Search results for: partially observable Markov decision processes
152 Assessment and Characterization of Dual-Hardening Adhesion Promoter for Self-Healing Mechanisms in Metal-Plastic Hybrid System
Authors: Anas Hallak, Latifa Seblini, Juergen Wilde
Abstract:
In mechatronics or sensor technology, plastic housings are used to protect sensitive components from harmful environmental influences, such as moisture, media, or reactive substances. Connections, preferably in the form of metallic lead-frame structures, through the housing wall are required for their electrical supply or control. In this system, an insufficient connection between the plastic component, e.g., Polyamide66, and the metal surface, e.g., copper, due to the incompatibility is dominating. As a result, leakage paths can occur along with the plastic-metal interface. Since adhesive bonding has been established as one of the most important joining processes and its use has expanded significantly, driven by the development of improved high-performance adhesives and bonding techniques, this technology has been involved in metal-plastic hybrid structures. In this study, an epoxy bonding agent from DELO (DUALBOND LT2266) has been used to improve the mechanical and chemical binding between the metal and the polymer. It is an adhesion promoter with two reaction stages. In these, the first stage provides fixation to the lead frame directly after the coating step, which can be done by UV-Exposure for a few seconds. In the second stage, the material will be thermally hardened during injection molding. To analyze the two reaction stages of the primer, dynamic DSC experiments were carried out and correlated with Fourier-transform infrared spectroscopy measurements. Furthermore, the number of crosslinking bonds formed in the system in each reaction stage has also been estimated by a rheological characterization. Those investigations have been performed with different times of UV exposure: 12, 96 s and in an industrial preferred temperature range from -20 to 175°C. The shear viscosity values of primer have been measured as a function of temperature and exposure times. For further interpretation, the storage modulus values have been calculated, and the so-called Booij–Palmen plot has been sketched. The next approach in this study is the self-healing mechanisms in the hydride system in which the primer should flow into micro-damage such as interface, cracks, inhibit them from growing, and close them. The ability of the primer to flow in and penetrate defined capillaries made in Ultramid was investigated. Holes with a diameter of 0.3 mm were produced in injection-molded A3EG7 plates with 4 mm thickness. A copper substrate coated with the DUALBOND was placed on the A3EG7 plate and pressed with a certain force. Metallographic analyses were carried out to verify the filling grade, which showed an almost 95% filling ratio of the capillaries. Finally, to estimate the self-healing mechanism in metal-plastic hybrid systems, characterizations have been done on a simple geometry with a metal inlay developed by the Institute of Polymer Technology in Friedrich-Alexander-University. The specimens have been modified with tungsten wire which was to be pulled out after the injection molding to create a micro-hole in the specimen at the interface between the primer and the polymer. The capability of the primer to heal those micro-cracks upon heating, pressing, and thermal aging has been characterized through metallographic analyses.Keywords: hybrid structures, self-healing, thermoplastic housing, adhesive
Procedia PDF Downloads 193151 Finite Element Modelling and Optimization of Post-Machining Distortion for Large Aerospace Monolithic Components
Authors: Bin Shi, Mouhab Meshreki, Grégoire Bazin, Helmi Attia
Abstract:
Large monolithic components are widely used in the aerospace industry in order to reduce airplane weight. Milling is an important operation in manufacturing of the monolithic parts. More than 90% of the material could be removed in the milling operation to obtain the final shape. This results in low rigidity and post-machining distortion. The post-machining distortion is the deviation of the final shape from the original design after releasing the clamps. It is a major challenge in machining of the monolithic parts, which costs billions of economic losses every year. Three sources are directly related to the part distortion, including initial residual stresses (RS) generated from previous manufacturing processes, machining-induced RS and thermal load generated during machining. A finite element model was developed to simulate a milling process and predicate the post-machining distortion. In this study, a rolled-aluminum plate AA7175 with a thickness of 60 mm was used for the raw block. The initial residual stress distribution in the block was measured using a layer-removal method. A stress-mapping technique was developed to implement the initial stress distribution into the part. It is demonstrated that this technique significantly accelerates the simulation time. Machining-induced residual stresses on the machined surface were measured using MTS3000 hole-drilling strain-gauge system. The measured RS was applied on the machined surface of a plate to predict the distortion. The predicted distortion was compared with experimental results. It is found that the effect of the machining-induced residual stress on the distortion of a thick plate is very limited. The distortion can be ignored if the wall thickness is larger than a certain value. The RS generated from the thermal load during machining is another important factor causing part distortion. Very limited number of research on this topic was reported in literature. A coupled thermo-mechanical FE model was developed to evaluate the thermal effect on the plastic deformation of a plate. A moving heat source with a feed rate was used to simulate the dynamic cutting heat in a milling process. When the heat source passed the part surface, a small layer was removed to simulate the cutting operation. The results show that for different feed rates and plate thicknesses, the plastic deformation/distortion occurs only if the temperature exceeds a critical level. It was found that the initial residual stress has a major contribution to the part distortion. The machining-induced stress has limited influence on the distortion for thin-wall structure when the wall thickness is larger than a certain value. The thermal load can also generate part distortion when the cutting temperature is above a critical level. The developed numerical model was employed to predict the distortion of a frame part with complex structures. The predictions were compared with the experimental measurements, showing both are in good agreement. Through optimization of the position of the part inside the raw plate using the developed numerical models, the part distortion can be significantly reduced by 50%.Keywords: modelling, monolithic parts, optimization, post-machining distortion, residual stresses
Procedia PDF Downloads 54150 Establishment of a Classifier Model for Early Prediction of Acute Delirium in Adult Intensive Care Unit Using Machine Learning
Authors: Pei Yi Lin
Abstract:
Objective: The objective of this study is to use machine learning methods to build an early prediction classifier model for acute delirium to improve the quality of medical care for intensive care patients. Background: Delirium is a common acute and sudden disturbance of consciousness in critically ill patients. After the occurrence, it is easy to prolong the length of hospital stay and increase medical costs and mortality. In 2021, the incidence of delirium in the intensive care unit of internal medicine was as high as 59.78%, which indirectly prolonged the average length of hospital stay by 8.28 days, and the mortality rate is about 2.22% in the past three years. Therefore, it is expected to build a delirium prediction classifier through big data analysis and machine learning methods to detect delirium early. Method: This study is a retrospective study, using the artificial intelligence big data database to extract the characteristic factors related to delirium in intensive care unit patients and let the machine learn. The study included patients aged over 20 years old who were admitted to the intensive care unit between May 1, 2022, and December 31, 2022, excluding GCS assessment <4 points, admission to ICU for less than 24 hours, and CAM-ICU evaluation. The CAMICU delirium assessment results every 8 hours within 30 days of hospitalization are regarded as an event, and the cumulative data from ICU admission to the prediction time point are extracted to predict the possibility of delirium occurring in the next 8 hours, and collect a total of 63,754 research case data, extract 12 feature selections to train the model, including age, sex, average ICU stay hours, visual and auditory abnormalities, RASS assessment score, APACHE-II Score score, number of invasive catheters indwelling, restraint and sedative and hypnotic drugs. Through feature data cleaning, processing and KNN interpolation method supplementation, a total of 54595 research case events were extracted to provide machine learning model analysis, using the research events from May 01 to November 30, 2022, as the model training data, 80% of which is the training set for model training, and 20% for the internal verification of the verification set, and then from December 01 to December 2022 The CU research event on the 31st is an external verification set data, and finally the model inference and performance evaluation are performed, and then the model has trained again by adjusting the model parameters. Results: In this study, XG Boost, Random Forest, Logistic Regression, and Decision Tree were used to analyze and compare four machine learning models. The average accuracy rate of internal verification was highest in Random Forest (AUC=0.86), and the average accuracy rate of external verification was in Random Forest and XG Boost was the highest, AUC was 0.86, and the average accuracy of cross-validation was the highest in Random Forest (ACC=0.77). Conclusion: Clinically, medical staff usually conduct CAM-ICU assessments at the bedside of critically ill patients in clinical practice, but there is a lack of machine learning classification methods to assist ICU patients in real-time assessment, resulting in the inability to provide more objective and continuous monitoring data to assist Clinical staff can more accurately identify and predict the occurrence of delirium in patients. It is hoped that the development and construction of predictive models through machine learning can predict delirium early and immediately, make clinical decisions at the best time, and cooperate with PADIS delirium care measures to provide individualized non-drug interventional care measures to maintain patient safety, and then Improve the quality of care.Keywords: critically ill patients, machine learning methods, delirium prediction, classifier model
Procedia PDF Downloads 76149 Eco-Politics of Infrastructure Development in and Around Protected Areas in Kenya: The Case of Nairobi National Park
Authors: Teresa Wanjiru Mbatia
Abstract:
On 7th June 2011, the government Minister of Roads in Kenya announced the proposed construction of a major highway known as a southern bypass to run on the northern border of the Nairobi National Park. The following day on 8th June 2011, the chairperson of the Friends of Nairobi National Park (FONNAP) posted a protest statement on their website, with the heading, ‘Nairobi Park is Not a cake’ alerting its members and conservation groups, with the aim of getting support to the campaign against the government’s intention to hive off a section of the park for road construction. This was the first and earliest statement that led to a series of other events that culminated in conservationists and some other members of the public campaign against the government’s plan to hive off sections of the park to build road and railway infrastructure in or around the park. Together with other non-state actors, mostly non-governmental organisations in conservation/environment and tourism businesses, FoNNAP issued a series of other statements on social, print and electronic media to battle against road and railway construction. This paper examined the strategies, outcomes and interests of actors involved in opposing/proposing the development of transport infrastructure in and around the Nairobi National Park. Specifically, the objectives were to analyse the: (1) Arguments put forward by the eco-warriors to protest infrastructure development; (2) Background and interests of the eco-warriors; (3) Needs/interests and opinions of ordinary common citizens on transport infrastructural development, particularly in and around the urban nature reserve and (4) Final outcomes of the eco-politics surrounding infrastructure development in and around Nairobi National Park. The methodological approach used was environmental history and the social construction of nature. The study collected combined qualitative data using four main approaches, the grounded theory approach, narratives, case studies and a phenomenological approach. The information collected was analysed using critical discourse analysis. The major findings of the study were that under the guise of “public participation,” influential non-state actors have the capacity to perpetuate social-spatial inequalities in the form of curtailing the majority from accessing common public goods. A case in point in this study is how the efforts of powerful conservationists, environmentalists, and tourism businesspersons managed to stall the construction of much-needed road and railway infrastructure severally through litigations in lengthy environmental court processes involving injunctions and stop orders to the government bodies in charge. Moreover, powerful non-state actors were found to have formed informal and sometimes formal coalitions with politicians with selfish interests, which serves to deepen the exclusionary practices and the common good. The study concludes that mostly composed of certain types of elites (NGOs, business communities, politicians and privileged social-cultural groups), non-state actors have used participatory policies to advance their own interests at the expense of the majority whom they claim to represent. These practices are traced to the historically unjust social, political, and economic forces involved in the production of space in Nairobi.Keywords: eco-politics, exclusion, infrastructure, Nairobi national park, non-state actors, protests
