Search results for: body image change
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12969

Search results for: body image change

12009 Day/Night Detector for Vehicle Tracking in Traffic Monitoring Systems

Authors: M. Taha, Hala H. Zayed, T. Nazmy, M. Khalifa

Abstract:

Recently, traffic monitoring has attracted the attention of computer vision researchers. Many algorithms have been developed to detect and track moving vehicles. In fact, vehicle tracking in daytime and in nighttime cannot be approached with the same techniques, due to the extreme different illumination conditions. Consequently, traffic-monitoring systems are in need of having a component to differentiate between daytime and nighttime scenes. In this paper, a HSV-based day/night detector is proposed for traffic monitoring scenes. The detector employs the hue-histogram and the value-histogram on the top half of the image frame. Experimental results show that the extraction of the brightness features along with the color features within the top region of the image is effective for classifying traffic scenes. In addition, the detector achieves high precision and recall rates along with it is feasible for real time applications.

Keywords: day/night detector, daytime/nighttime classification, image classification, vehicle tracking, traffic monitoring

Procedia PDF Downloads 555
12008 Behavioral Stages of Change in Calorie Balanced Dietary Intake; Effects of Decisional Balance and Self–Efficacy in Obese and Overweight Women

Authors: Abdmohammad Mousavi, Mohsen Shams, Mehdi Akbartabar Toori, Ali Mousavizadeh, Mohammad Ali Morowatisharifabad

Abstract:

Introduction: The effectiveness of Transtheoretical Model constructs on dietary behavior change has been subject to questions by some studies. The objective of this study was to determine the relationship between self–efficacy and decisional balance as mediator variables and transfer obese and overweight women among the stages of behavior change of calorie balanced dietary intake. Method: In this cross-sectional study, 448 obese and overweight 20-44 years old women were selected from three health centers in Yasuj, a city in south west of Iran. Anthropometric data were measured using standard techniques. Demographic, stages of change, self-efficacy and decisional balance data were collected by questionnaires and analyzed using One–Way ANOVA and Generalized Linear Models tests. Results: Demographic and anthropometric variables were not different significantly in different stages of change related to calorie intake except the pre-high school level of education (P=.047, OR=502, 95% CI= .255 ~ .990). Mean scores of Self-efficacy ( F(4.425)= 27.09, P= .000), decisional balance (F(4.394), P= .004), and pros (F(4.430)=5.33, P=000) were different significantly in five stages of change. However, the cons did not show a significant change in this regard (F(4.400)=1.83, P=.123). Discussion: Women movement through the stages of changes for calorie intake behavior can be predicted by self efficacy, decisional balance and pros.

Keywords: transtheoretical model, stages of change, self efficacy, decisional balance, calorie intake, women

Procedia PDF Downloads 428
12007 Wireless Capsule Endoscope - Antenna and Channel Characterization

Authors: Mona Elhelbawy, Mac Gray

Abstract:

Traditional wired endoscopy is an intrusive process that requires a long flexible tube to be inserted through the patient’s mouth while intravenously sedated. Only images of the upper 4 feet of stomach, colon, and rectum can be captured, leaving the remaining 20 feet of small intestines. Wireless capsule endoscopy offers a painless, non-intrusive, efficient and effective alternative to traditional endoscopy. In wireless capsule endoscopy (WCE), ingestible vitamin-pill-shaped capsules with imaging capabilities, sensors, batteries, and antennas are designed to send images of the gastrointestinal (GI) tract in real time. In this paper, we investigate the radiation performance and specific absorption rate (SAR) of a miniature conformal capsule antenna operating at the Medical Implant Communication Service (MICS) frequency band in the human body. We perform numerical simulations using the finite element method based commercial software, high-frequency structure simulator (HFSS) and the ANSYS human body model (HBM). We also investigate the in-body channel characteristics between the implantable capsule and an external antenna placed on the surface of the human body.

Keywords: IEEE 802.15.6, MICS, SAR, WCE

Procedia PDF Downloads 127
12006 Climate Change Effects on Agriculture

Authors: Abdellatif Chebboub

Abstract:

Agricultural production is sensitive to weather and thus directly affected by climate change. Plausible estimates of these climate change impacts require combined use of climate, crop, and economic models. Results from previous studies vary substantially due to differences in models, scenarios, and data. This paper is part of a collective effort to systematically integrate these three types of models. We focus on the economic component of the assessment, investigating how nine global economic models of agriculture represent endogenous responses to seven standardized climate change scenarios produced by two climate and five crop models. These responses include adjustments in yields, area, consumption, and international trade. We apply biophysical shocks derived from the Intergovernmental Panel on Climate Change’s representative concentration pathway with end-of-century radiative forcing of 8.5 W/m2. The mean biophysical yield effect with no incremental CO2 fertilization is a 17% reduction globally by 2050 relative to a scenario with unchanging climate. Endogenous economic responses reduce yield loss to 11%, increase area of major crops by 11%, and reduce consumption by 3%. Agricultural production, cropland area, trade, and prices show the greatest degree of variability in response to climate change, and consumption the lowest. The sources of these differences include model structure and specification; in particular, model assumptions about ease of land use conversion, intensification, and trade. This study identifies where models disagree on the relative responses to climate shocks and highlights research activities needed to improve the representation of agricultural adaptation responses to climate change.

