Search results for: evolutionary algorithms (EA's)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2307

Search results for: evolutionary algorithms (EA's)

1347 Harmony Search-Based K-Coverage Enhancement in Wireless Sensor Networks

Authors: Shaimaa M. Mohamed, Haitham S. Hamza, Imane A. Saroit

Abstract:

Many wireless sensor network applications require K-coverage of the monitored area. In this paper, we propose a scalable harmony search based algorithm in terms of execution time, K-Coverage Enhancement Algorithm (KCEA), it attempts to enhance initial coverage, and achieve the required K-coverage degree for a specific application efficiently. Simulation results show that the proposed algorithm achieves coverage improvement of 5.34% compared to K-Coverage Rate Deployment (K-CRD), which achieves 1.31% when deploying one additional sensor. Moreover, the proposed algorithm is more time efficient.

Keywords: Wireless Sensor Networks (WSN), harmony search algorithms, K-Coverage, Mobile WSN

Procedia PDF Downloads 526
1346 Exploring the Role of Data Mining in Crime Classification: A Systematic Literature Review

Authors: Faisal Muhibuddin, Ani Dijah Rahajoe

Abstract:

This in-depth exploration, through a systematic literature review, scrutinizes the nuanced role of data mining in the classification of criminal activities. The research focuses on investigating various methodological aspects and recent developments in leveraging data mining techniques to enhance the effectiveness and precision of crime categorization. Commencing with an exposition of the foundational concepts of crime classification and its evolutionary dynamics, this study details the paradigm shift from conventional methods towards approaches supported by data mining, addressing the challenges and complexities inherent in the modern crime landscape. Specifically, the research delves into various data mining techniques, including K-means clustering, Naïve Bayes, K-nearest neighbour, and clustering methods. A comprehensive review of the strengths and limitations of each technique provides insights into their respective contributions to improving crime classification models. The integration of diverse data sources takes centre stage in this research. A detailed analysis explores how the amalgamation of structured data (such as criminal records) and unstructured data (such as social media) can offer a holistic understanding of crime, enriching classification models with more profound insights. Furthermore, the study explores the temporal implications in crime classification, emphasizing the significance of considering temporal factors to comprehend long-term trends and seasonality. The availability of real-time data is also elucidated as a crucial element in enhancing responsiveness and accuracy in crime classification.

Keywords: data mining, classification algorithm, naïve bayes, k-means clustering, k-nearest neigbhor, crime, data analysis, sistematic literature review

Procedia PDF Downloads 65
1345 Unconventional Calculus Spreadsheet Functions

Authors: Chahid K. Ghaddar

Abstract:

The spreadsheet engine is exploited via a non-conventional mechanism to enable novel worksheet solver functions for computational calculus. The solver functions bypass inherent restrictions on built-in math and user defined functions by taking variable formulas as a new type of argument while retaining purity and recursion properties. The enabling mechanism permits integration of numerical algorithms into worksheet functions for solving virtually any computational problem that can be modelled by formulas and variables. Several examples are presented for computing integrals, derivatives, and systems of deferential-algebraic equations. Incorporation of the worksheet solver functions with the ubiquitous spreadsheet extend the utility of the latter as a powerful tool for computational mathematics.

Keywords: calculus, differential algebraic equations, solvers, spreadsheet

Procedia PDF Downloads 360
1344 A Study of Traffic Assignment Algorithms

Authors: Abdelfetah Laouzai, Rachid Ouafi

Abstract:

In a traffic network, users usually choose their way so that it reduces their travel time between pairs origin-destination. This behavior might seem selfish as it produces congestions in different parts of the network. The traffic assignment problem (TAP) models the interactions between congestion and user travel decisions to obtain vehicles flows over each axis of the traffic network. The resolution methods of TAP serve as a tool allows predicting users’ distribution, identifying congesting points and affecting the travelers’ behavior in the choice of their route in the network following dynamic data. In this article, we will present a review about specific resolution approach of TAP. A comparative analysis is carried out on those approaches so that it highlights the characteristics, advantages and disadvantages of each.