Procedia PDF Downloads 179148 Effect of Land Use and Abandonment on Soil Carbon and Nitrogen Depletion by Runoff in Shallow Soils under Semi-Arid Mediterranean Climate
Authors: Mohamed Emran, Giovanni Pardini, Maria Gispert, Mohamed Rashad
Abstract:
Land use and abandonment in semi-arid degraded ecosystems may cause regressive dynamics in vegetation cover affecting organic matter contents, soil nutrients and structural stability, thus reducing soil resistance to erosion. Mediterranean areas are generally subjected to climatic fluctuations, which modify soil conditions and hydrological processes, such as runoff and water infiltration within the upper soil horizons. Low erosion rates occur in very fragile and shallow soils with minor clay content progressively decrease organic carbon C and nitrogen N pools in the upper soil horizons. Seven soils were selected representing variant context of land use and abandonment at the Cap de Creus Peninsula, Catalonia, NE Spain, from recent cultivated vines and olive groves, mid abandoned forests standing under cork and pine trees, pasture to late abandoned Cistus and Erica scrubs. The aim of this work was to study the effect of changes in land use and abandonment on the depletion of soil organic carbon and nitrogen transported by runoff water in shallow soils after natural rainfall events during two years with different rainfall patterns (1st year with low rainfall and 2nd year with high rainfall) by i) monitoring the most significant soil erosion parameters at recorded rainfall events, ii) studying the most relevant soil physical and chemical characteristics on seasonal basis and iii) analysing the seasonal trends of depleted carbon and nitrogen and their interaction with soil surface compaction parameters. Significant seasonal variability was observed in the relevant soil physical and chemical parameters and soil erosion parameters in all soils to establish their evolution under land use and abandonment during two years of different rainfall patterns (214 and 487 mm per year), giving important indications on soil response to rainfall impacts. Erosion rates decreased significantly with the increasing of soil C and N under low and high rainfall. In cultivated soils, C and N depletion increased by 144% and 115%, respectively by 13% increase in erosion rates during the 1st year with respect to the 2nd year. Depleted C and N were proportionally higher in soils under vines and olive with vulnerable soil structure and low soil resilience leading to degradation, altering nutrients cycles and causing adverse impact on environmental quality. Statistical analysis underlined that, during the 1st year, soil surface was less effective in preserving stocks of organic resources leading to higher susceptibility to erosion with consequent C and N depletion. During the 2nd year, higher organic reserve and water storage occurred despite the increasing of C and N loss with an effective contribution from soil surface compaction parameters. The overall estimation during the two years indicated clear differences among soils under vines, olive, cork and pines, suggesting on the one hand, that current cultivation practices are inappropriate and that reforestation with pines may delay the achievement of better soil conditions. On the other hand, the natural succession of vegetation under Cistus, pasture and Erica suggests the recovery of good soil conditions.Keywords: land abandonment, land use, nutrient's depletion, soil erosion
Procedia PDF Downloads 346147 Urban Sprawl: A Case Study of Suryapet Town in Nalgonda District of Telangana State, a Geoinformatic Approach
Authors: Ashok Kumar Lonavath, V. Sathish Kumar
Abstract:
Urban sprawl is the uncontrolled and uncoordinated outgrowth of towns and cities. The process of urban sprawl can be described by change in pattern over time, like proportional increase in built-up surface to population leading to rapid urban spatial expansion. Significant economic and livelihood opportunities in the urban areas results in lack of basic amenities due to the unplanned growth The patterns, processes, dynamic causes and consequences of sprawl can be explored and designed with the help of spatial planning support system. In India context the urban area is defined as the population more than 5000, density more than 400 persons per sq. km and 75% of the population is involved in non-agricultural occupations. India’s urban population is increasing at the rate of 2.35% pa. The class I town’s population of India according to 2011 census is 18.8% that accounts for 60.4% of total unban population. Similarly in Erstwhile Andhra Pradesh it is 22.9% which accounts for 68.8% of total urban population. Suryapet town has historical recognition as ‘Gate Way of Telangana’ in the Indian State of Andhra Pradesh. The Municipality was constituted in 1952 as Grade-III, later upgraded into Grade-II in 1984 and to Grade-I in 1998. The area is 35 Sq.kms. Three major tanks located in three different directions and Musi River is flowing from a distance of 8 kms. The average ground water table is about 50m below ground. It is a fast growing town with a population of 1, 06,805 and 25,448 households. Density is 3051pp sq km, It is a Class I city as per population census. It secured the ISO 14001-2004 certificate for establishing and maintaining an environment-friendly system for solid waste disposal. It is the first municipality in the country to receive such a certificate. It won HUDCO award under environment management, award of appreciation and cash from Ministry of Housing and Poverty Elevation from Government of India and undivided Andhra Pradesh under UN Human Settlement Programme, Greentech Excellance award, Supreme Courts appreciation for solid waste management. Foreign delegates from different countries and also from various other states of India visited Suryapet municipality for study tour and training programs as part of their official visit Suryapet is located at 17°5’ North Latitude and 79°37’ East Longitude. The average elevation is 266m, annual mean temperature is 36°C and average rainfall is 821.0 mm. The people of this town are engaged in Commercial and agriculture activities hence the town has become a centre for marketing and stocking agricultural produce. It is also educational centre in this region. The present paper on urban sprawl is a theoretical framework to analyze the interaction of planning and governance on the extent of outgrowth and level of services. The GIS techniques, SOI Toposheet, satellite imageries and image analysis techniques are extensively used to explore the sprawl and measure the urban land-use. This paper concludes outlining the challenges in addressing urban sprawl while ensuring adequate level of services that planning and governance have to ensure towards achieving sustainable urbanization.Keywords: remote sensing, GIS, urban sprawl, urbanization
Procedia PDF Downloads 229146 Study on Aerosol Behavior in Piping Assembly under Varying Flow Conditions
Authors: Anubhav Kumar Dwivedi, Arshad Khan, S. N. Tripathi, Manish Joshi, Gaurav Mishra, Dinesh Nath, Naveen Tiwari, B. K. Sapra
Abstract:
In a nuclear reactor accident scenario, a large number of fission products may release to the piping system of the primary heat transport. The released fission products, mostly in the form of the aerosol, get deposited on the inner surface of the piping system mainly due to gravitational settling and thermophoretic deposition. The removal processes in the complex piping system are controlled to a large extent by the thermal-hydraulic conditions like temperature, pressure, and flow rates. These parameters generally vary with time and therefore must be carefully monitored to predict the aerosol behavior in the piping system. The removal process of aerosol depends on the size of particles that determines how many particles get deposit or travel across the bends and reach to the other end of the piping system. The released aerosol gets deposited onto the inner surface of the piping system by various mechanisms like gravitational settling, Brownian diffusion, thermophoretic deposition, and by other deposition mechanisms. To quantify the correct estimate of deposition, the identification and understanding of the aforementioned deposition mechanisms are of great importance. These mechanisms are significantly affected by different flow and thermodynamic conditions. Thermophoresis also plays a significant role in particle deposition. In the present study, a series of experiments were performed in the piping system of the National Aerosol Test Facility (NATF), BARC using metal aerosols (zinc) in dry environments to study the spatial distribution of particles mass and number concentration, and their depletion due to various removal mechanisms in the piping system. The experiments were performed at two different carrier gas flow rates. The commercial CFD software FLUENT is used to determine the distribution of temperature, velocity, pressure, and turbulence quantities in the piping system. In addition to the in-built models for turbulence, heat transfer and flow in the commercial CFD code (FLUENT), a new sub-model PBM (population balance model) is used to describe the coagulation process and to compute the number concentration along with the size distribution at different sections of the piping. In the sub-model coagulation kernels are incorporated through user-defined function (UDF). The experimental results are compared with the CFD modeled results. It is found that most of the Zn particles (more than 35 %) deposit near the inlet of the plenum chamber and a low deposition is obtained in piping sections. The MMAD decreases along the length of the test assembly, which shows that large particles get deposited or removed in the course of flow, and only fine particles travel to the end of the piping system. The effect of a bend is also observed, and it is found that the relative loss in mass concentration at bends is more in case of a high flow rate. The simulation results show that the thermophoresis and depositional effects are more dominating for the small and larger sizes as compared to the intermediate particles size. Both SEM and XRD analysis of the collected samples show the samples are highly agglomerated non-spherical and composed mainly of ZnO. The coupled model framed in this work could be used as an important tool for predicting size distribution and concentration of some other aerosol released during a reactor accident scenario.Keywords: aerosol, CFD, deposition, coagulation
Procedia PDF Downloads 144145 Enhancing Early Detection of Coronary Heart Disease Through Cloud-Based AI and Novel Simulation Techniques
Authors: Md. Abu Sufian, Robiqul Islam, Imam Hossain Shajid, Mahesh Hanumanthu, Jarasree Varadarajan, Md. Sipon Miah, Mingbo Niu
Abstract:
Coronary Heart Disease (CHD) remains a principal cause of global morbidity and mortality, characterized by atherosclerosis—the build-up of fatty deposits inside the arteries. The study introduces an innovative methodology that leverages cloud-based platforms like AWS Live Streaming and Artificial Intelligence (AI) to early detect and prevent CHD symptoms in web applications. By employing novel simulation processes and AI algorithms, this research aims to significantly mitigate the health and societal impacts of CHD. Methodology: This study introduces a novel simulation process alongside a multi-phased model development strategy. Initially, health-related data, including heart rate variability, blood pressure, lipid profiles, and ECG readings, were collected through user interactions with web-based applications as well as API Integration. The novel simulation process involved creating synthetic datasets that mimic early-stage CHD symptoms, allowing for the refinement and training of AI algorithms under controlled conditions without compromising patient privacy. AWS Live Streaming was utilized to capture real-time health data, which was then processed and analysed using advanced AI techniques. The novel aspect of our methodology lies in the simulation of CHD symptom progression, which provides a dynamic training environment for our AI models enhancing their predictive accuracy and robustness. Model Development: it developed a machine learning model trained on both real and simulated datasets. Incorporating a variety of algorithms including neural networks and ensemble learning model to identify early signs of CHD. The model's continuous learning mechanism allows it to evolve adapting to new data inputs and improving its predictive performance over time. Results and Findings: The deployment of our model yielded promising results. In the validation phase, it achieved an accuracy of 92% in predicting early CHD symptoms surpassing existing models. The precision and recall metrics stood at 89% and 91% respectively, indicating a high level of reliability in identifying at-risk individuals. These results underscore the effectiveness of combining live data streaming with AI in the early detection of CHD. Societal Implications: The implementation of cloud-based AI for CHD symptom detection represents a significant step forward in preventive healthcare. By facilitating early intervention, this approach has the potential to reduce the incidence of CHD-related complications, decrease healthcare costs, and improve patient outcomes. Moreover, the accessibility and scalability of cloud-based solutions democratize advanced health monitoring, making it available to a broader population. This study illustrates the transformative potential of integrating technology and healthcare, setting a new standard for the early detection and management of chronic diseases.Keywords: coronary heart disease, cloud-based ai, machine learning, novel simulation techniques, early detection, preventive healthcare
Procedia PDF Downloads 65144 Synthesis by Mechanical Alloying and Characterization of FeNi₃ Nanoalloys
Authors: Ece A. Irmak, Amdulla O. Mekhrabov, M. Vedat Akdeniz