Keywords: climate change, agriculture, weather change, danger of climate change

Procedia PDF Downloads 316
12005 Parametric Evaluation for the Optimization of Gastric Emptying Protocols Used in Health Care Institutions

Authors: Yakubu Adamu

Abstract:

The aim of this research was to assess the factors contributing to the need for optimisation of the gastric emptying protocols in nuclear medicine and molecular imaging (SNMMI) procedures. The objective is to suggest whether optimisation is possible and provide supporting evidence for the current imaging protocols of gastric emptying examination used in nuclear medicine. The research involved the use of some selected patients with 30 dynamic series for the image processing using ImageJ, and by so doing, the calculated half-time, retention fraction to the 60 x1 minute, 5 minute and 10-minute protocol, and other sampling intervals were obtained. Results from the study IDs for the gastric emptying clearance half-time were classified into normal, abnormal fast, and abnormal slow categories. In the normal category, which represents 50% of the total gastric emptying image IDs processed, their clearance half-time was within the range of 49.5 to 86.6 minutes of the mean counts. Also, under the abnormal fast category, their clearance half-time fell between 21 to 43.3 minutes of the mean counts, representing 30% of the total gastric emptying image IDs processed, and the abnormal slow category had clearance half-time within the range of 138.6 to 138.6 minutes of the mean counts, representing 20%. The results indicated that the calculated retention fraction values from the 1, 5, and 10-minute sampling curves and the measured values of gastric emptying retention fraction from sampling curves of the study IDs had a normal retention fraction of <60% and decreased exponentially with an increase in time and it was evident with low percentages of retention fraction ratios of < 10% after the 4 hours. Thus, this study does not change categories suggesting that these values could feasibly be used instead of having to acquire actual images. Findings from the study suggest that the current gastric emptying protocol can be optimized by acquiring fewer images. The study recommended that the gastric emptying studies should be performed with imaging at a minimum of 0, 1, 2, and 4 hours after meal ingestion.

Keywords: gastric emptying, retention fraction, clearance halftime, optimisation, protocol

Procedia PDF Downloads 5
12004 Analysing Techniques for Fusing Multimodal Data in Predictive Scenarios Using Convolutional Neural Networks

Authors: Philipp Ruf, Massiwa Chabbi, Christoph Reich, Djaffar Ould-Abdeslam

Abstract:

In recent years, convolutional neural networks (CNN) have demonstrated high performance in image analysis, but oftentimes, there is only structured data available regarding a specific problem. By interpreting structured data as images, CNNs can effectively learn and extract valuable insights from tabular data, leading to improved predictive accuracy and uncovering hidden patterns that may not be apparent in traditional structured data analysis. In applying a single neural network for analyzing multimodal data, e.g., both structured and unstructured information, significant advantages in terms of time complexity and energy efficiency can be achieved. Converting structured data into images and merging them with existing visual material offers a promising solution for applying CNN in multimodal datasets, as they often occur in a medical context. By employing suitable preprocessing techniques, structured data is transformed into image representations, where the respective features are expressed as different formations of colors and shapes. In an additional step, these representations are fused with existing images to incorporate both types of information. This final image is finally analyzed using a CNN.

Keywords: CNN, image processing, tabular data, mixed dataset, data transformation, multimodal fusion

Procedia PDF Downloads 123
12003 Understanding the Influence of Social Media on Individual’s Quality of Life Perceptions

Authors: Biljana Marković

Abstract:

Social networks are an integral part of our everyday lives, becoming an indispensable medium for communication in personal and business environments. New forms and ways of communication change the general mindset and significantly affect the quality of life of individuals. Quality of life is perceived as an abstract term, but often people are not aware that they directly affect the quality of their own lives, making minor but significant everyday choices and decisions. Quality of life can be defined broadly, but in the widest sense, it involves a subjective sense of satisfaction with one's life. Scientific knowledge about the impact of social networks on self-assessment of the quality of life of individuals is only just beginning to be researched. Available research indicates potential benefits as well as a number of disadvantages. In the context of the previous claims, the focus of the study conducted by the authors of this paper focuses on analyzing the impact of social networks on individual’s self-assessment of quality of life and the correlation between time spent on social networks, and the choice of content that individuals choose to share to present themselves. Moreover, it is aimed to explain how much and in what ways they critically judge the lives of others online. The research aspires to show the positive as well as negative aspects that social networks, primarily Facebook and Instagram, have on creating a picture of individuals and how they compare themselves with others. The topic of this paper is based on quantitative research conducted on a representative sample. An analysis of the results of the survey conducted online has elaborated a hypothesis which claims that content shared by individuals on social networks influences the image they create about themselves. A comparative analysis of the results obtained with the results of similar research has led to the conclusion about the synergistic influence of social networks on the feeling of the quality of life of respondents. The originality of this work is reflected in the approach of conducting research by examining attitudes about an individual's life satisfaction, the way he or she creates a picture of himself/herself through social networks, the extent to which he/she compares herself/himself with others, and what social media applications he/she uses. At the cognitive level, scientific contributions were made through the development of information concepts on quality of life, and at the methodological level through the development of an original methodology for qualitative alignment of respondents' attitudes using statistical analysis. Furthermore, at the practical level through the application of concepts in assessing the creation of self-image and the image of others through social networks.