Keywords: network traffic, travel decisions, approaches, traffic assignment, flows

Procedia PDF Downloads 474
1343 Automated Transformation of 3D Point Cloud to BIM Model: Leveraging Algorithmic Modeling for Efficient Reconstruction

Authors: Radul Shishkov, Orlin Davchev

Abstract:

The digital era has revolutionized architectural practices, with building information modeling (BIM) emerging as a pivotal tool for architects, engineers, and construction professionals. However, the transition from traditional methods to BIM-centric approaches poses significant challenges, particularly in the context of existing structures. This research introduces a technical approach to bridge this gap through the development of algorithms that facilitate the automated transformation of 3D point cloud data into detailed BIM models. The core of this research lies in the application of algorithmic modeling and computational design methods to interpret and reconstruct point cloud data -a collection of data points in space, typically produced by 3D scanners- into comprehensive BIM models. This process involves complex stages of data cleaning, feature extraction, and geometric reconstruction, which are traditionally time-consuming and prone to human error. By automating these stages, our approach significantly enhances the efficiency and accuracy of creating BIM models for existing buildings. The proposed algorithms are designed to identify key architectural elements within point clouds, such as walls, windows, doors, and other structural components, and to translate these elements into their corresponding BIM representations. This includes the integration of parametric modeling techniques to ensure that the generated BIM models are not only geometrically accurate but also embedded with essential architectural and structural information. Our methodology has been tested on several real-world case studies, demonstrating its capability to handle diverse architectural styles and complexities. The results showcase a substantial reduction in time and resources required for BIM model generation while maintaining high levels of accuracy and detail. This research contributes significantly to the field of architectural technology by providing a scalable and efficient solution for the integration of existing structures into the BIM framework. It paves the way for more seamless and integrated workflows in renovation and heritage conservation projects, where the accuracy of existing conditions plays a critical role. The implications of this study extend beyond architectural practices, offering potential benefits in urban planning, facility management, and historic preservation.

Keywords: BIM, 3D point cloud, algorithmic modeling, computational design, architectural reconstruction

Procedia PDF Downloads 63
1342 Appraising the Evolution of Architecture as the Representation of Material Culture: The Nigerian Digest

Authors: Ikenna Emmanuel Idoko

Abstract:

Evolution and evolutionary processes are phenomena that have come to stay in the fabrics of the universal living, hence expressions such as universal evolution. These evolutions in the universe cut across all facets of human accomplishments, which architecture is a part of. There is a notion in political sciences that politics and the act of politicking are local, meaning that politics and political processes are unique and peculiar to a people, all dependent on their sociocultural makeup. The notion is also applicable in architecture because the architecture of a people is mostly dependent on several factors such as climatic conditions, material availability, socio-cultural beliefs and religious inclinations. Stemming from the cultural dimension, it is of course common knowledge that every society is driven by its own unique culture. The fusion of architecture and culture creates the actual uniqueness which underlines the “archi-cultural” representation of a people’s material culture. This paper is aimed at appraising architectural evolution as it affects the representation of the material culture of a people. For effective systemization of the aim, various spectacular kinds of literature were reviewed, coupled with the visitation and study of existing buildings in Nigeria to properly understand the live peculiarity in the architecture of the selected area. Since architecture needs a lot of pictorial pieces of evidence, pictures and graphical representations were extensively utilized, and channelled to aid a better understanding of the study. Amongst all, an important part of this paper is that it adds to the body of existing knowledge in the Arts and Humanities by speaking extensively to the tenets of cultural representation on buildings. Similarly, the field of architecture, specifically, traditional architecture, would be gaining some extra knowledge owing to the study of some important almost-neglected or forgotten architectural elements of various traditional buildings.

Keywords: evolution, architecture, material, culture

Procedia PDF Downloads 57
1341 Molecular Identification and Evolutionary Status of Lucilia bufonivora: An Obligate Parasite of Amphibians in Europe

Authors: Gerardo Arias, Richard Wall, Jamie Stevens

Abstract:

Lucilia bufonivora Moniez, is an obligate parasite of toads and frogs widely distributed in Europe. Its sister taxon Lucilia silvarum Meigen behaves mainly as a carrion breeder in Europe, however it has been reported as a facultative parasite of amphibians. These two closely related species are morphologically almost identical, which has led to misidentification, and in fact, it has been suggested that the amphibian myiasis cases by L. silvarum reported in Europe should be attributed to L. bufonivora. Both species remain poorly studied and their taxonomic relationships are still unclear. The identification of the larval specimens involved in amphibian myiasis with molecular tools and phylogenetic analysis of these two closely related species may resolve this problem. In this work seventeen unidentified larval specimens extracted from toad myiasis cases of the UK, the Netherlands and Switzerland were obtained, their COX1 (mtDNA) and EF1-α (Nuclear DNA) gene regions were amplified and then sequenced. The 17 larval samples were identified with both molecular markers as L. bufonivora. Phylogenetic analysis was carried out with 10 other blowfly species, including L. silvarum samples from the UK and USA. Bayesian Inference trees of COX1 and a combined-gene dataset suggested that L. silvarum and L. bufonivora are separate sister species. However, the nuclear gene EF1-α does not appear to resolve their relationships, suggesting that the rates of evolution of the mtDNA are much faster than those of the nuclear DNA. This work provides the molecular evidence for successful identification of L. bufonivora and a molecular analysis of the populations of this obligate parasite from different locations across Europe. The relationships with L. silvarum are discussed.

Keywords: calliphoridae, molecular evolution, myiasis, obligate parasitism

Procedia PDF Downloads 242
1340 Curve Fitting by Cubic Bezier Curves Using Migrating Birds Optimization Algorithm

Authors: Mitat Uysal

Abstract:

A new met heuristic optimization algorithm called as Migrating Birds Optimization is used for curve fitting by rational cubic Bezier Curves. This requires solving a complicated multivariate optimization problem. In this study, the solution of this optimization problem is achieved by Migrating Birds Optimization algorithm that is a powerful met heuristic nature-inspired algorithm well appropriate for optimization. The results of this study show that the proposed method performs very well and being able to fit the data points to cubic Bezier Curves with a high degree of accuracy.

Keywords: algorithms, Bezier curves, heuristic optimization, migrating birds optimization

Procedia PDF Downloads 337
1339 Chaotic Electronic System with Lambda Diode

Authors: George Mahalu

Abstract:

The Chua diode has been configured over time in various ways, using electronic structures like as operational amplifiers (OAs) or devices with gas or semiconductors. When discussing the use of semiconductor devices, tunnel diodes (Esaki diodes) are most often considered, and more recently, transistorized configurations such as lambda diodes. The paper-work proposed here uses in the modeling a lambda diode type configuration consisting of two Junction Field Effect Transistors (JFET). The original scheme is created in the MULTISIM electronic simulation environment and is analyzed in order to identify the conditions for the appearance of evolutionary unpredictability specific to nonlinear dynamic systems with chaos-induced behavior. The chaotic deterministic oscillator is one autonomous type, a fact that places it in the class of Chua’s type oscillators, the only significant and most important difference being the presence of a nonlinear device like the one mentioned structure above. The chaotic behavior is identified both by means of strange attractor-type trajectories and visible during the simulation and by highlighting the hypersensitivity of the system to small variations of one of the input parameters. The results obtained through simulation and the conclusions drawn are useful in the further research of ways to implement such constructive electronic solutions in theoretical and practical applications related to modern small signal amplification structures, to systems for encoding and decoding messages through various modern ways of communication, as well as new structures that can be imagined both in modern neural networks and in those for the physical implementation of some requirements imposed by current research with the aim of obtaining practically usable solutions in quantum computing and quantum computers.

Keywords: chaos, lambda diode, strange attractor, nonlinear system

Procedia PDF Downloads 86
1338 The Artificial Intelligence Technologies Used in PhotoMath Application

Authors: Tala Toonsi, Marah Alagha, Lina Alnowaiser, Hala Rajab

Abstract:

This report is about the Photomath app, which is an AI application that uses image recognition technology, specifically optical character recognition (OCR) algorithms. The (OCR) algorithm translates the images into a mathematical equation, and the app automatically provides a step-by-step solution. The application supports decimals, basic arithmetic, fractions, linear equations, and multiple functions such as logarithms. Testing was conducted to examine the usage of this app, and results were collected by surveying ten participants. Later, the results were analyzed. This paper seeks to answer the question: To what level the artificial intelligence features are accurate and the speed of process in this app. It is hoped this study will inform about the efficiency of AI in Photomath to the users.

Keywords: photomath, image recognition, app, OCR, artificial intelligence, mathematical equations.