Abstract:
There is a growing interest on the synthesis and characterization of nanoalloys since the unique chemical, and physical properties of nanoalloys can be tuned and, consequently, new structural motifs can be created by varying the type of constituent elements, atomic and magnetic ordering, as well as size and shape of the nanoparticles. Due to the fine size effects, magnetic nanoalloys have considerable attention with their enhanced mechanical, electrical, optical and magnetic behavior. As an important magnetic nanoalloy, the novel application area of Fe-Ni based nanoalloys is expected to be widened in the chemical, aerospace industry and magnetic biomedical applications. Noble metals have been using in biomedical applications for several years because of their surface plasmon properties. In this respect, iron-nickel nanoalloys are promising materials for magnetic biomedical applications because they show novel properties such as superparamagnetism and surface plasmon resonance property. Also, there is great attention for the usage Fe-Ni based nanoalloys as radar absorbing materials in aerospace and stealth industry due to having high Curie temperature, high permeability and high saturation magnetization with good thermal stability. In this study, FeNi₃ bimetallic nanoalloys were synthesized by mechanical alloying in a planetary high energy ball mill. In mechanical alloying, micron size powders are placed into the mill with milling media. The powders are repeatedly deformed, fractured and alloyed by high energy collision under the impact of balls until the desired composition and particle size is achieved. The experimental studies were carried out in two parts. Firstly, dry mechanical alloying with high energy dry planetary ball milling was applied to obtain FeNi₃ nanoparticles. Secondly, dry milling was followed by surfactant-assisted ball milling to observe the surfactant and solvent effect on the structure, size, and properties of the FeNi₃ nanoalloys. In the first part, the powder sample of iron-nickel was prepared according to the 1:3 iron to nickel ratio to produce FeNi₃ nanoparticles and the 1:10 powder to ball weight ratio. To avoid oxidation during milling, the vials had been filled with Ar inert gas before milling started. The powders were milled for 80 hours in total and the synthesis of the FeNi₃ intermetallic nanoparticles was succeeded by mechanical alloying in 40 hours. Also, regarding the particle size, it was found that the amount of nano-sized particles raised with increasing milling time. In the second part of the study, dry milling of the Fe and Ni powders with the same stoichiometric ratio was repeated. Then, to prevent agglomeration and to obtain smaller sized nanoparticles with superparamagnetic behavior, surfactants and solvent are added to the system, after 40-hour milling time, with the completion of the mechanical alloying. During surfactant-assisted ball milling, heptane was used as milling medium, and as surfactants, oleic acid and oleylamine were used in the high energy ball milling processes. The characterization of the alloyed particles in terms of microstructure, morphology, particle size, thermal and magnetic properties with respect to milling time was done by X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, vibrating-sample magnetometer, and differential scanning calorimetry.Keywords: iron-nickel systems, magnetic nanoalloys, mechanical alloying, nanoalloy characterization, surfactant-assisted ball milling
Procedia PDF Downloads 180143 Advantages of Matrix Solid Phase Dispersive (MSPD) Extraction Associated to MIPS versus MAE Liquid Extraction for the Simultaneous Analysis of PAHs, PCBs and Some Hydroxylated PAHs in Sediments
Authors: F. Portet-Koltalo, Y. Tian, I. Berger, C. Boulanger-Lecomte, A. Benamar, N. Machour
Abstract:
Sediments are complex environments which can accumulate a great variety of persistent toxic contaminants such as polychlorobiphenyles (PCBs), polycyclic aromatic hydrocarbons (PAHs) and some of their more toxic degradation metabolites such as hydroxylated PAHs (OH-PAHs). Owing to their composition, fine clayey sediments can be more difficult to extract than soils using conventional solvent extraction processes. So this study aimed to compare the potential of MSPD (matrix solid phase dispersive extraction) to extract PCBs, PAHs and OH-PAHs, in comparison with microwave assisted extraction (MAE). Methodologies: MAE extraction with various solvent mixtures was used to extract PCBs, PAHs and OH-PAHs from sediments in two runs, followed by two GC-MS analyses. MSPD consisted in crushing the dried sediment with dispersive agents, introducing the mixture in cartridges and eluting the target compounds with an appropriate volume of selected solvents. So MSPD combined with cartridges containing MIPs (molecularly imprinted polymers) designed for OH-PAHs was used to extract the three families of target compounds in only one run, followed by parallel analyses in GC-MS for PAHs/PCBs and HPLC-FLD for OH-PAHs. Results: MAE extraction was optimized to extract from clayey sediments, in two runs, PAHs/PCBs in one hand and OH-PAHs in the other hand. Indeed, the best conditions of extractions (mixtures of extracting solvents, temperature) were different if we consider the polarity and the thermodegradability of the different families of target contaminants: PAHs/PCBs were better extracted using an acetone/toluene 50/50 mixture at 130°C whereas OH-PAHs were better extracted using an acetonitrile/toluene 90/10 mixture at 100°C. Moreover, the two consecutive GC-MS analyses contributed to double the total analysis time. A matrix solid phase dispersive (MSPD) extraction procedure was also optimized, with the first objective of increasing the extraction recovery yields of PAHs and PCBs from fine-grained sediment. The crushing time (2-10 min), the nature of the dispersing agents added for purifying and increasing the extraction yields (Florisil, octadecylsilane, 3-chloropropyle, 4-benzylchloride), the nature and the volume of eluting solvents (methylene chloride, hexane, hexane/acetone…) were studied. It appeared that in the best conditions, MSPD was a better extraction method than MAE for PAHs and PCBs, with respectively, mean increases of 8.2% and 71%. This method was also faster, easier and less expensive. But the other advantage of MSPD was that it allowed to introduce easily, just after the first elution process of PAHs/PCBs, a step permitting the selective recovery of OH-PAHs. A cartridge containing MIPs designed for phenols was coupled to the cartridge containing the dispersed sediment, and various eluting solvents, different from those used for PAHs and PCBs, were tested to selectively concentrate and extract OH-PAHs. Thereafter OH-PAHs could be analyzed at the same time than PAHs and PCBs: the OH-PAH extract could be analyzed with HPLC-FLD, whereas the PAHs/PCBs extract was analyzed with GC-MS, adding only few minutes more to the total duration of the analytical process. Conclusion: MSPD associated to MIPs appeared to be an easy, fast and low expensive method, able to extract in one run a complex mixture of toxic apolar and more polar contaminants present in clayey fine-grained sediments, an environmental matrix which is generally difficult to analyze.Keywords: contaminated fine-grained sediments, matrix solid phase dispersive extraction, microwave assisted extraction, molecularly imprinted polymers, multi-pollutant analysis
Procedia PDF Downloads 354142 Genome-Scale Analysis of Streptomyces Caatingaensis CMAA 1322 Metabolism, a New Abiotic Stress-Tolerant Actinomycete
Authors: Suikinai Nobre Santos, Ranko Gacesa, Paul F. Long, Itamar Soares de Melo
Abstract:
Extremophilic microorganism are adapted to biotopes combining several stress factors (temperature, pressure, radiation, salinity and pH), which indicate the richness valuable resource for the exploitation of novel biotechnological processes and constitute unique models for investigations their biomolecules (1, 2). The above information encourages us investigate bioprospecting synthesized compounds by a noval actinomycete, designated thermotolerant Streptomyces caatingaensis CMAA 1322, isolated from sample soil tropical dry forest (Caatinga) in the Brazilian semiarid region (3-17°S and 35-45°W). This set of constrating physical and climatic factores provide the unique conditions and a diversity of well adapted species, interesting site for biotechnological purposes. Preliminary studies have shown the great potential in the production of cytotoxic, pesticidal and antimicrobial molecules (3). Thus, to extend knowledge of the genes clusters responsible for producing biosynthetic pathways of natural products in strain CMAA1322, whole-genome shotgun (WGS) DNA sequencing was performed using paired-end long sequencing with PacBio RS (Pacific Biosciences). Genomic DNA was extracted from a pure culture grown overnight on LB medium using the PureLink genomic DNA kit (Life Technologies). An approximately 3- to 20-kb-insert PacBio library was constructed and sequenced on an 8 single-molecule real-time (SMRT) cell, yielding 116,269 reads (average length, 7,446 bp), which were allocated into 18 contigs, with 142.11x coverage and N50 value of 20.548 bp (BioProject number PRJNA288757). The assembled data were analyzed by Rapid Annotations using Subsystems Technology (RAST) (4) the genome size was found to be 7.055.077 bp, comprising 6167 open reading frames (ORFs) and 413 subsystems. The G+C content was estimated to be 72 mol%. The closest-neighbors tool, available in RAST through functional comparison of the genome, revealed that strain CMAA1322 is more closely related to Streptomyces hygroscopicus ATCC 53653 (similarity score value, 537), S. violaceusniger Tu 4113 (score value, 483), S. avermitilis MA-4680 (score value, 475), S. albus J1074 (score value, 447). The Streptomyces sp. CMAA1322 genome contains 98 tRNA genes and 135 genes copies related to stress response, mainly osmotic stress (14), heat shock (16), oxidative stress (49). Functional annotation by antiSMASH version 3.0 (5) identified 41 clusters for secondary metabolites (including two clusters for lanthipeptides, ten clusters for nonribosomal peptide synthetases [NRPS], three clusters for siderophores, fourteen for polyketide synthetase [PKS], six clusters encoding a terpene, two clusters encoding a bacteriocin, and one cluster encoding a phenazine). Our work provide in comparative analyse of genome and extract produced (data no published) by lineage CMAA1322, revealing the potential of microorganisms accessed from extreme environments as Caatinga” to produce a wide range of biotechnological relevant compounds.Keywords: caatinga, streptomyces, environmental stresses, biosynthetic pathways
Procedia PDF Downloads 243141 Reduction and Smelting of Magnetic Fraction Obtained by Magnetic-Gravimetric-Separation (MGS) of Electric Arc Furnace Dust
Authors: Sara Scolari, Davide Mombelli, Gianluca Dall'Osto, Jasna Kastivnik, Gašper Tavčar, Carlo Mapelli
Abstract:
The EIT Raw Materials RIS-DustRec-II project aims to transform Electric Arc Furnace Dust (EAFD) into a valuable resource by overcoming the challenges associated with traditional recycling approaches. EAFD, a zinc-rich industrial by-product typically recycled by the Waelz process, contains complex oxides such as franklinite (ZnFe₂O₄), which hinder the efficient extraction of zinc, by also introducing other valuable elements (Fe, Ni, Cr, Cu, …) in the slag. The project aims to develop a multistage multidisciplinary approach to separate EAFD into two streams: a magnetic and non-magnetic one. In this paper the production of self-reducing briquettes from the magnetic stream of EAFD with a reducing agent, aiming to drive carbothermic reduction and recover iron as a usable alloy, was investigated. Research was focused on optimizing the magnetic and subsequent gravimetric separation (MGS) processes, followed by high-temperature smelting to evaluate reduction efficiency and phase separation. The characterization of selected two different raw EAFD samples and their magnetic-gravitational separation to isolate zinc- and iron-rich fractions was performed by X-ray diffraction and scanning electron microscope. The iron-enriched concentrates were then agglomerated into self-reducing briquettes by mixing them with either biochar (olive pomace pyrolyzed at 350 and 750°C and wood chips pyrolyzed at 750 °C) and a Cupola Furnace dust as reducing agents, combined with gelatinized corn starch as a binder. Cylindrical briquettes were produced and cured for 14 days to ensure structural integrity during subsequent thermal treatments. Smelting tests were carried out at 1400 °C in an inert argon atmosphere to assess the metallization efficiency and the separation between metal and slag phases. A carbon/oxides mass ratio of 0.262 (C/(ZnO+Fe₂O₃)) was used in these tests to maintain continuity with previous studies and to standardize reduction conditions. The magnetic and gravimetric separations effectively isolated zinc- and iron-enriched fractions, particularly for one of the two EAFD, where the concentration of Zn in the concentration fraction was reduced by 8 wt.% while Fe reached 45 wt.%. The reduction tests conducted at 1400 °C showed that the chosen carbon/oxides ratio was sufficient for the smelting of the reducible oxides within the briquettes. However, an important limitation became apparent: the amount of carbon, exceeding the stochiometric value, proved to be excessive for the effective coalescence of metal droplets, preventing clear metal-slag separation. To address this, further smelting tests were carried out in an air atmosphere rather than inert conditions to burn off excess carbon. This paper demonstrates the potential of controlled carbothermic reduction for EAFD recycling. By carefully optimizing the C/(ZnO+Fe₂O₃) ratio, the process can maximize metal recovery while achieving better separation of the metal and slag phases. This approach offers a promising alternative to traditional EAFD recycling methods, with further studies recommended to refine the parameters for industrial application.Keywords: biochars, electrical arc furnace dust, metallization, smelting
Procedia PDF Downloads 13140 A Perspective on Allelopathic Potential of Corylus avellana L.