Keywords: quality of life, social media, self image, influence of social media

Procedia PDF Downloads 127
12002 Identification of Body Fluid at the Crime Scene by DNA Methylation Markers for Use in Forensic Science

Authors: Shirin jalili, Hadi Shirzad, Mahasti Modarresi, Samaneh Nabavi, Somayeh Khanjani

Abstract:

Identifying the source tissue of biological material found at crime scenes can be very informative in a number of cases. Despite their usefulness, current visual, catalytic, enzymatic, and immunologic tests for presumptive and confirmatory tissue identification are applicable only to a subset of samples, might suffer limitations such as low specificity, lack of sensitivity, and are substantially impacted by environmental insults. In addition their results are operator-dependent. Recently the possibility of discriminating body fluids using mRNA expression differences in tissues has been described but lack of long term stability of that Molecule and the need to normalize samples for each individual are limiting factors. The use of DNA should solve these issues because of its long term stability and specificity to each body fluid. Cells in the human body have a unique epigenome, which includes differences in DNA methylation in the promoter of genes. DNA methylation, which occurs at the 5′-position of the cytosine in CpG dinucleotides, has great potential for forensic identification of body fluids, because tissue-specific patterns of DNA methylation have been demonstrated, and DNA is less prone to degradation than proteins or RNA. Previous studies have reported several body fluid-specific DNA methylation markers.The presence or absence of a methyl group on the 5’ carbon of the cytosine pyridine ring in CpG dinucleotide regions called ‘CpG islands’ dictates whether the gene is expressed or silenced in the particular body fluid. Were described methylation patterns at tissue specific differentially methylated regions (tDMRs) to be stable and specific, making them excellent markers for tissue identification. The results demonstrate that methylation-based tissue identification is more than a proof-of-concept. The methodology holds promise as another viable forensic DNA analysis tool for characterization of biological materials.

Keywords: DNA methylation, forensic science, epigenome, tDMRs

Procedia PDF Downloads 429
12001 Recognition and Counting Algorithm for Sub-Regional Objects in a Handwritten Image through Image Sets

Authors: Kothuri Sriraman, Mattupalli Komal Teja

Abstract:

In this paper, a novel algorithm is proposed for the recognition of hulls in a hand written images that might be irregular or digit or character shape. Identification of objects and internal objects is quite difficult to extract, when the structure of the image is having bulk of clusters. The estimation results are easily obtained while going through identifying the sub-regional objects by using the SASK algorithm. Focusing mainly to recognize the number of internal objects exist in a given image, so as it is shadow-free and error-free. The hard clustering and density clustering process of obtained image rough set is used to recognize the differentiated internal objects, if any. In order to find out the internal hull regions it involves three steps pre-processing, Boundary Extraction and finally, apply the Hull Detection system. By detecting the sub-regional hulls it can increase the machine learning capability in detection of characters and it can also be extend in order to get the hull recognition even in irregular shape objects like wise black holes in the space exploration with their intensities. Layered hulls are those having the structured layers inside while it is useful in the Military Services and Traffic to identify the number of vehicles or persons. This proposed SASK algorithm is helpful in making of that kind of identifying the regions and can useful in undergo for the decision process (to clear the traffic, to identify the number of persons in the opponent’s in the war).

Keywords: chain code, Hull regions, Hough transform, Hull recognition, Layered Outline Extraction, SASK algorithm

Procedia PDF Downloads 349
12000 Climate Change and Land Grabbing

Authors: Akachi Odoemene

Abstract:

Climate change and land grabbing are tightly interconnected in ways that are both diverse and complex. They have impacted each other in significant ways too. Both phenomena are not only a political reality, but have diverse dire implications, especially for food and livelihood security of vulnerable populations in developing economies. The critical nexus and interactions of climate change and land grabbing remain one of the challenges of sustainable development in modern times. The nuanced understanding of the nexus, importance and implications of climate change and land grabbing are the primary focus of this chapter. It begins with conceptual clarifications, particularly arguing that the absence of some important principles of engagement underline and define a land grab. It also analyses and notes a good number of contemporary land deals as 'one-sided', in which wealthy entities connive with local elites to exploit and disposes rural poor populations. The paper not only examines both global and local factors that drive land grabbing and, in some cases, their connections with the incidence of climate change, but also explores their crucial links with such sector as agriculture. It is argued and exhibited in the paper why certain societies are susceptible to the incidence of climate change and land grabbing, while the overall consequences of these phenomena on the affected societies are further interrogated. The paper concludes that the lack of political will by global political leaders to effectively combat and resolve critical issues associated with both climate change and land grabbing remains a daunting challenge. It notes that these phenomena – climate change and land grabbing – if not abated, will certainly become another set of global tragic episodes to be regretted in the future.

Keywords: climate change, land grabbing, global governance, developing economies

Procedia PDF Downloads 292
11999 A Trends Analysis of Yatch Simulator

Authors: Jae-Neung Lee, Keun-Chang Kwak

Abstract:

This paper describes an analysis of Yacht Simulator international trends and also explains about Yacht. Examples of yacht Simulator using Yacht Simulator include image processing for totaling the total number of vehicles, edge/target detection, detection and evasion algorithm, image processing using SIFT (scale invariant features transform) matching, and application of median filter and thresholding.

Keywords: yacht simulator, simulator, trends analysis, SIFT

Procedia PDF Downloads 432
11998 Efficient Heuristic Algorithm to Speed Up Graphcut in Gpu for Image Stitching

Authors: Tai Nguyen, Minh Bui, Huong Ninh, Tu Nguyen, Hai Tran

Abstract:

GraphCut algorithm has been widely utilized to solve various types of computer vision problems. Its expensive computational cost encouraged many researchers to improve the speed of the algorithm. Recent works proposed schemes that work on parallel computing platforms such as CUDA. However, the problem of low convergence speed prevents the usage of GraphCut for real time applications. In this paper, we propose global suppression heuristic to boost the conver-gence process of the algorithm. A parallel implementation of GraphCut algorithm on CUDA designed for the image stitching problem is introduced. Our method achieves up to 3× time boost on the graph of size 80 × 480 compared to the best sequential GraphCut algorithm while achieving satisfactory stitched images, suitable for panorama applications. Our source code will be soon available for further research.