Procedia PDF Downloads 171
1337 Delay-Independent Closed-Loop Stabilization of Neutral System with Infinite Delays

Authors: Iyai Davies, Olivier L. C. Haas

Abstract:

In this paper, the problem of stability and stabilization for neutral delay-differential systems with infinite delay is investigated. Using Lyapunov method, new delay-independent sufficient condition for the stability of neutral systems with infinite delay is obtained in terms of linear matrix inequality (LMI). Memory-less state feedback controllers are then designed for the stabilization of the system using the feasible solution of the resulting LMI, which are easily solved using any optimization algorithms. Numerical examples are given to illustrate the results of the proposed methods.

Keywords: infinite delays, Lyapunov method, linear matrix inequality, neutral systems, stability

Procedia PDF Downloads 431
1336 Engineering Optimization of Flexible Energy Absorbers

Authors: Reza Hedayati, Meysam Jahanbakhshi

Abstract:

Elastic energy absorbers which consist of a ring-liked plate and springs can be a good choice for increasing the impact duration during an accident. In the current project, an energy absorber system is optimized using four optimizing methods Kuhn-Tucker, Sequential Linear Programming (SLP), Concurrent Subspace Design (CSD), and Pshenichny-Lim-Belegundu-Arora (PLBA). Time solution, convergence, Programming Length and accuracy of the results were considered to find the best solution algorithm. Results showed the superiority of PLBA over the other algorithms.

Keywords: Concurrent Subspace Design (CSD), Kuhn-Tucker, Pshenichny-Lim-Belegundu-Arora (PLBA), Sequential Linear Programming (SLP)

Procedia PDF Downloads 399
1335 Powerful Media: Reflection of Professional Audience

Authors: Hamide Farshad, Mohammadreza Javidi Abdollah Zadeh Aval

Abstract:

As a result of the growing penetration of the media into human life, a new role under the title of "audience" is defined in the social life .A kind of role which is dramatically changed since its formation. This article aims to define the audience position in the new media equations which is concluded to the transformation of the media role. By using the Library and Attributive method to study the history, the evolutionary outlook to the audience and the recognition of the audience and the media relation in the new media context is studied. It was perceived in past that public communication would result in receiving the audience. But after the emergence of the interactional media and transformation in the audience social life, a new kind of public communication is formed, and also the imaginary picture of the audience is replaced by the audience impact on the communication process. Part of this impact can be seen in the form of feedback which is one of the public communication elements. In public communication, the audience feedback is completely accepted. But in many cases, and along with the audience feedback, the media changes its direction; this direction shift is known as media feedback. At this state, the media and the audience are both doers and consistently change their positions in an interaction. With the greater number of the audience and the media, this process has taken a new role, and the role of this doer is sometimes taken by an audience while influencing another audience, or a media while influencing another media. In this article, this multiple public communication process is shown through representing a model under the title of ”The bilateral influence of the audience and the media.” Based on this model, the audience and the media power are not the two sides of a coin, and as a result, by accepting these two as the doers, the bilateral power of the audience and the media will be complementary to each other. Also more, the compatibility between the media and the audience is analyzed in the bilateral and interactional relation hypothesis, and by analyzing the action law hypothesis, the dos and don’ts of this role are defined, and media is obliged to know and accept them in order to be able to survive. They also have a determining role in the strategic studies of a media.

Keywords: audience, effect, media, interaction, action laws

Procedia PDF Downloads 487
1334 UAV Based Visual Object Tracking

Authors: Vaibhav Dalmia, Manoj Phirke, Renith G

Abstract:

With the wide adoption of UAVs (unmanned aerial vehicles) in various industries by the government as well as private corporations for solving computer vision tasks it’s necessary that their potential is analyzed completely. Recent advances in Deep Learning have also left us with a plethora of algorithms to solve different computer vision tasks. This study provides a comprehensive survey on solving the Visual Object Tracking problem and explains the tradeoffs involved in building a real-time yet reasonably accurate object tracking system for UAVs by looking at existing methods and evaluating them on the aerial datasets. Finally, the best trackers suitable for UAV-based applications are provided.