Authors: Tugba G. Isin Ozkan, Yoshiharu Fujii
Abstract:
One of the most important constrains that decrease the crop yields are weeds. Increased amount and number of chemical herbicides are being utilized every day to control weeds. Chemical herbicides which cause environmental effects, and limitations on implementation of them have led to the nonchemical alternatives in the management of weeds. It is needed increasingly the application of allelopathy as a nonherbicidal innovation to control weed populations in integrated weed management. It is not only because of public concern about herbicide use, but also increased agricultural costs and herbicide resistance weeds. Allelopathy is defined as a common biological phenomenon, direct or indirect interaction which one plant or organism produces biochemicals influence the physiological processes of another neighboring plant or organism. Biochemicals involved in allelopathy are called allelochemicals that influence beneficially or detrimentally the growth, survival, development, and reproduction of other plant or organisms. All plant parts could have allelochemicals which are secondary plant metabolites. Allelochemicals are released to environment, influence the germination and seedling growth of neighbors' weeds; that is the way how allelopathy is applied for weed control. Crop cultivars have significantly different ability for inhibiting the growth of certain weeds. So, a high commercial value crop Corylus avellana L. and its byproducts were chosen to introduce for their allelopathic potential in this research. Edible nut of Corylus avellana L., commonly known as hazelnut is commercially valuable crop with byproducts; skin, hard shell, green leafy cover, and tree leaf. Research on allelopathic potential of a plant by using the sandwich bioassay method and investigation growth inhibitory activity is the first step to develop new and environmentally friendly alternatives for weed control. Thus, the objective of this research is to determine allelopathic potential of C. avellana L. and its byproducts by using sandwich method and to determine effective concentrations (EC) of their extracts for inducing half-maximum elongation inhibition on radicle of test plant, EC50. The sandwich method is reliable and fast bioassay, very useful for allelopathic screening under laboratory conditions. In experiments, lettuce (Lactuca sativa L.) seeds will be test plant, because of its high sensitivity to inhibition by allelochemicals and reliability for germination. In sandwich method, the radicle lengths of dry material treated lettuce seeds and control lettuce seeds will be measured and inhibition of radicle elongation will be determined. Lettuce seeds will also be treated by the methanol extracts of dry hazelnut parts to calculate EC₅₀ values, which are required to induce half-maximal inhibition of growth, as mg dry weight equivalent mL-1. Inhibitory activity of extracts against lettuce seedling elongation will be evaluated, like in sandwich method, by comparing the radicle lengths of treated seeds with that of control seeds and EC₅₀ values will be determined. Research samples are dry parts of Turkish hazelnut, C. avellana L. The results would suggest the opportunity for allelopathic potential of C. avellana L. with its byproducts in plant-plant interaction, might be utilized for further researches, could be beneficial in finding bioactive chemicals from natural products and developing of natural herbicides.Keywords: allelopathy, Corylus avellana L., EC50, Lactuca sativa L., sandwich method, Turkish hazelnut
Procedia PDF Downloads 175139 Environmental Forensic Analysis of the Shoreline Microplastics Debris on the Limbe Coastline, Cameroon
Authors: Ndumbe Eric Esongami, Manga Veronica Ebot, Foba Josepha Tendo, Yengong Fabrice Lamfu, Tiku David Tambe
Abstract:
The prevalence and unpleasant nature of plastics pollution constantly observed on beach shore on stormy events has prompt researchers worldwide to thesis on sustainable economic and environmental designs on plastics, especially in Cameroon, a major touristic destination in the Central Africa Region. The inconsistent protocols develop by researchers has added to this burden, thus the morphological nature of microplastic remediation is a call for concerns. The prime aim of the study is to morphologically identify, quantify and forensically understands the distribution of each plastics polymer composition. Duplicates of 2×2 m (4m2) quadrants were sampled in each beach/month over 8 months period across five purposive beaches along the Limbe – Idenau coastline, Cameroon. Collected plastic samples were thoroughly washed and separation done using a 2 mm sieve. Only particles of size, < 2 mm, were considered and forward follow the microplastics laboratory analytical processes. Established step by step methodological procedures of particle filtration, organic matter digestion, density separation, particle extraction and polymer identification including microscope and were applied for the beach microplastics samples. Microplastics were observed in each sample/beach/month with an overall abundance of 241 particles/number weighs 89.15 g in total and with a mean abundance of 2 particles/m2 (0.69 g/m2) and 6 particles/month (2.0 g/m2). The accumulation of beach shoreline MPs rose dramatically towards decreasing size with microbeads and fiber only found in the < 1 mm size fraction. Approximately 75% of beach MPs contamination were found in LDB 2, LDB 1 and IDN beaches/average particles/number while the most dominant polymer type frequently observed also were PP, PE, and PS in all morphologically parameters analysed. Beach MPs accumulation significantly varied temporally and spatially at p = 0.05. ANOVA and Spearman’s rank correlation used shows linear relationships between the sizes categories considered in this study. In terms of polymer MPs analysis, the colour class recorded that white coloured MPs was dominant, 50 particles/number (22.25 g) with recorded abundance/number in PP (25), PE (15) and PS (5). The shape class also revealed that irregularly shaped MPs was dominant, 98 particles/number (30.5 g) with higher abundance/number in PP (39), PE (33), and PS (11). Similarly, MPs type class shows that fragmented MPs type was also dominant, 80 particles/number (25.25 g) with higher abundance/number in PP (30), PE (28) and PS (15). Equally, the sized class forward revealed that 1.5 – 1.99 mm sized ranged MPs had the highest abundance of 102 particles/number (51.77 g) with higher concentration observed in PP (47), PE (41), and PS (7) as well and finally, the weight class also show that 0.01 g weighs MPs was dominated by 98 particles/number (56.57 g) with varied numeric abundance seen in PP (49), PE (29) and PS (13). The forensic investigation of the pollution indicated that majority of the beach microplastic is sourced from the site/nearby area. The investigation could draw useful conclusions regarding the pathways of pollution. The fragmented microplastic, a significant component in the sample, was found to be sourced from recreational activities and partly from fishing boat installations and repairs activities carried out close to the shore.Keywords: forensic analysis, beach MPs, particle/number, polymer composition, cameroon
Procedia PDF Downloads 78138 Towards Dynamic Estimation of Residential Building Energy Consumption in Germany: Leveraging Machine Learning and Public Data from England and Wales
Authors: Philipp Sommer, Amgad Agoub
Abstract:
The construction sector significantly impacts global CO₂ emissions, particularly through the energy usage of residential buildings. To address this, various governments, including Germany's, are focusing on reducing emissions via sustainable refurbishment initiatives. This study examines the application of machine learning (ML) to estimate energy demands dynamically in residential buildings and enhance the potential for large-scale sustainable refurbishment. A major challenge in Germany is the lack of extensive publicly labeled datasets for energy performance, as energy performance certificates, which provide critical data on building-specific energy requirements and consumption, are not available for all buildings or require on-site inspections. Conversely, England and other countries in the European Union (EU) have rich public datasets, providing a viable alternative for analysis. This research adapts insights from these English datasets to the German context by developing a comprehensive data schema and calibration dataset capable of predicting building energy demand effectively. The study proposes a minimal feature set, determined through feature importance analysis, to optimize the ML model. Findings indicate that ML significantly improves the scalability and accuracy of energy demand forecasts, supporting more effective emissions reduction strategies in the construction industry. Integrating energy performance certificates into municipal heat planning in Germany highlights the transformative impact of data-driven approaches on environmental sustainability. The goal is to identify and utilize key features from open data sources that significantly influence energy demand, creating an efficient forecasting model. Using Extreme Gradient Boosting (XGB) and data from energy performance certificates, effective features such as building type, year of construction, living space, insulation level, and building materials were incorporated. These were supplemented by data derived from descriptions of roofs, walls, windows, and floors, integrated into three datasets. The emphasis was on features accessible via remote sensing, which, along with other correlated characteristics, greatly improved the model's accuracy. The model was further validated using SHapley Additive exPlanations (SHAP) values and aggregated feature importance, which quantified the effects of individual features on the predictions. The refined model using remote sensing data showed a coefficient of determination (R²) of 0.64 and a mean absolute error (MAE) of 4.12, indicating predictions based on efficiency class 1-100 (G-A) may deviate by 4.12 points. This R² increased to 0.84 with the inclusion of more samples, with wall type emerging as the most predictive feature. After optimizing and incorporating related features like estimated primary energy consumption, the R² score for the training and test set reached 0.94, demonstrating good generalization. The study concludes that ML models significantly improve prediction accuracy over traditional methods, illustrating the potential of ML in enhancing energy efficiency analysis and planning. This supports better decision-making for energy optimization and highlights the benefits of developing and refining data schemas using open data to bolster sustainability in the building sector. The study underscores the importance of supporting open data initiatives to collect similar features and support the creation of comparable models in Germany, enhancing the outlook for environmental sustainability.Keywords: machine learning, remote sensing, residential building, energy performance certificates, data-driven, heat planning
Procedia PDF Downloads 57137 Decoding Kinematic Characteristics of Finger Movement from Electrocorticography Using Classical Methods and Deep Convolutional Neural Networks
Authors: Ksenia Volkova, Artur Petrosyan, Ignatii Dubyshkin, Alexei Ossadtchi
Abstract:
Brain-computer interfaces are a growing research field producing many implementations that find use in different fields and are used for research and practical purposes. Despite the popularity of the implementations using non-invasive neuroimaging methods, radical improvement of the state channel bandwidth and, thus, decoding accuracy is only possible by using invasive techniques. Electrocorticography (ECoG) is a minimally invasive neuroimaging method that provides highly informative brain activity signals, effective analysis of which requires the use of machine learning methods that are able to learn representations of complex patterns. Deep learning is a family of machine learning algorithms that allow learning representations of data with multiple levels of abstraction. This study explores the potential of deep learning approaches for ECoG processing, decoding movement intentions and the perception of proprioceptive information. To obtain synchronous recording of kinematic movement characteristics and corresponding electrical brain activity, a series of experiments were carried out, during which subjects performed finger movements at their own pace. Finger movements were recorded with a three-axis accelerometer, while ECoG was synchronously registered from the electrode strips that were implanted over the contralateral sensorimotor cortex. Then, multichannel ECoG signals were used to track finger movement trajectory characterized by accelerometer signal. This process was carried out both causally and non-causally, using different position of the ECoG data segment with respect to the accelerometer data stream. The recorded data was split into training and testing sets, containing continuous non-overlapping fragments of the multichannel ECoG. A deep convolutional neural network was implemented and trained, using 1-second segments of ECoG data from the training dataset as input. To assess the decoding accuracy, correlation coefficient r between the output of the model and the accelerometer readings was computed. After optimization of hyperparameters and training, the deep learning model allowed reasonably accurate causal decoding of finger movement with correlation coefficient r = 0.8. In contrast, the classical Wiener-filter like approach was able to achieve only 0.56 in the causal decoding mode. In the noncausal case, the traditional approach reached the accuracy of r = 0.69, which may be due to the presence of additional proprioceptive information. This result demonstrates that the deep neural network was able to effectively find a representation of the complex top-down information related to the actual movement rather than proprioception. The sensitivity analysis shows physiologically plausible pictures of the extent to which individual features (channel, wavelet subband) are utilized during the decoding procedure. In conclusion, the results of this study have demonstrated that a combination of a minimally invasive neuroimaging technique such as ECoG and advanced machine learning approaches allows decoding motion with high accuracy. Such setup provides means for control of devices with a large number of degrees of freedom as well as exploratory studies of the complex neural processes underlying movement execution.Keywords: brain-computer interface, deep learning, ECoG, movement decoding, sensorimotor cortex
Procedia PDF Downloads 177136 Environmentally Sustainable Transparent Wood: A Fully Green Approach from Bleaching to Impregnation for Energy-Efficient Engineered Wood Components
Authors: Francesca Gullo, Paola Palmero, Massimo Messori
Abstract:
Transparent wood is considered a promising structural material for the development of environmentally friendly, energy-efficient engineered components. To obtain transparent wood from natural wood materials two approaches can be used: i) bottom-up and ii) top-down. Through the second method, the color of natural wood samples is lightened through a chemical bleaching process that acts on chromophore groups of lignin, such as the benzene ring, quinonoid, vinyl, phenolics, and carbonyl groups. These chromophoric units form complex conjugate systems responsible for the brown color of wood. There are two strategies to remove color and increase the whiteness of wood: i) lignin removal and ii) lignin bleaching. In the lignin removal strategy, strong chemicals containing chlorine (chlorine, hypochlorite, and chlorine dioxide) and oxidizers (oxygen, ozone, and peroxide) are used to completely destroy and dissolve the lignin. In lignin bleaching methods, a moderate reductive (hydrosulfite) or oxidative (hydrogen peroxide) is commonly used to alter or remove the groups and chromophore systems of lignin, selectively discoloring the lignin while keeping the macrostructure intact. It is, therefore, essential to manipulate nanostructured wood by precisely controlling the nanopores in the cell walls by monitoring both chemical treatments and process conditions, for instance, the treatment time, the concentration of chemical solutions, the pH value, and the temperature. The elimination of wood light scattering is the second step in the fabrication of transparent wood materials, which can be achieved through two-step approaches: i) the polymer impregnation method and ii) the densification method. For the polymer impregnation method, the wood scaffold is treated with polymers having a corresponding refractive index (e.g., PMMA and epoxy resins) under vacuum to obtain the transparent composite material, which can finally be pressed to align the cellulose fibers and reduce interfacial defects in order to have a finished product with high transmittance (>90%) and excellent light-guiding. However, both the solution-based bleaching and the impregnation processes used to produce transparent wood generally consume large amounts of energy and chemicals, including some toxic or pollutant agents, and are difficult to scale up industrially. Here, we report a method to produce optically transparent wood by modifying the lignin structure with a chemical reaction at room temperature using small amounts of hydrogen peroxide in an alkaline environment. This method preserves the lignin, which results only deconjugated and acts as a binder, providing both a strong wood scaffold and suitable porosity for infiltration of biobased polymers while reducing chemical consumption, the toxicity of the reagents used, polluting waste, petroleum by-products, energy and processing time. The resulting transparent wood demonstrates high transmittance and low thermal conductivity. Through the combination of process efficiency and scalability, the obtained materials are promising candidates for application in the field of construction for modern energy-efficient buildings.Keywords: bleached wood, energy-efficient components, hydrogen peroxide, transparent wood, wood composites
Procedia PDF Downloads 54135 Investigation of Natural Resource Sufficiency for Development of a Sustainable Agriculture Strategy Based on Permaculture in Malta
Authors: Byron Baron
Abstract:
Typical of the Mediterranean region, the Maltese islands exhibit calcareous soils containing low organic carbon content and high salinity, in addition to being relatively shallow. This has lead to the common practice of applying copious amounts of artificial fertilisers as well as other chemical inputs, together with the use of ground water having high salinity. Such intensive agricultural activities, over a prolonged time period, on such land has lead further to the loss of any soil fertility, together with direct negative impacts on the quality of fresh water reserves and the local ecosystem. The aim of this study was to investigate whether the natural resources on the island would be sufficient to apply ecological intensification i.e. the use of natural processes to replace anthropological inputs without any significant loss in food production. This was implementing through a sustainable agricultural system based on permaculture practices. Ecological intensification following permaculture principles was implemented for two years in order to capture the seasonal changes in duplicate. The areas dedicated to wild plants were only trimmed back to avoid excessive seeding but never mowing. A number of local staple crops were grown throughout this period, also in duplicate. Concomitantly, a number of practices were implemented following permaculture principles such as reducing land tilling, applying only natural fertiliser, mulching, monitoring of soil parameters using sensors, no use of herbicides or pesticides, and precision irrigation linked to a desalination system. Numerous environmental parameters were measured at regular intervals so as to quantify any improvements in ecological conditions. Crop output was also measured as kilos of produce per area. The results clearly show that over the two year period, the variety of wild plant species increased, the number of visiting pollinators increased, there were no pest infestations (although an increase in the number of pests was observed), and a slight improvement in overall soil health was also observed. This was obviously limited by the short duration of the testing implementation. Dedicating slightly less than 15% of total land area to wild plants in the form of borders around plots of crops assisted pollination and provided a foraging area for gleaning bats (measured as an increased number of feeding buzzes) whilst not giving rise to any pest infestations and no apparent yield losses or ill effects to the crops. Observed increases in crop yields were not significant. The study concluded that with the right support for the initial establishment of a healthy ecosystem and controlled intervention, the available natural resources on the island can substantially improve the condition of the local agricultural land area, resulting is a more prolonged economical output with greater ecological sustainability. That being said, more comprehensive and long-term monitoring is required in order to fully validate these results and design a sustainable agriculture system that truly achieves the best outcome for the Maltese context.Keywords: ecological intensification, soil health, sustainable agriculture, permaculture
Procedia PDF Downloads 65134 An Integrated Approach to the Carbonate Reservoir Modeling: Case Study of the Eastern Siberia Field
Authors: Yana Snegireva
Abstract:
Carbonate reservoirs are known for their heterogeneity, resulting from various geological processes such as diagenesis and fracturing. These complexities may cause great challenges in understanding fluid flow behavior and predicting the production performance of naturally fractured reservoirs. The investigation of carbonate reservoirs is crucial, as many petroleum reservoirs are naturally fractured, which can be difficult due to the complexity of their fracture networks. This can lead to geological uncertainties, which are important for global petroleum reserves. The problem outlines the key challenges in carbonate reservoir modeling, including the accurate representation of fractures and their connectivity, as well as capturing the impact of fractures on fluid flow and production. Traditional reservoir modeling techniques often oversimplify fracture networks, leading to inaccurate predictions. Therefore, there is a need for a modern approach that can capture the complexities of carbonate reservoirs and provide reliable predictions for effective reservoir management and production optimization. The modern approach to carbonate reservoir modeling involves the utilization of the hybrid fracture modeling approach, including the discrete fracture network (DFN) method and implicit fracture network, which offer enhanced accuracy and reliability in characterizing complex fracture systems within these reservoirs. This study focuses on the application of the hybrid method in the Nepsko-Botuobinskaya anticline of the Eastern Siberia field, aiming to prove the appropriateness of this method in these geological conditions. The DFN method is adopted to model the fracture network within the carbonate reservoir. This method considers fractures as discrete entities, capturing their geometry, orientation, and connectivity. But the method has significant disadvantages since the number of fractures in the field can be very high. Due to limitations in the amount of main memory, it is very difficult to represent these fractures explicitly. By integrating data from image logs (formation micro imager), core data, and fracture density logs, a discrete fracture network (DFN) model can be constructed to represent fracture characteristics for hydraulically relevant fractures. The results obtained from the DFN modeling approaches provide valuable insights into the East Siberia field's carbonate reservoir behavior. The DFN model accurately captures the fracture system, allowing for a better understanding of fluid flow pathways, connectivity, and potential production zones. The analysis of simulation results enables the identification of zones of increased fracturing and optimization opportunities for reservoir development with the potential application of enhanced oil recovery techniques, which were considered in further simulations on the dual porosity and dual permeability models. This approach considers fractures as separate, interconnected flow paths within the reservoir matrix, allowing for the characterization of dual-porosity media. The case study of the East Siberia field demonstrates the effectiveness of the hybrid model method in accurately representing fracture systems and predicting reservoir behavior. The findings from this study contribute to improved reservoir management and production optimization in carbonate reservoirs with the use of enhanced and improved oil recovery methods.Keywords: carbonate reservoir, discrete fracture network, fracture modeling, dual porosity, enhanced oil recovery, implicit fracture model, hybrid fracture model