Keywords: CUDA, graph cut, image stitching, texture synthesis, maxflow/mincut algorithm

Procedia PDF Downloads 132
11997 The Image of Suan Sunandha Rajabhat University in Accordance with Graduates' Perceptions on the Graduation Ceremony Day

Authors: Waraphorn Sribuakaew, Chutikarn Sriviboon, Rosjana Chandhasa

Abstract:

The purpose of this research is to study the satisfaction level of graduates and factors that affect the image of Suan Sunandha Rajabhat University based on the perceptions of graduates on the graduation ceremony day. By studying the satisfaction of graduates, the image of Suan Sunandha Rajabhat University according to the graduates' perceptions and the loyalty to the university (in the aspects of intention to continue studying at a higher level, intention to recommend the university to a friend), the sample group used in this study was 1,000 graduates of Suan Sunandha Rajabhat University who participated on the 2019 graduation ceremony day. A questionnaire was utilized as a tool for data collection. By the use of computing software, the statistics used for data analysis were frequencies, percentage, mean, and standard deviation, One-Way ANOVA, and multiple regression analysis. Most of the respondents were graduates with a bachelor's degree, followed by graduates with a master's degree and PhD graduates, respectively. Major participants graduated from the Faculty of Management Sciences, followed by the Faculty of Humanities and Social Sciences and Faculty of Education, respectively. The graduates were satisfied on the ceremony day as a whole and rated each aspect at a satisfactory level. Formality, steps, and procedures were the aspects that graduates were most satisfied with, followed by graduation ceremony personnel and staff, venue, and facilities. On the perception of the graduates, the image of Suan Sunandha Rajabhat University was at a good level, while loyalty to the university was at a very high level. The intention of recommendation to others was at the highest level, followed by the intention to pursue further education at a very high level. The graduates graduating from different faculties have different levels of satisfaction on the graduation day with statistical significance at the level of 0.05. The image of Suan Sunandha Rajabhat University affected the satisfaction of graduates with statistical significance at the level of 0.01. The satisfactory level of graduates on the graduation ceremony day influenced the level of loyalty to the university with statistical significance at the level of 0.05.

Keywords: university image, loyalty to the university, intention to study higher education, intention to recommend the university to others, graduates' satisfaction

Procedia PDF Downloads 133
11996 A Convolutional Deep Neural Network Approach for Skin Cancer Detection Using Skin Lesion Images

Authors: Firas Gerges, Frank Y. Shih

Abstract:

Malignant melanoma, known simply as melanoma, is a type of skin cancer that appears as a mole on the skin. It is critical to detect this cancer at an early stage because it can spread across the body and may lead to the patient's death. When detected early, melanoma is curable. In this paper, we propose a deep learning model (convolutional neural networks) in order to automatically classify skin lesion images as malignant or benign. Images underwent certain pre-processing steps to diminish the effect of the normal skin region on the model. The result of the proposed model showed a significant improvement over previous work, achieving an accuracy of 97%.

Keywords: deep learning, skin cancer, image processing, melanoma

Procedia PDF Downloads 148
11995 Computer Aided Analysis of Breast Based Diagnostic Problems from Mammograms Using Image Processing and Deep Learning Methods

Authors: Ali Berkan Ural

Abstract:

This paper presents the analysis, evaluation, and pre-diagnosis of early stage breast based diagnostic problems (breast cancer, nodulesorlumps) by Computer Aided Diagnosing (CAD) system from mammogram radiological images. According to the statistics, the time factor is crucial to discover the disease in the patient (especially in women) as possible as early and fast. In the study, a new algorithm is developed using advanced image processing and deep learning method to detect and classify the problem at earlystagewithmoreaccuracy. This system first works with image processing methods (Image acquisition, Noiseremoval, Region Growing Segmentation, Morphological Operations, Breast BorderExtraction, Advanced Segmentation, ObtainingRegion Of Interests (ROIs), etc.) and segments the area of interest of the breast and then analyzes these partly obtained area for cancer detection/lumps in order to diagnosis the disease. After segmentation, with using the Spectrogramimages, 5 different deep learning based methods (specified Convolutional Neural Network (CNN) basedAlexNet, ResNet50, VGG16, DenseNet, Xception) are applied to classify the breast based problems.