Keywords: deep learning, drones, single object tracking, visual object tracking, UAVs

Procedia PDF Downloads 159
1333 Algorithms for Fast Computation of Pan Matrix Profiles of Time Series Under Unnormalized Euclidean Distances

Authors: Jing Zhang, Daniel Nikovski

Abstract:

We propose an approximation algorithm called LINKUMP to compute the Pan Matrix Profile (PMP) under the unnormalized l∞ distance (useful for value-based similarity search) using double-ended queue and linear interpolation. The algorithm has comparable time/space complexities as the state-of-the-art algorithm for typical PMP computation under the normalized l₂ distance (useful for shape-based similarity search). We validate its efficiency and effectiveness through extensive numerical experiments and a real-world anomaly detection application.

Keywords: pan matrix profile, unnormalized euclidean distance, double-ended queue, discord discovery, anomaly detection

Procedia PDF Downloads 247
1332 Glushkov's Construction for Functional Subsequential Transducers

Authors: Aleksander Mendoza

Abstract:

Glushkov's construction has many interesting properties, and they become even more evident when applied to transducers. This article strives to show the vast range of possible extensions and optimisations for this algorithm. Special flavour of regular expressions is introduced, which can be efficiently converted to e-free functional subsequential weighted finite state transducers. Produced automata are very compact, as they contain only one state for each symbol (from input alphabet) of original expression and only one transition for each range of symbols, no matter how large. Such compactified ranges of transitions allow for efficient binary search lookup during automaton evaluation. All the methods and algorithms presented here were used to implement open-source compiler of regular expressions for multitape transducers.

Keywords: weighted automata, transducers, Glushkov, follow automata, regular expressions

Procedia PDF Downloads 162
1331 Hate Speech Detection Using Deep Learning and Machine Learning Models

Authors: Nabil Shawkat, Jamil Saquer

Abstract:

Social media has accelerated our ability to engage with others and eliminated many communication barriers. On the other hand, the widespread use of social media resulted in an increase in online hate speech. This has drastic impacts on vulnerable individuals and societies. Therefore, it is critical to detect hate speech to prevent innocent users and vulnerable communities from becoming victims of hate speech. We investigate the performance of different deep learning and machine learning algorithms on three different datasets. Our results show that the BERT model gives the best performance among all the models by achieving an F1-score of 90.6% on one of the datasets and F1-scores of 89.7% and 88.2% on the other two datasets.

Keywords: hate speech, machine learning, deep learning, abusive words, social media, text classification

Procedia PDF Downloads 136
1330 Novel Bioinspired Design to Capture Smoky CO2 by Reactive Absorption with Aqueous Scrubber

Authors: J. E. O. Hernandez

Abstract:

In the next 20 years, energy production by burning fuels will increase and so will the atmospheric concentration of CO2 and its well-known threats to life on Earth. The technologies available for capturing CO2 are still dubious and this keeps fostering an interest in bio-inspired approaches. The leading one is the application of carbonic anhydrase (CA) –a superfast biocatalyst able to convert up to one million molecules of CO2 into carbonates in water. However, natural CA underperforms when applied to real smoky CO2 in chimneys and, so far, the efforts to create superior CAs in the lab rely on screening methods running under pristine conditions at the micro level, which are far from resembling those in chimneys. For the evolution of man-made enzymes, selection rather than screening would be ideal but this is challenging because of the need for a suitable artificial environment that is also sustainable for our society. Herein we present the stepwise design and construction of a bioprocess (from bench-scale to semi-pilot) for evolutionary selection experiments. In this bioprocess, reaction and adsorption took place simultaneously at atmospheric pressure in a spray tower. The scrubbing solution was fed countercurrently by reusing municipal pressure and it was mainly prepared with water, carbonic anhydrase and calcium chloride. This bioprocess allowed for the enzymatic carbonation of smoky CO2; the reuse of process water and the recovery of solid carbonates without cooling of smoke, pretreatments, solvent amines and compression of CO2. The average yield of solid carbonates was 0.54 g min-1 or 12-fold the amount produced in serum bottles at lab bench scale. This bioprocess could be used as a tailor-made environment for driving the selection of superior CAs. The bioprocess and its match CA could be sustainably used to reduce global warming by CO2 emissions from exhausts.