Procedia PDF Downloads 75133 The Impact of Riparian Alien Plant Removal on Aquatic Invertebrate Communities in the Upper Reaches of Luvuvhu River Catchment, Limpopo Province
Authors: Rifilwe Victor Modiba, Stefan Hendric Foord
Abstract:
Alien invasive plants (IAP’s) have considerable negative impacts on freshwater habitats and South Africa has implemented an innovative Work for Water (WfW) programme for the systematic removal of these plants aimed at, amongst other objectives, restoring biodiversity and ecosystem services in these threatened habitats. These restoration processes are expensive and have to be evidence-based. In this study in-stream macroinvertebrate and adult Odonata assemblages were used as indicators of restoration success by quantifying the response of biodiversity metrics for these two groups to the removal of IAP’s in a strategic water resource of South Africa that is extensively invaded by invasive alien plants (IAP’s). The study consisted of a replicated design that included 45 sampling units, viz. 15 invaded, 15 uninvaded and 15 cleared sites stratified across the upper reaches of six sub-catchments of the Luvuvhu river catchment, Limpopo Province. Cleared sites were only considered if they received at least two WfW treatments in the last 3 years. The Benthic macroinvertebrate and adult Odonate assemblages in each of these sampling were surveyed from between November and March, 2013/2014 and 2014/2015 respectively. Generalized Linear Models (GLM) with a log link function and Poisson error distribution were done for metrics (invaded, cleared, and uninvaded) whose residuals were not normally distributed or had unequal variance and for abundance. RDA was done for EPTO genera (Ephemeroptera, Plecoptera, Trichoptera and Odonata) and adult Odonata species abundance. GLM was done to for the abundance of Genera and Odonates that had the association with the RDA environmental factors. Sixty four benthic macroinvertebrate families, 57 EPTO genera, and 45 adult Odonata species were recorded across all 45 sampling units. There was no significant difference between the SASS5 total score, ASPT, and family richness of the three invasion classes. Although clearing only had a weak positive effect on the adult Odonate species richness it had a positive impact on DBI scores. These differences were mainly the result of significantly larger DBI scores in the cleared sites as compared to the invaded sites. Results suggest that water quality is positively impacted by repeated clearing pointing to the importance of follow up procedures after initial clearing. Adult Odonate diversity as measured by richness, endemicity, threat and distribution respond positively to all forms of the clearing. The clearing had a significant impact on Odonate assemblage structure but did not affect EPTO structure. Variation partitioning showed that 21.8% of the variation in EPTO assemblage can be explained by spatial and environmental variables, 16% of the variation in Odonate structure was explained by spatial and environmental variables. The response of the diversity metrics to clearing increased in significance at finer taxonomic resolutions, particularly of adult Odonates whose metrics significantly improved with clearing and whose structure responded to both invasion and clearing. The study recommends the use of DBI for surveying river health when hydraulic biotopes are poor.Keywords: DBI, evidence-based conservation, EPTO, macroinvetebrates
Procedia PDF Downloads 186132 Analysis of Potential Associations of Single Nucleotide Polymorphisms in Patients with Schizophrenia Spectrum Disorders
Authors: Tatiana Butkova, Nikolai Kibrik, Kristina Malsagova, Alexander Izotov, Alexander Stepanov, Anna Kaysheva
Abstract:
Relevance. The genetic risk of developing schizophrenia is determined by two factors: single nucleotide polymorphisms and gene copy number variations. The search for serological markers for early diagnosis of schizophrenia is driven by the fact that the first five years of the disease are accompanied by significant biological, psychological, and social changes. It is during this period that pathological processes are most amenable to correction. The aim of this study was to analyze single nucleotide polymorphisms (SNPs) that are hypothesized to potentially influence the onset and development of the endogenous process. Materials and Methods It was analyzed 73 single nucleotide polymorphism variants. The study included 48 patients undergoing inpatient treatment at "Psychiatric Clinical Hospital No. 1" in Moscow, comprising 23 females and 25 males. Inclusion criteria: - Patients aged 18 and above. - Diagnosis according to ICD-10: F20.0, F20.2, F20.8, F21.8, F25.1, F25.2. - Voluntary informed consent from patients. Exclusion criteria included: - The presence of concurrent somatic or neurological pathology, neuroinfections, epilepsy, organic central nervous system damage of any etiology, and regular use of medication. - Substance abuse and alcohol dependence. - Women who were pregnant or breastfeeding. Clinical and psychopathological assessment was complemented by psychometric evaluation using the PANSS scale at the beginning and end of treatment. The duration of observation during therapy was 4-6 weeks. Total DNA extraction was performed using QIAamp DNA. Blood samples were processed on Illumina HiScan and genotyped for 652,297 markers on the Infinium Global Chips Screening Array-24v2.0 using the IMPUTE2 program with parameters Ne=20,000 and k=90. Additional filtration was performed based on INFO>0.5 and genotype probability>0.5. Quality control of the obtained DNA was conducted using agarose gel electrophoresis, with each tested sample having a volume of 100 µL. Results. It was observed that several SNPs exhibited gender dependence. We identified groups of single nucleotide polymorphisms with a membership of 80% or more in either the female or male gender. These SNPs included rs2661319, rs2842030, rs4606, rs11868035, rs518147, rs5993883, and rs6269.Another noteworthy finding was the limited combination of SNPs sufficient to manifest clinical symptoms leading to hospitalization. Among all 48 patients, each of whom was analyzed for deviations in 73 SNPs, it was discovered that the combination of involved SNPs in the manifestation of pronounced clinical symptoms of schizophrenia was 19±3 out of 73 possible. In study, the frequency of occurrence of single nucleotide polymorphisms also varied. The most frequently observed SNPs were rs4849127 (in 90% of cases), rs1150226 (86%), rs1414334 (75%), rs10170310 (73%), rs2857657, and rs4436578 (71%). Conclusion. Thus, the results of this study provide additional evidence that these genes may be associated with the development of schizophrenia spectrum disorders. However, it's impossible cannot rule out the hypothesis that these polymorphisms may be in linkage disequilibrium with other functionally significant polymorphisms that may actually be involved in schizophrenia spectrum disorders. It has been shown that missense SNPs by themselves are likely not causative of the disease but are in strong linkage disequilibrium with non-functional SNPs that may indeed contribute to disease predisposition.Keywords: gene polymorphisms, genotyping, single nucleotide polymorphisms, schizophrenia.
Procedia PDF Downloads 80131 A Rapid and Greener Analysis Approach Based on Carbonfiber Column System and MS Detection for Urine Metabolomic Study After Oral Administration of Food Supplements
Authors: Zakia Fatima, Liu Lu, Donghao Li
Abstract:
The analysis of biological fluid metabolites holds significant importance in various areas, such as medical research, food science, and public health. Investigating the levels and distribution of nutrients and their metabolites in biological samples allows researchers and healthcare professionals to determine nutritional status, find hypovitaminosis or hypervitaminosis, and monitor the effectiveness of interventions such as dietary supplementation. Moreover, analysis of nutrient metabolites provides insight into their metabolism, bioavailability, and physiological processes, aiding in the clarification of their health roles. Hence, the exploration of a distinct, efficient, eco-friendly, and simpler methodology is of great importance to evaluate the metabolic content of complex biological samples. In this work, a green and rapid analytical method based on an automated online two-dimensional microscale carbon fiber/activated carbon fiber fractionation system and time-of-flight mass spectrometry (2DμCFs-TOF-MS) was used to evaluate metabolites of urine samples after oral administration of food supplements. The automated 2DμCFs instrument consisted of a microcolumn system with bare carbon fibers and modified carbon fiber coatings. Carbon fibers and modified carbon fibers exhibit different surface characteristics and retain different compounds accordingly. Three kinds of mobile-phase solvents were used to elute the compounds of varied chemical heterogeneities. The 2DμCFs separation system has the ability to effectively separate different compounds based on their polarity and solubility characteristics. No complicated sample preparation method was used prior to analysis, which makes the strategy more eco-friendly, practical, and faster than traditional analysis methods. For optimum analysis results, mobile phase composition, flow rate, and sample diluent were optimized. Water-soluble vitamins, fat-soluble vitamins, and amino acids, as well as 22 vitamin metabolites and 11 vitamin metabolic pathway-related metabolites, were found in urine samples. All water-soluble vitamins except vitamin B12 and vitamin B9 were detected in urine samples. However, no fat-soluble vitamin was detected, and only one metabolite of Vitamin A was found. The comparison with a blank urine sample showed a considerable difference in metabolite content. For example, vitamin metabolites and three related metabolites were not detected in blank urine. The complete single-run screening was carried out in 5.5 minutes with the minimum consumption of toxic organic solvent (0.5 ml). The analytical method was evaluated in terms of greenness, with an analytical greenness (AGREE) score of 0.72. The method’s practicality has been investigated using the Blue Applicability Grade Index (BAGI) tool, obtaining a score of 77. The findings in this work illustrated that the 2DµCFs-TOF-MS approach could emerge as a fast, sustainable, practical, high-throughput, and promising analytical tool for screening and accurate detection of various metabolites, pharmaceuticals, and ingredients in dietary supplements as well as biological fluids.Keywords: metabolite analysis, sustainability, carbon fibers, urine.