Keywords: computer aided diagnosis, breast cancer, region growing, segmentation, deep learning

Procedia PDF Downloads 95
11994 Cross-Sectional Associations between Deprivation Status and Physical Activity, Dietary Behaviours, Health-Related Variables, and Health-Related Quality of Life among Children Aged 9-11 Years

Authors: Maria Cardova

Abstract:

Aim and objectives: The purpose of this studywas to explore to what extent the deprivation statusinfluenced children’s physical activity, dietary behaviour, and health outcomes such as weight status. Background: The United Kingdom’s childhood obesity rates are currently ranked among the highest in Europe. North West England deals with highest rates of childhood obesity. Data from the UK Millennium Cohort Study suggested a deprivation gradient to childhood obesity in England, with obesity rates being the highest in the most deprived areas. Traditionally, it has been individual conception of health, but the contemporary stance is that health behaviours affecting obesity are influenced by a broad range of factors operating at multiple levels. According to socio-ecological model of health behaviour, differences in obesity rates and health outcomes are likely explained by differences in lifestyle behaviours including physical activity and diet behaviours. However, higher rates of obesity among deprived children are not due to physical inactivity, in fact, most socially disadvantaged children are the most physically active. Poor diet including high consumption of fast food and sugar-sweetened beverages and low consumption of fruit and vegetables was found to be the most prevalent among adolescents living in poverty. Methods: This study adopted quantitative approach. It consisted of combination of basic demographic data, anthropometry, and questionnaires. Children (N = 165, mean age = 10.04 years; 53.33% female; 46.66% male) completed survey packs during school day including KIDSCREEN, Youth Activity Profile, Beverage and Snack Questionnaire, and Child Body Image Scale questionnaires as well as had anthropometric measurements taken including Body mass index, waist circumference, weight, and height. Children’s deprivation status was based on the English Indices of Multiple Deprivation scores of the school they attended. Results: Children from more deprived areas had higher weight status, waist circumference. Deprivation status had also effect on some dimensions of the KIDSCREEN questionnaire, such as that those from more deprived areas felt less socially accepted and bullied by their peers, had worse feelings about themselves such as body image, and more difficulty with school and learning. Children from more deprived areas reported higher rates of physical activity and also differences in snack and fruit and vegetable intake than their more affluent peers. Conclusion: Results demonstrated that, children living in the most-deprived areas appear to be at greater risk of unfavourable health-related variables and behaviours and are exposed to home and neighbourhood environments that are less conducive to health-promoting behaviours compared to their peers from less deprived areas. These findings indicate that children living in highly deprived areas represent an important group for future interventions designed to promote health-behaviours that would impact on the quality of life of the child and other health variables such as weight status.

Keywords: children, dietary behaviour, health, obesity, physical Activity, weight Status

Procedia PDF Downloads 134
11993 Image Ranking to Assist Object Labeling for Training Detection Models

Authors: Tonislav Ivanov, Oleksii Nedashkivskyi, Denis Babeshko, Vadim Pinskiy, Matthew Putman

Abstract:

Training a machine learning model for object detection that generalizes well is known to benefit from a training dataset with diverse examples. However, training datasets usually contain many repeats of common examples of a class and lack rarely seen examples. This is due to the process commonly used during human annotation where a person would proceed sequentially through a list of images labeling a sufficiently high total number of examples. Instead, the method presented involves an active process where, after the initial labeling of several images is completed, the next subset of images for labeling is selected by an algorithm. This process of algorithmic image selection and manual labeling continues in an iterative fashion. The algorithm used for the image selection is a deep learning algorithm, based on the U-shaped architecture, which quantifies the presence of unseen data in each image in order to find images that contain the most novel examples. Moreover, the location of the unseen data in each image is highlighted, aiding the labeler in spotting these examples. Experiments performed using semiconductor wafer data show that labeling a subset of the data, curated by this algorithm, resulted in a model with a better performance than a model produced from sequentially labeling the same amount of data. Also, similar performance is achieved compared to a model trained on exhaustive labeling of the whole dataset. Overall, the proposed approach results in a dataset that has a diverse set of examples per class as well as more balanced classes, which proves beneficial when training a deep learning model.

Keywords: computer vision, deep learning, object detection, semiconductor

Procedia PDF Downloads 136
11992 Improving the Performance of Deep Learning in Facial Emotion Recognition with Image Sharpening

Authors: Ksheeraj Sai Vepuri, Nada Attar

Abstract:

We as humans use words with accompanying visual and facial cues to communicate effectively. Classifying facial emotion using computer vision methodologies has been an active research area in the computer vision field. In this paper, we propose a simple method for facial expression recognition that enhances accuracy. We tested our method on the FER-2013 dataset that contains static images. Instead of using Histogram equalization to preprocess the dataset, we used Unsharp Mask to emphasize texture and details and sharpened the edges. We also used ImageDataGenerator from Keras library for data augmentation. Then we used Convolutional Neural Networks (CNN) model to classify the images into 7 different facial expressions, yielding an accuracy of 69.46% on the test set. Our results show that using image preprocessing such as the sharpening technique for a CNN model can improve the performance, even when the CNN model is relatively simple.

Keywords: facial expression recognittion, image preprocessing, deep learning, CNN

Procedia PDF Downloads 143
11991 Planning and Urban Climate Change Adaptation: Italian Literature Review

Authors: Mara Balestrieri

Abstract:

Climate change has long been the focus of attention for the growing impact of extreme weather events and global warming in many areas of the planet and the evidence of economic, social, and environmental damage caused by global warming. Nowadays, climate change is recognized as a critical global problem. Several initiatives have been undertaken over time to enhance the long theoretical debate and field experience in order to reduce Co2 emissions and contain climate alteration. However, the awareness that climate change is already taking place has led to a growing demand for adaptation. It is certainly a matter of anticipating the negative effects of climate change but, at the same time, implementing appropriate actions to prevent climate change-related damage, minimize the problems that may result, and also seize any opportunities that may arise. Consequently, adaptation has become a core element of climate policy and research. However, the attention to this issue has not developed in a uniform manner across countries. Some countries are further ahead than others. This paper examines the literature on climate change adaptation developed until 2018 in Italy, considering the urban dimension, to provide a framework for it, and to identify main topics and features. The papers were selected from Scopus and were analyzed through a matrix that we propose. Results demonstrate that adaptation to climate change studies attracted increasing attention from Italian scientific communities in the last years, although Italian scientific production is still quantitatively lower than in other countries and describes strengths and weaknesses in line with international panorama with respect to objectives, sectors, and problems.