Keywords: biological carbon capture and sequestration, carbonic anhydrase, directed evolution, global warming

Procedia PDF Downloads 193
1329 Mutational and Evolutionary Analysis of Interleukin-2 Gene in Four Pakistani Goat Breeds

Authors: Tanveer Hussain, Misbah Hussain, Masroor Ellahi Babar, Muhammad Traiq Pervez, Fiaz Hussain, Sana Zahoor, Rashid Saif

Abstract:

Interleukin 2 (IL-2) is a cytokine which is produced by activated T cells, play important role in immune response against antigen. It act in both autocrine and paracrine manner. It can stimulate B cells and various other phagocytic cells like monocytes, lymphokine-activated killer cells and natural killer cells. Acting in autocrine fashion, IL-2 protein plays a crucial role in proliferation of T cells. IL-2 triggers the release of pro and anti- inflammatory cytokines by activating several pathways. In present study, exon 1 of IL-2 gene of four local Pakistani breeds (Dera Din Panah, Beetal, Nachi and Kamori) from two provinces was amplified by using reported Ovine IL-2 primers, yielding PCR product of 501 bp. The sequencing of all samples was done to identify the polymorphisms in amplified region of IL-2 gene. Analysis of sequencing data resulted in identification of one novel nucleotide substitution (T→A) in amplified non-coding region of IL-2 gene. Comparison of IL-2 gene sequence of all four breeds with other goat breeds showed high similarity in sequence. While phylogenetic analysis of our local breeds with other mammals showed that IL-2 is a variable gene which has undergone many substitutions. This high substitution rate can be due to the decreased or increased changed selective pressure. These rapid changes can also lead to the change in function of immune system. This pioneering study of Pakistani goat breeds urge for further studies on immune system of each targeted breed for fully understanding the functional role of IL-2 in goat immunity.

Keywords: interleukin 2, mutational analysis, phylogeny, goat breeds, Pakistan

Procedia PDF Downloads 610
1328 Review and Comparison of Associative Classification Data Mining Approaches

Authors: Suzan Wedyan

Abstract:

Data mining is one of the main phases in the Knowledge Discovery Database (KDD) which is responsible of finding hidden and useful knowledge from databases. There are many different tasks for data mining including regression, pattern recognition, clustering, classification, and association rule. In recent years a promising data mining approach called associative classification (AC) has been proposed, AC integrates classification and association rule discovery to build classification models (classifiers). This paper surveys and critically compares several AC algorithms with reference of the different procedures are used in each algorithm, such as rule learning, rule sorting, rule pruning, classifier building, and class allocation for test cases.

Keywords: associative classification, classification, data mining, learning, rule ranking, rule pruning, prediction

Procedia PDF Downloads 537
1327 Analysis on Thermococcus achaeans with Frequent Pattern Mining

Authors: Jeongyeob Hong, Myeonghoon Park, Taeson Yoon

Abstract:

After the advent of Achaeans which utilize different metabolism pathway and contain conspicuously different cellular structure, they have been recognized as possible materials for developing quality of human beings. Among diverse Achaeans, in this paper, we compared 16s RNA Sequences of four different species of Thermococcus: Achaeans genus specialized in sulfur-dealing metabolism. Four Species, Barophilus, Kodakarensis, Hydrothermalis, and Onnurineus, live near the hydrothermal vent that emits extreme amount of sulfur and heat. By comparing ribosomal sequences of aforementioned four species, we found similarities in their sequences and expressed protein, enabling us to expect that certain ribosomal sequence or proteins are vital for their survival. Apriori algorithms and Decision Tree were used. for comparison.

Keywords: Achaeans, Thermococcus, apriori algorithm, decision tree

Procedia PDF Downloads 290
1326 The Use of Mobile Phone as Enhancement to Mark Multiple Choice Objectives English Grammar and Literature Examination: An Exploratory Case Study of Preliminary National Diploma Students, Abdu Gusau Polytechnic, Talata Mafara, Zamfara State, Nigeria

Authors: T. Abdulkadir

Abstract:

Most often, marking and assessment of multiple choice kinds of examinations have been opined by many as a cumbersome and herculean task to accomplished manually in Nigeria. Usually this may be in obvious nexus to the fact that mass numbers of candidates were known to take the same examination simultaneously. Eventually, marking such a mammoth number of booklets dared and dread even the fastest paid examiners who often undertake the job with the resulting consequences of stress and boredom. This paper explores the evolution, as well as the set aim to envision and transcend marking the Multiple Choice Objectives- type examination into a thing of creative recreation, or perhaps a more relaxing activity via the use of the mobile phone. A more “pragmatic” dimension method was employed to achieve this work, rather than the formal “in-depth research” based approach due to the “novelty” of the mobile-smartphone e-Marking Scheme discovery. Moreover, being an evolutionary scheme, no recent academic work shares a direct same topic concept with the ‘use of cell phone as an e-marking technique’ was found online; thus, the dearth of even miscellaneous citations in this work. Additional future advancements are what steered the anticipatory motive of this paper which laid the fundamental proposition. However, the paper introduces for the first time the concept of mobile-smart phone e-marking, the steps to achieve it, as well as the merits and demerits of the technique all spelt out in the subsequent pages.