Procedia PDF Downloads 28130 Explanation of Sentinel-1 Sigma 0 by Sentinel-2 Products in Terms of Crop Water Stress Monitoring
Authors: Katerina Krizova, Inigo Molina
Abstract:
The ongoing climate change affects various natural processes resulting in significant changes in human life. Since there is still a growing human population on the planet with more or less limited resources, agricultural production became an issue and a satisfactory amount of food has to be reassured. To achieve this, agriculture is being studied in a very wide context. The main aim here is to increase primary production on a spatial unit while consuming as low amounts of resources as possible. In Europe, nowadays, the staple issue comes from significantly changing the spatial and temporal distribution of precipitation. Recent growing seasons have been considerably affected by long drought periods that have led to quantitative as well as qualitative yield losses. To cope with such kind of conditions, new techniques and technologies are being implemented in current practices. However, behind assessing the right management, there is always a set of the necessary information about plot properties that need to be acquired. Remotely sensed data had gained attention in recent decades since they provide spatial information about the studied surface based on its spectral behavior. A number of space platforms have been launched carrying various types of sensors. Spectral indices based on calculations with reflectance in visible and NIR bands are nowadays quite commonly used to describe the crop status. However, there is still the staple limit by this kind of data - cloudiness. Relatively frequent revisit of modern satellites cannot be fully utilized since the information is hidden under the clouds. Therefore, microwave remote sensing, which can penetrate the atmosphere, is on its rise today. The scientific literature describes the potential of radar data to estimate staple soil (roughness, moisture) and vegetation (LAI, biomass, height) properties. Although all of these are highly demanded in terms of agricultural monitoring, the crop moisture content is the utmost important parameter in terms of agricultural drought monitoring. The idea behind this study was to exploit the unique combination of SAR (Sentinel-1) and optical (Sentinel-2) data from one provider (ESA) to describe potential crop water stress during dry cropping season of 2019 at six winter wheat plots in the central Czech Republic. For the period of January to August, Sentinel-1 and Sentinel-2 images were obtained and processed. Sentinel-1 imagery carries information about C-band backscatter in two polarisations (VV, VH). Sentinel-2 was used to derive vegetation properties (LAI, FCV, NDWI, and SAVI) as support for Sentinel-1 results. For each term and plot, summary statistics were performed, including precipitation data and soil moisture content obtained through data loggers. Results were presented as summary layouts of VV and VH polarisations and related plots describing other properties. All plots performed along with the principle of the basic SAR backscatter equation. Considering the needs of practical applications, the vegetation moisture content may be assessed using SAR data to predict the drought impact on the final product quality and yields independently of cloud cover over the studied scene.Keywords: precision agriculture, remote sensing, Sentinel-1, SAR, water content
Procedia PDF Downloads 125129 An Exploration of Health Promotion Approach to Increase Optimal Complementary Feeding among Pastoral Mothers Having Children between 6 and 23 Months in Dikhil, Djibouti
Authors: Haruka Ando
Abstract:
Undernutrition of children is a critical issue, especially for people in the remote areas of the Republic of Djibouti, since household food insecurity, inadequate child caring and feeding, unhealthy environment and lack of clean water, as well as insufficient maternal and child healthcare, are underlying causes which affect. Nomadic pastoralists living in the Dikhil region (Dikhil) are socio-economically and geographically more vulnerable due to displacement, which in turn worsens the situation of child stunting. A high prevalence of inappropriate complementary feeding among pastoral mothers might be a significant barrier to child growth. This study aims to identify health promotion intervention strategies that would support an increase in optimal complementary feeding among pastoral mothers of children aged 6-23 months in Dikhil. There are four objectives; to explore and to understand the existing practice of complementary feeding among pastoral mothers in Dikhil; to identify the barriers in appropriate complementary feeding among the mothers; to critically explore and analyse the strategies for an increase in complementary feeding among the mothers; to make pragmatic recommendations to address the barriers in Djibouti. This is an in-depth study utilizing a conceptual framework, the behaviour change wheel, to analyse the determinants of complementary feeding and categorize health promotion interventions for increasing optimal complementary feeding among pastoral mothers living in Dikhil. The analytical tool was utilized to appraise the strategies to mitigate the selected barriers against optimal complementary feeding. The data sources were secondary literature from both published and unpublished sources. The literature was systematically collected. The findings of the determinants including the barriers of optimal complementary feeding were identified: heavy household workload, caring for multiple children under five, lack of education, cultural norms and traditional eating habits, lack of husbands' support, poverty and food insecurity, lack of clean water, low media coverage, insufficient health services on complementary feeding, fear, poor personal hygiene, and mothers' low decision-making ability and lack of motivation for food choice. To mitigate selected barriers of optimal complementary feeding, four intervention strategies based on interpersonal communication at the community-level were chosen: scaling up mothers' support groups, nutrition education, grandmother-inclusive approach, and training for complementary feeding counseling. The strategies were appraised through the criteria of effectiveness and feasibility. Scaling up mothers' support groups could be the best approach. Mid-term and long-term recommendations are suggested based on the situation analysis and appraisal of intervention strategies. Mid-term recommendations include complementary feeding promotion interventions are integrated into the healthcare service providing system in Dikhil, and donor agencies advocate and lobby the Ministry of Health Djibouti (MoHD) to increase budgetary allocation on complementary feeding promotion to implement interventions at a community level. Moreover, the recommendations include a community health management team in Dikhil training healthcare workers and mother support groups by using complementary feeding communication guidelines and monitors behaviour change of pastoral mothers and health outcome of their children. Long-term recommendations are the MoHD develops complementary feeding guidelines to cover sector-wide collaboration for multi-sectoral related barriers.Keywords: Afar, child food, child nutrition, complementary feeding, complementary food, developing countries, Djibouti, East Africa, hard-to-reach areas, Horn of Africa, nomad, pastoral, rural area, Somali, Sub-Saharan Africa
Procedia PDF Downloads 125128 Superhydrophobic Materials: A Promising Way to Enhance Resilience of Electric System
Authors: M. Balordi, G. Santucci de Magistris, F. Pini, P. Marcacci
Abstract:
The increasing of extreme meteorological events represents the most important causes of damages and blackouts of the whole electric system. In particular, the icing on ground-wires and overheads lines, due to snowstorms or harsh winter conditions, very often gives rise to the collapse of cables and towers both in cold and warm climates. On the other hand, the high concentration of contaminants in the air, due to natural and/or antropic causes, is reflected in high levels of pollutants layered on glass and ceramic insulators, causing frequent and unpredictable flashover events. Overheads line and insulator failures lead to blackouts, dangerous and expensive maintenances and serious inefficiencies in the distribution service. Inducing superhydrophobic (SHP) properties to conductors, ground-wires and insulators, is one of the ways to face all these problems. Indeed, in some cases, the SHP surface can delay the ice nucleation time and decrease the ice nucleation temperature, preventing ice formation. Besides, thanks to the low surface energy, the adhesion force between ice and a superhydrophobic material are low and the ice can be easily detached from the surface. Moreover, it is well known that superhydrophobic surfaces can have self-cleaning properties: these hinder the deposition of pollution and decrease the probability of flashover phenomena. Here this study presents three different studies to impart superhydrophobicity to aluminum, zinc and glass specimens, which represent the main constituent materials of conductors, ground-wires and insulators, respectively. The route to impart the superhydrophobicity to the metallic surfaces can be summarized in a three-step process: 1) sandblasting treatment, 2) chemical-hydrothermal treatment and 3) coating deposition. The first step is required to create a micro-roughness. In the chemical-hydrothermal treatment a nano-scale metallic oxide (Al or Zn) is grown and, together with the sandblasting treatment, bring about a hierarchical micro-nano structure. By coating an alchilated or fluorinated siloxane coating, the surface energy decreases and gives rise to superhydrophobic surfaces. In order to functionalize the glass, different superhydrophobic powders, obtained by a sol-gel synthesis, were prepared. Further, the specimens were covered with a commercial primer and the powders were deposed on them. All the resulting metallic and glass surfaces showed a noticeable superhydrophobic behavior with a very high water contact angles (>150°) and a very low roll-off angles (<5°). The three optimized processes are fast, cheap and safe, and can be easily replicated on industrial scales. The anti-icing and self-cleaning properties of the surfaces were assessed with several indoor lab-tests that evidenced remarkable anti-icing properties and self-cleaning behavior with respect to the bare materials. Finally, to evaluate the anti-snow properties of the samples, some SHP specimens were exposed under real snow-fall events in the RSE outdoor test-facility located in Vinadio, western Alps: the coated samples delay the formation of the snow-sleeves and facilitate the detachment of the snow. The good results for both indoor and outdoor tests make these materials promising for further development in large scale applications.Keywords: superhydrophobic coatings, anti-icing, self-cleaning, anti-snow, overheads lines
Procedia PDF Downloads 183127 Formal History Teaching and Lifeworld Literacies: Developing Transversal Skills as an Embodied Learning Outcomes in Historical Research Projects
Authors: Paul Flynn, Luke O’Donnell
Abstract:
There is a pressing societal need for educators in formal and non-formal settings to develop pedagogical frameworks, programmes, and interventions that support the development of transversal skills for life beyond the classroom. These skills include communication, collaboration, interpersonal relationship building, problem-solving, and planning, and organizational skills; or lifeworld literacies encountered first hand. This is particularly true for young people aged between 15-18. This demographic represents both the future of society and those best positioned to take advantage of well-designed, structured educational supports within and across formal and non-formal settings. Secondary school history has been identified as an appropriate area of study which deftly develops many of those transversal skills so crucial to positive societal engagement. However, in the formal context, students often challenge history’s relevance to their own lived experience and dismiss it as a study option. In response to such challenges, teachers will often design stimulating lessons which are often well-received. That said, some students continue to question modern-day connections, presenting a persistent and pervasive classroom distraction. The continuing decline in numbers opting to study second-level history indicates an erosion of what should be a critical opportunity to develop all-important lifeworld literacies within formal education. In contrast, students readily acknowledge relevance in non-formal settings where many participants meaningfully engage with history by way of student-focused activities. Furthermore, many do so without predesigned pedagogical aids which support transversal skills development as embodied learning outcomes. As this paper will present, there is a dearth of work pertaining to the circular subject of history and its embodied learning outcomes, including lifeworld literacies, in formal and non-formal settings. While frequently challenging to reconcile formal (often defined by strict curricula and examination processes), and non-formal engagement with history, opportunities do exist. In the Irish context, this is exemplified by a popular university outreach programme: breaking the SEAL. This programme supports second-level history students as they fulfill curriculum requirements in completing a research study report. This report is a student-led research project pulling on communication skills, collaboration with peers and teachers, interpersonal relationships, problem-solving, and planning and organizational skills. Completion of this process has been widely recognized as excellent preparation not only for higher education (third level) but work-life demands as well. Within a formal education setting, the RSR harnesses non-formal learning virtues and exposes students to limited aspects of independent learning that relate to a professional work setting –a lifeworld literacy. Breaking the SEAL provides opportunities for students to enhance their lifeworld literacy by engaging in an independent research and learning process within the protective security of the classroom and its teacher. This paper will highlight the critical role this programme plays in preparing participating students (n=315) for life after compulsory education and presents examples of how lifeworld literacies may be developed through a scaffolded process of historical research and reporting anchored in non-formal contexts.Keywords: history, education, literacy, transversal skills