Keywords: adaptation, bibliometric literature, climate change, urban studies

Procedia PDF Downloads 74
11990 Unsupervised Segmentation Technique for Acute Leukemia Cells Using Clustering Algorithms

Authors: N. H. Harun, A. S. Abdul Nasir, M. Y. Mashor, R. Hassan

Abstract:

Leukaemia is a blood cancer disease that contributes to the increment of mortality rate in Malaysia each year. There are two main categories for leukaemia, which are acute and chronic leukaemia. The production and development of acute leukaemia cells occurs rapidly and uncontrollable. Therefore, if the identification of acute leukaemia cells could be done fast and effectively, proper treatment and medicine could be delivered. Due to the requirement of prompt and accurate diagnosis of leukaemia, the current study has proposed unsupervised pixel segmentation based on clustering algorithm in order to obtain a fully segmented abnormal white blood cell (blast) in acute leukaemia image. In order to obtain the segmented blast, the current study proposed three clustering algorithms which are k-means, fuzzy c-means and moving k-means algorithms have been applied on the saturation component image. Then, median filter and seeded region growing area extraction algorithms have been applied, to smooth the region of segmented blast and to remove the large unwanted regions from the image, respectively. Comparisons among the three clustering algorithms are made in order to measure the performance of each clustering algorithm on segmenting the blast area. Based on the good sensitivity value that has been obtained, the results indicate that moving k-means clustering algorithm has successfully produced the fully segmented blast region in acute leukaemia image. Hence, indicating that the resultant images could be helpful to haematologists for further analysis of acute leukaemia.

Keywords: acute leukaemia images, clustering algorithms, image segmentation, moving k-means

Procedia PDF Downloads 291
11989 Iris Cancer Detection System Using Image Processing and Neural Classifier

Authors: Abdulkader Helwan

Abstract:

Iris cancer, so called intraocular melanoma is a cancer that starts in the iris; the colored part of the eye that surrounds the pupil. There is a need for an accurate and cost-effective iris cancer detection system since the available techniques used currently are still not efficient. The combination of the image processing and artificial neural networks has a great efficiency for the diagnosis and detection of the iris cancer. Image processing techniques improve the diagnosis of the cancer by enhancing the quality of the images, so the physicians diagnose properly. However, neural networks can help in making decision; whether the eye is cancerous or not. This paper aims to develop an intelligent system that stimulates a human visual detection of the intraocular melanoma, so called iris cancer. The suggested system combines both image processing techniques and neural networks. The images are first converted to grayscale, filtered, and then segmented using prewitt edge detection algorithm to detect the iris, sclera circles and the cancer. The principal component analysis is used to reduce the image size and for extracting features. Those features are considered then as inputs for a neural network which is capable of deciding if the eye is cancerous or not, throughout its experience adopted by many training iterations of different normal and abnormal eye images during the training phase. Normal images are obtained from a public database available on the internet, “Mile Research”, while the abnormal ones are obtained from another database which is the “eyecancer”. The experimental results for the proposed system show high accuracy 100% for detecting cancer and making the right decision.

Keywords: iris cancer, intraocular melanoma, cancerous, prewitt edge detection algorithm, sclera

Procedia PDF Downloads 503
11988 Study on the Relationship between Obesity Indicators and Mineral Status in Qatari Adults

Authors: Alaa A. H. Shehada, Eman Abdelnasser Abouhassanein, Reem Mohsen Ali, Joyce J. Moawad, Hiba Bawadi, Abdelhamid Kerkadi

Abstract:

Background: The association between obesity and micronutrient deficiencies is well documented. Among minerals that have been widely studied: zinc, iron and magnesium. Objectives: This study aims to determine the association between obesity indices and mineral status among Qatari adults. Methods: Secondary data was obtained from Qatar Biobank. 414 healthy Qatari aged 20-50 years old were randomly selected from the database. Anthropometric measurements (WC, Weight, and height), body fat, and mineral status (Fe, Mg, Ca, K, Na) were obtained for all selected participants. Differences in anthropometric measurements and mineral status were analyzed by t-test or ANOVA. Spearman correlation coefficients were determined to assess the association between minerals and anthropometric variables. Statistical significance for the hypothesis tests was set at p <0.05. All statistical analysis was preformed using SPSS software version 23.0. Results: Iron, calcium, and sodium levels decreased with an increase in body mass index. Moreover, only iron showed a significant correlation with waist circumference, and waist to height ratio increased. Additionally, calcium, iron, magnesium, and sodium had a statistically significant negative correlation with total body fat percentage and trunk fat percentage. There were statistically significant negative correlations of anthropometrics with minerals. Conclusion: Body fat and trunk fat percentage had a significant inverse relationship with iron, calcium, sodium, and magnesium, while there was no correlation between body fat or trunk fat percentage with potassium.