Keywords: cell phone, e-marking scheme (eMS), mobile phone, mobile-smart phone, multiple choice objectives (MCO), smartphone

Procedia PDF Downloads 259
1325 Navigating Cyber Attacks with Quantum Computing: Leveraging Vulnerabilities and Forensics for Advanced Penetration Testing in Cybersecurity

Authors: Sayor Ajfar Aaron, Ashif Newaz, Sajjat Hossain Abir, Mushfiqur Rahman

Abstract:

This paper examines the transformative potential of quantum computing in the field of cybersecurity, with a focus on advanced penetration testing and forensics. It explores how quantum technologies can be leveraged to identify and exploit vulnerabilities more efficiently than traditional methods and how they can enhance the forensic analysis of cyber-attacks. Through theoretical analysis and practical simulations, this study highlights the enhanced capabilities of quantum algorithms in detecting and responding to sophisticated cyber threats, providing a pathway for developing more resilient cybersecurity infrastructures.

Keywords: cybersecurity, cyber forensics, penetration testing, quantum computing

Procedia PDF Downloads 67
1324 Increasing Photosynthetic H2 Production by in vivo Expression of Re-Engineered Ferredoxin-Hydrogenase Fusion Protein in the Green Alga Chlamydomonas reinhardtii

Authors: Dake Xiong, Ben Hankamer, Ian Ross

Abstract:

The most urgent challenge of our time is to replace the depleting resources of fossil fuels by sustainable environmentally friendly alternatives. Hydrogen is a promising CO2-neutral fuel for a more sustainable future especially when produced photo-biologically. Hydrogen can be photosynthetically produced in unicellular green alga like Chlamydomonas reinhardtii, catalysed by the inducible highly active and bidirectional [FeFe]-hydrogenase enzymes (HydA). However, evolutionary and physiological constraints severely restrict the hydrogen yield of algae for industrial scale-up, mainly due to its competition among other metabolic pathways on photosynthetic electrons. Among them, a major challenge to be resolved is the inferior competitiveness of hydrogen production (catalysed by HydA) with NADPH production (catalysed by ferredoxin-NADP+-reductase (FNR)), which is essential for cell growth and takes up ~95% of photosynthetic electrons. In this work, the in vivo hydrogen production efficiency of mutants with ferredoxin-hydrogenase (Fd*-HydA1*) fusion protein construct, where the electron donor ferredoxin (Fd*) is fused to HydA1* and expressed in the model organism C. reinhardtii was investigated. Once Fd*-HydA1* fusion gene is expressed in algal cells, the fusion enzyme is able to draw the redistributed photosynthetic electrons and use them for efficient hydrogen production. From preliminary data, mutants with Fd*-HydA1* transgene showed a ~2-fold increase in the photosynthetic hydrogen production rate compared with its parental strain, which only possesses the native HydA in vivo. Therefore, a solid method of having more efficient hydrogen production in microalgae can be achieved through the expression of the synthetic enzymes.

Keywords: Chlamydomonas reinhardtii, ferredoxin, fusion protein, hydrogen production, hydrogenase

Procedia PDF Downloads 262
1323 A Probabilistic View of the Spatial Pooler in Hierarchical Temporal Memory

Authors: Mackenzie Leake, Liyu Xia, Kamil Rocki, Wayne Imaino

Abstract:

In the Hierarchical Temporal Memory (HTM) paradigm the effect of overlap between inputs on the activation of columns in the spatial pooler is studied. Numerical results suggest that similar inputs are represented by similar sets of columns and dissimilar inputs are represented by dissimilar sets of columns. It is shown that the spatial pooler produces these results under certain conditions for the connectivity and proximal thresholds. Following the discussion of the initialization of parameters for the thresholds, corresponding qualitative arguments about the learning dynamics of the spatial pooler are discussed.