Procedia PDF Downloads 168126 Adequate Nutritional Support and Monitoring in Post-Traumatic High Output Duodenal Fistula
Authors: Richa Jaiswal, Vidisha Sharma, Amulya Rattan, Sushma Sagar, Subodh Kumar, Amit Gupta, Biplab Mishra, Maneesh Singhal
Abstract:
Background: Adequate nutritional support and daily patient monitoring have an independent therapeutic role in the successful management of high output fistulae and early recovery after abdominal trauma. Case presentation: An 18-year-old girl was brought to AIIMS emergency with alleged history of fall of a heavy weight (electric motor) over abdomen. She was evaluated as per Advanced Trauma Life Support(ATLS) protocols and diagnosed to have significant abdominal trauma. After stabilization, she was referred to Trauma center. Abdomen was guarded and focused assessment with sonography for trauma(FAST) was found positive. Complete duodenojejunal(DJ) junction transection was found at laparotomy, and end-to-end repair was done. However, patient was re-explored in view of biliary peritonitis on post-operative day3, and anastomotic leak was found with sloughing of duodenal end. Resection of non-viable segments was done followed by side-to-side anastomosis. Unfortunately, the anastomosis leaked again, this time due to a post-anastomotic kink, diagnosed on dye study. Due to hostile abdomen, the patient was planned for supportive care, with plan of build-up and delayed definitive surgery. Percutaneous transheptic biliary drainage (PTBD) and STSG were required in the course as well. Nutrition: In intensive care unit (ICU), major goals of nutritional therapy were to improve wound healing, optimize nutrition, minimize enteral feed associated complications, reduce biliary fistula output, and prepare the patient for definitive surgeries. Feeding jejunostomy (FJ) was started from day 4 at the rate of 30ml/h along with total parenteral nutrition (TPN) and intra-venous (IV) micronutrients support. Due to high bile output, bile refeed started from day 13.After 23 days of ICU stay, patient was transferred to general ward with body mass index (BMI)<11kg/m2 and serum albumin –1.5gm%. Patient was received in the ward in catabolic phase with high risk of refeeding syndrome. Patient was kept on FJ bolus feed at the rate of 30–50 ml/h. After 3–4 days, while maintaining patient diet book log it was observed that patient use to refuse feed at night and started becoming less responsive with every passing day. After few minutes of conversation with the patient for a couple of days, she complained about enteral feed discharge in urine, mild pain and sign of dumping syndrome. Dye study was done, which ruled out any enterovesical fistula and conservative management were planned. At this time, decision was taken for continuous slow rate feeding through commercial feeding pump at the rate of 2–3ml/min. Drastic improvement was observed from the second day in gastro-intestinal symptoms and general condition of the patient. Nutritional composition of feed, TPN and diet ranged between 800 and 2100 kcal and 50–95 g protein. After STSG, TPN was stopped. Periodic diet counselling was given to improve oral intake. At the time of discharge, serum albumin level was 2.1g%, weight – 38.6, BMI – 15.19 kg/m2. Patient got discharge on an oral diet. Conclusion: Successful management of post-traumatic proximal high output fistulae is a challenging task, due to impaired nutrient absorption and enteral feed associated complications. Strategic- and goal-based nutrition support can salvage such critically ill patients, as demonstrated in the present case.Keywords: nutritional monitoring, nutritional support, duodenal fistula, abdominal trauma
Procedia PDF Downloads 261125 Sentinel-2 Based Burn Area Severity Assessment Tool in Google Earth Engine
Authors: D. Madhushanka, Y. Liu, H. C. Fernando
Abstract:
Fires are one of the foremost factors of land surface disturbance in diverse ecosystems, causing soil erosion and land-cover changes and atmospheric effects affecting people's lives and properties. Generally, the severity of the fire is calculated as the Normalized Burn Ratio (NBR) index. This is performed manually by comparing two images obtained afterward. Then by using the bitemporal difference of the preprocessed satellite images, the dNBR is calculated. The burnt area is then classified as either unburnt (dNBR<0.1) or burnt (dNBR>= 0.1). Furthermore, Wildfire Severity Assessment (WSA) classifies burnt areas and unburnt areas using classification levels proposed by USGS and comprises seven classes. This procedure generates a burn severity report for the area chosen by the user manually. This study is carried out with the objective of producing an automated tool for the above-mentioned process, namely the World Wildfire Severity Assessment Tool (WWSAT). It is implemented in Google Earth Engine (GEE), which is a free cloud-computing platform for satellite data processing, with several data catalogs at different resolutions (notably Landsat, Sentinel-2, and MODIS) and planetary-scale analysis capabilities. Sentinel-2 MSI is chosen to obtain regular processes related to burnt area severity mapping using a medium spatial resolution sensor (15m). This tool uses machine learning classification techniques to identify burnt areas using NBR and to classify their severity over the user-selected extent and period automatically. Cloud coverage is one of the biggest concerns when fire severity mapping is performed. In WWSAT based on GEE, we present a fully automatic workflow to aggregate cloud-free Sentinel-2 images for both pre-fire and post-fire image compositing. The parallel processing capabilities and preloaded geospatial datasets of GEE facilitated the production of this tool. This tool consists of a Graphical User Interface (GUI) to make it user-friendly. The advantage of this tool is the ability to obtain burn area severity over a large extent and more extended temporal periods. Two case studies were carried out to demonstrate the performance of this tool. The Blue Mountain national park forest affected by the Australian fire season between 2019 and 2020 is used to describe the workflow of the WWSAT. This site detected more than 7809 km2, using Sentinel-2 data, giving an error below 6.5% when compared with the area detected on the field. Furthermore, 86.77% of the detected area was recognized as fully burnt out, of which high severity (17.29%), moderate-high severity (19.63%), moderate-low severity (22.35%), and low severity (27.51%). The Arapaho and Roosevelt National Forest Park, California, the USA, which is affected by the Cameron peak fire in 2020, is chosen for the second case study. It was found that around 983 km2 had burned out, of which high severity (2.73%), moderate-high severity (1.57%), moderate-low severity (1.18%), and low severity (5.45%). These spots also can be detected through the visual inspection made possible by cloud-free images generated by WWSAT. This tool is cost-effective in calculating the burnt area since satellite images are free and the cost of field surveys is avoided.Keywords: burnt area, burnt severity, fires, google earth engine (GEE), sentinel-2
Procedia PDF Downloads 235124 Functions and Challenges of New County-Based Regional Plan in Taiwan
Authors: Yu-Hsin Tsai
Abstract:
A new, mandated county regional plan system has been initiated since 2010 nationwide in Taiwan, with its role situated in-between the policy-led cross-county regional plan and the blueprint-led city plan. This new regional plan contain both urban and rural areas in one single plan, which provides a more complete planning territory, i.e., city region within the county’s jurisdiction, and to be executed and managed effectively by the county government. However, the full picture of its functions and characteristics seems still not totally clear, compared with other levels of plans; either are planning goals and issues that can be most appropriately dealt with at this spatial scale. In addition, the extent to which the inclusion of sustainability ideal and measures to cope with climate change are unclear. Based on the above issues, this study aims to clarify the roles of county regional plan, to analyze the extent to which the measures cope with sustainability, climate change, and forecasted declining population, and the success factors and issues faced in the planning process. The methodology applied includes literature review, plan quality evaluation, and interview with officials of the central and local governments and urban planners involved for all the 23 counties in Taiwan. The preliminary research results show, first, growth management related policies have been widely implemented and expected to have effective impact, including incorporating resources capacity to determine maximum population for the city region as a whole, developing overall vision of urban growth boundary for all the whole city region, prioritizing infill development, and use of architectural land within urbanized area over rural area to cope with urban growth. Secondly, planning-oriented zoning is adopted in urban areas, while demand-oriented planning permission is applied in the rural areas with designated plans. Then, public participation has been evolved to the next level to oversee all of government’s planning and review processes due to the decreasing trust in the government, and development of public forum on the internet etc. Next, fertile agricultural land is preserved to maintain food self-supplied goal for national security concern. More adoption-based methods than mitigation-based methods have been applied to cope with global climate change. Finally, better land use and transportation planning in terms of avoiding developing rail transit stations and corridor in rural area is promoted. Even though many promising, prompt measures have been adopted, however, challenges exist to surround: first, overall urban density, likely affecting success of UGB, or use of rural agricultural land, has not been incorporated, possibly due to implementation difficulties. Second, land-use related measures to mitigating climate change seem less clear and hence less employed. Smart decline has not drawn enough attention to cope with predicted population decrease in the next decade. Then, some reluctance from county’s government to implement county regional plan can be observed vaguely possibly since limits have be set on further development on agricultural land and sensitive areas. Finally, resolving issue on existing illegal factories on agricultural land remains the most challenging dilemma.Keywords: city region plan, sustainability, global climate change, growth management
Procedia PDF Downloads 349123 The Role of Community Activism in Promoting Social Justice around Housing Issues: A Case Study of the Western Cape
Authors: Mapule Maema
Abstract:
The paper aims to highlight the role that community activism has played in promoting social justice around housing issues in the Western Cape. The Western Cape is one of the largest spatially segregated provinces in South Africa which continues to exhibit grave inequalities between cities, townships and farms. These inequalities cut across intersectional issues such as, race, class, gender, and politics. The main challenges facing marginalized communities in the Western Cape include access to housing, land and basic services. This is not peculiar to only the Western Cape, the entire country is facing similar challenges however the Western Cape is seen as a fasted urbanizing province in the country due to tourism. Various social movements have been formed across the country to counter these challenges, however, this paper focuses on the resilience communities have fostered despite the myriad housing and spatial crisis they are faced with. The paper focuses on the Legal Resource’s Centre’s clients from an informal settlement called Imizamo Yethu based in Hout Bay Valley area. The 18 hectare settlement houses approximately 33600 people. On the 21st July 2017, Hout Bay experienced violent protests following an eviction order passed by the City of Cape Town. The protest was characterized by tensions within the community regarding the super-blocking initiative which aims to establish roads in informal settlements to ensure basic services. Residents against the process argued that there were no proper consultations done to educate them on what this process entailed. Public participation is one of the objectives the municipalities aim to promote however it remains a great challenge. In order to highlight the experiences of the LRC clients in relation to what motivated their involvement in the movement, how it felt their participation, and aspirations, the paper will employ qualitative research methods. Qualitative research methods enable the researcher to get a deeper and nuanced understanding of the social world in the eyes of those who experienced it. It is a flexible methodology that enables one to also understand social processes and the significance they generate. Data will be collected through the use of the World Cafe as a focus group method. The World Café is a simple, effective and flexible format for hosting group dialogue. The steps taken when setting up a World Café includes the following: setting the context (why you are bringing people together and what you want to achieve), create hospitality space (make participants feel at home and free to discuss issues), explore questions that matter, connect diverse perspectives (the opportunity to actively contribute your thinking), listen together for patterns and insights, share collective discoveries and learnings. Secondary data will be used to augment the data collected. Stories of impact will be drawn from the exercises. This paper will contribute to the discourse of sustainable housing and urban development and the research outputs will be disseminated to the public for learning.Keywords: community activism, influence, social justice, development
Procedia PDF Downloads 137