Keywords: Qatar biobank, body fat distribution, mineral status, Qatari adults

Procedia PDF Downloads 147
11987 Ecotourism Adaptation Practices to Climate Change in the Context of Sustainable Management in Dana Biosphere Reserve, Jordan

Authors: Malek Jamaliah, Robert Powell

Abstract:

In spite of the influence of climate change on tourism destinations, particularly those rely heavily on natural resources, little attention paid to study the appropriate adaptation efforts to cope with, moderate and benefit from the impacts of climate change. The existing literature indicated that the research of climate change adaptation in the tourism and outdoor recreation field is at least 5-7 years behind other sectors such as water resources and agriculture. In Jordan, there are many observed changes in climate patterns such as higher temperatures, decreased precipitation and increased severity and frequency of drought. Dana Biosphere Reserve (DBR), the largest protected area and the major eco-tourism destination in Jordan, is facing climate change, which gradually degrading environment, shifting tourism seasons and changing livelihood and lifestyle of local communities. This study aims to assess climate change adaptation practices and policies used in DBR to cope with climate change related-risks. We conducted qualitative semi-structured interviews with key informants in DBR to assess climate change adaptation practices. Direct content analysis (or a priori content analysis) was used to determine the components and indicators of climate change adaptation. The results found that DBR has implemented a wide range of adaptation practices, including infrastructure development, diversification of tourism products, environmentally-friendly practices, visitor management, land use management, rainwater collection, environmental monitoring and research, environmental education and collaboration with stakeholders. These diverse practices implicitly and explicitly play an important role in coping with the social, economic and environmental impacts caused by climate change. Finally, this study demonstrated that climate change adaptation is closely related to sustainable management of eco-tourism.

Keywords: climate change adaptation, dana biosphere reserve, ecotourism, sustainable management

Procedia PDF Downloads 511
11986 Lab Bench for Synthetic Aperture Radar Imaging System

Authors: Karthiyayini Nagarajan, P. V. Ramakrishna

Abstract:

Radar Imaging techniques provides extensive applications in the field of remote sensing, majorly Synthetic Aperture Radar (SAR) that provide high resolution target images. This paper work puts forward the effective and realizable signal generation and processing for SAR images. The major units in the system include camera, signal generation unit, signal processing unit and display screen. The real radio channel is replaced by its mathematical model based on optical image to calculate a reflected signal model in real time. Signal generation realizes the algorithm and forms the radar reflection model. Signal processing unit provides range and azimuth resolution through matched filtering and spectrum analysis procedure to form radar image on the display screen. The restored image has the same quality as that of the optical image. This SAR imaging system has been designed and implemented using MATLAB and Quartus II tools on Stratix III device as a System (Lab Bench) that works in real time to study/investigate on radar imaging rudiments and signal processing scheme for educational and research purposes.

Keywords: synthetic aperture radar, radio reflection model, lab bench, imaging engineering

Procedia PDF Downloads 498
11985 Effectiveness of a Sports Nutrition Intervention for High-School Athletes: A Feasibility Study

Authors: Michael Ryan, Rosemary E. Borgerding, Kimberly L. Oliver

Abstract:

The objective of this study was to assess the effectiveness of a sports nutrition intervention on body composition in high-school athletes. The study aimed to improve the food and water intake of high-school athletes, evaluate the cost-effectiveness of the intervention, and assess changes in body fat. Data were collected through observations, questionnaires, and interviews. Additionally, bioelectrical impedance analysis was performed to assess the body composition of athletes both before and after the intervention. Athletes (n=25) participated in researcher-monitored training sessions three times a week over the course of 12 weeks. During these sessions, in addition to completing their auxiliary sports training, participants were exposed to educational interventions aimed at improving their nutrition. These included discussions regarding current eating habits, nutritional guidelines for athletes, and individualized recommendations. Food was also made available to athletes for consumption before and after practice. Meals of balanced macronutrient composition were prepared and provided to athletes on four separate occasions throughout the intervention, either prior to or following a competitive event such as a tournament or game. A paired t-test was used to determine the statistical significance of the changes in body fat percentage. The results showed that there was a statistically significant difference between pre and post-intervention body fat percentage (p= .006). Cohen's d of 0.603 was calculated, indicating a moderate effect size. In conclusion, this study provides evidence that a sports nutrition intervention that combines food availability, explicit prescription, and education can be effective in improving the body composition of high-school athletes. However, it's worth noting that this study had a small sample size, and the conclusions cannot be generalized to a larger population. Further research is needed to assess the scalability of this study. This preliminary study demonstrated the feasibility of this type of nutritional intervention and laid the groundwork for a larger, more extensive study to be conducted in the future.

Keywords: bioelectrical impedance, body composition, high-school athletes, sports nutrition, sports pedagogy

Procedia PDF Downloads 94
11984 Change Detection of Vegetative Areas Using Land Use Land Cover Derived from NDVI of Desert Encroached Areas

Authors: T. Garba, T. O. Quddus, Y. Y. Babanyara, M. A. Modibbo

Abstract:

Desertification is define as the changing of productive land into a desert as the result of ruination of land by man-induced soil erosion, which forces famers in the affected areas to move migrate or encourage into reserved areas in search of a fertile land for their farming activities. This study therefore used remote sensing imageries to determine the level of changes in the vegetative areas. To achieve that Normalized Difference of the Vegetative Index (NDVI), classified imageries and image slicing derived from landsat TM 1986, land sat ETM 1999 and Nigeria sat 1 2007 were used to determine changes in vegetations. From the Classified imageries it was discovered that there a more natural vegetation in classified images of 1986 than that of 1999 and 2007. This finding is also future in the three NDVI imageries, it was discovered that there is increased in high positive pixel value from 0.04 in 1986 to 0.22 in 1999 and to 0.32 in 2007. The figures in the three histogram also indicted that there is increased in vegetative areas from 29.15 Km2 in 1986, to 60.58 Km2 in 1999 and then to 109 Km2 in 2007. The study recommends among other things that there is need to restore natural vegetation through discouraging of farming activities in and around the natural vegetation in the study area.