Keywords: hierarchical temporal memory, HTM, learning algorithms, machine learning, spatial pooler

Procedia PDF Downloads 345
1322 Unsupervised Learning of Spatiotemporally Coherent Metrics

Authors: Ross Goroshin, Joan Bruna, Jonathan Tompson, David Eigen, Yann LeCun

Abstract:

Current state-of-the-art classification and detection algorithms rely on supervised training. In this work we study unsupervised feature learning in the context of temporally coherent video data. We focus on feature learning from unlabeled video data, using the assumption that adjacent video frames contain semantically similar information. This assumption is exploited to train a convolutional pooling auto-encoder regularized by slowness and sparsity. We establish a connection between slow feature learning to metric learning and show that the trained encoder can be used to define a more temporally and semantically coherent metric.

Keywords: machine learning, pattern clustering, pooling, classification

Procedia PDF Downloads 456
1321 Pythagorean-Platonic Lattice Method for Finding all Co-Prime Right Angle Triangles

Authors: Anthony Overmars, Sitalakshmi Venkatraman

Abstract:

This paper presents a method for determining all of the co-prime right angle triangles in the Euclidean field by looking at the intersection of the Pythagorean and Platonic right angle triangles and the corresponding lattice that this produces. The co-prime properties of each lattice point representing a unique right angle triangle are then considered. This paper proposes a conjunction between these two ancient disparaging theorists. This work has wide applications in information security where cryptography involves improved ways of finding tuples of prime numbers for secure communication systems. In particular, this paper has direct impact in enhancing the encryption and decryption algorithms in cryptography.

Keywords: Pythagorean triples, platonic triples, right angle triangles, co-prime numbers, cryptography

Procedia PDF Downloads 239
1320 Rescheduling of Manufacturing Flow Shop under Different Types of Disruption

Authors: M. Ndeley

Abstract:

Now our days, Almost all manufacturing facilities need to use production planning and scheduling systems to increase productivity and to reduce production costs. Real-life production operations are subject to a large number of unexpected disruptions that may invalidate the original schedules. In these cases, rescheduling is essential to minimize the impact on the performance of the system. In this work we consider flow shop layouts that have seldom been studied in the rescheduling literature. We generate and employ three types of disruption that interrupt the original schedules simultaneously. We develop rescheduling algorithms to finally accomplish the twofold objective of establishing a standard framework on the one hand; and proposing rescheduling methods that seek a good trade-off between schedule quality and stability on the other.

Keywords: flow shop scheduling, uncertainty, rescheduling, stability

Procedia PDF Downloads 440
1319 Simulink Library for Reference Current Generation in Active DC Traction Substations

Authors: Mihaela Popescu, Alexandru Bitoleanu

Abstract:

This paper is focused on the reference current calculation in the compensation mode of the active DC traction substations. The so-called p-q theory of the instantaneous reactive power is used as theoretical foundation. The compensation goal of total compensation is taken into consideration for the operation under both sinusoidal and nonsinusoidal voltage conditions, through the two objectives of unity power factor and perfect harmonic cancelation. Four blocks of reference current generation implement the conceived algorithms and they are included in a specific Simulink library, which is useful in a DSP dSPACE-based platform working under Matlab/Simulink. The simulation results validate the correctness of the implementation and fulfillment of the compensation tasks.

Keywords: active power filter, DC traction, p-q theory, Simulink library

Procedia PDF Downloads 674
1318 A Comparative Analysis of a Custom Optimization Experiment with Confidence Intervals in Anylogic and Optquest

Authors: Felipe Haro, Soheila Antar

Abstract:

This paper introduces a custom optimization experiment developed in AnyLogic, based on genetic algorithms, designed to ensure reliable optimization results by incorporating Montecarlo simulations and achieving a specified confidence level. To validate the custom experiment, we compared its performance with AnyLogic's built-in OptQuest optimization method across three distinct problems. Statistical analyses, including Welch's t-test, were conducted to assess the differences in performance. The results demonstrate that while the custom experiment shows advantages in certain scenarios, both methods perform comparably in others, confirming the custom approach as a reliable and effective tool for optimization under uncertainty.

Keywords: optimization, confidence intervals, Montecarlo simulation, optQuest, AnyLogic

Procedia PDF Downloads 18