "Yi" as used in "Zhèngquè Yì Lì Guān". The author argues that it is not enough to translate a document but that it must be properly interpreted to portray it as political, economic, cultural and diplomatic relevant to the target audience, in this case, African people. The first finding in the current study indicates that literal translation is a bad strategy, especially in Chinese diplomatic discourses. The second finding indicates that "Yi" can be used as a framework to analyze Sino-Africa relations from economic, social and political perspectives, and the third finding indicates that "Yi" is the guiding principle of China's foreign policy towards Africa.

Keywords: Yi, justice, China-Africa, interpretation, diplomatic discourse, discourse reconstruction

Procedia PDF Downloads 141