Keywords: vegetative index, classified imageries, change detection, landsat, vegetation

Procedia PDF Downloads 360
11983 Adapting Built Heritage to Address Climate Change: A Perspective from the Maltese Islands

Authors: Nadia Theuma

Abstract:

Climate change is a reality that has started to leave an impact on the physical environment as well as on the built environment, in particular built heritage. This paper explores the argument that climate change is also a trigger which can lead to identifying a number of creative solutions that can transform built heritage into sustainable buildings. Using the Maltese Islands, and in particular the city of Valletta which is also a World Heritage Site, this paper illustrates some of the innovative solutions that are being developed to make heritage buildings more sustainable and in doing so, mitigating the negative impacts of climate change. The paper looks in detail at the most notable initiatives being developed, their implementation and application, which at times is not easy considering the restrictions within protected built heritage areas and the positive impacts that they will have on visitor experience and overall sustainability of the Maltese tourism product. The paper will conclude by outlining how these solutions can be adapted to buildings with similar climatic conditions.

Keywords: built heritage, creative solutions, climate change, Maltese Islands

Procedia PDF Downloads 290
11982 Design and Implementation of a Lab Bench for Synthetic Aperture Radar Imaging System

Authors: Karthiyayini Nagarajan, P. V. RamaKrishna

Abstract:

Radar Imaging techniques provides extensive applications in the field of remote sensing, majorly Synthetic Aperture Radar(SAR) that provide high resolution target images. This paper work puts forward the effective and realizable signal generation and processing for SAR images. The major units in the system include camera, signal generation unit, signal processing unit and display screen. The real radio channel is replaced by its mathematical model based on optical image to calculate a reflected signal model in real time. Signal generation realizes the algorithm and forms the radar reflection model. Signal processing unit provides range and azimuth resolution through matched filtering and spectrum analysis procedure to form radar image on the display screen. The restored image has the same quality as that of the optical image. This SAR imaging system has been designed and implemented using MATLAB and Quartus II tools on Stratix III device as a System(lab bench) that works in real time to study/investigate on radar imaging rudiments and signal processing scheme for educational and research purposes.

Keywords: synthetic aperture radar, radio reflection model, lab bench

Procedia PDF Downloads 468
11981 Effects of Climate Change on Hydraulic Design Methods of Railway Infrastructures

Authors: Chiara Cesali

Abstract:

The effects of climate change are increasingly evident: increases in temperature (i.e. global warming), greater frequency of extreme weather events, i.e. storms, floods, which often affect transport infrastructures. Large-scale climatological models with long-term horizons (up to 2100) show the possibility of significant increases in precipitation in the future, according to the greenhouse gas emissions scenarios from IPCC. Consequently, the insufficiency of existing hydraulic works (i.e. bridges, culverts, drainage systems) may be more frequent, or those currently being designed may become insufficient in the future. Thus, the hydraulic design methods of transport infrastructure must begin to take into account the influence of climate change. To this purpose, criteria for applying to the hydraulic design of a railway infrastructure some of the approaches currently available for determining design rainfall intensity and/or peak discharge flow on the basis of possible climate change scenarios are defined and proposed in the paper. Some application cases are also described.

Keywords: climate change, hydraulic design, precipitation, railway

Procedia PDF Downloads 179
11980 Psychoanalytic Understanding of the Autistic Self

Authors: Aastha Chaudhry

Abstract:

This continuous structuring of the ego through the developmental ages, starting with the body, has been understood through various perspectives from the object-relations world. Klein, Ogden, Winnicott to name a few, have been masters at helping mark a trajectory for the self to come to fruition. However, what constitutes those states, those relational structures, the dynamics of transference and the concept of inner objects has been more or less left unexplored in the psychoanalytic developmental theory. In this paper, through the help of a case study, Ogden’s ideas of an autistic contagious position and Kleinian theory of object relations is proposed to visualize a lens that helps to understand the relationship of the autistic self and body and allows us to take a look at object relations through countertransference. With the help of case vignettes, an understanding of experience is seen as dominated in the autistic contagious position with the help of defensive structuring that is not only self-fulfilling and sensorial oriented, but is also a pre symbolic mode of relating to the other. The aim of this clinical, experiential study is to better understand the self-body and the self-other relationships, or the absence thereof, in the autistic world and states. The goal of the study was to find such a relationship between play, body, structuring of experience and an autistic self in these individuals through that. Aim being that psychotherapy is brought to fore in the world of autism. The method was case study with one on one intervention, that was psychodynamically informed and play therapy based. Some of the findings after a year of work with these individuals were that: in the absence of a shared vocabulary, communication in two contrasting individuals happens primarily through the assistance of the body. Somatic countertransference, for instance, is how one can be with someone in a therapeutic relationship – and with autistic adolescents it is a further complicated relationship. With a mind somewhere in infanthood, and body experiencing adulthood, it becomes a challenge for the therapist to meet the client where they are. With pre-verbal states, play becomes such a potential space where two individuals could meet – a safe ground for forces to be contained. Play, then, becomes a mode of communication with such a population.

Keywords: autism, psychoanalytic, play, self

Procedia PDF Downloads 132