Search results for: civil engineering education
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10594

Search results for: civil engineering education

874 Experimental Investigation of The Influence of Cement on Soil-Municipal Solid Waste Incineration Fly ash Mix Properties

Authors: Gehan Aouf, Diala Tabbal, Abd El Rahim Sabsabi, Rashad Aouf

Abstract:

The aim of this study is to assess the viability of utilizing Municipal Solid Waste Incineration Fly Ash (MSWIFA) with Ordinary Portland cement as soil reinforcement materials for geotechnical engineering applications. A detailed experimental program is carried out, followed by analysis of results. Soil samples were prepared by adding Cement to MSWIFA-soil mix at different percentages. Then, a series of laboratory tests were performed, namely: Sieve analysis, Atterberg limits tests, Unconfined compression test, and Proctor tests. A parametric study is conducted to investigate the effect of adding the cement at different percentages on the unconfined compression strength, maximum dry density, and optimum moisture content of clayey soil-MSWIFA The variation of contents of admixtures were 10%, 20%, and 30% for MSWIFA by dry total weight of soil and 10%, 15%, and 20% for Portland cement by dry total weight of the mix. The test results reveal that adding MSWIFA to the soil up to 20% increased the MDD of the mixture and decreased the OMC, then an opposite trend for results were found when the percentage of MSWIFA exceeds 20%. This is due to the low specific gravity of MSWIFA and to the greater water absorption of MSWIFA. The laboratory tests also indicate that the UCS values were found to be increased for all the mixtures with curing periods of 7, 14, and 28 days. It is also observed that the cement increased the strength of the finished product of the mix of soil and MSWIFA.

Keywords: clayey soil, cement, MSWIFA, unconfined compression strength

Procedia PDF Downloads 132
873 Podcasting: A Tool for an Enhanced Learning Experience of Introductory Courses to Science and Engineering Students

Authors: Yaser E. Greish, Emad F. Hindawy, Maryam S. Al Nehayan

Abstract:

Introductory courses such as General Chemistry I, General Physics I and General Biology need special attention as students taking these courses are usually at their first year of the university. In addition to the language barrier for most of them, they also face other difficulties if these elementary courses are taught in the traditional way. Changing the routine method of teaching of these courses is therefore mandated. In this regard, podcasting of chemistry lectures was used as an add-on to the traditional and non-traditional methods of teaching chemistry to science and non-science students. Podcasts refer to video files that are distributed in a digital format through the Internet using personal computers or mobile devices. Pedagogical strategy is another way of identifying podcasts. Three distinct teaching approaches are evident in the current literature and include receptive viewing, problem-solving, and created video podcasts. The digital format and dispensing of video podcasts have stabilized over the past eight years, the type of podcasts vary considerably according to their purpose, degree of segmentation, pedagogical strategy, and academic focus. In this regard, the whole syllabus of 'General Chemistry I' course was developed as podcasts and were delivered to students throughout the semester. Students used the podcasted files extensively during their studies, especially as part of their preparations for exams. Feedback of students strongly supported the idea of using podcasting as it reflected its effect on the overall understanding of the subject, and a consequent improvement of their grades.

Keywords: podcasting, introductory course, interactivity, flipped classroom

Procedia PDF Downloads 265
872 An Historical Revision of Change and Configuration Management Process

Authors: Expedito Pinto De Paula Junior

Abstract:

Current systems such as artificial satellites, airplanes, automobiles, turbines, power systems and air traffic controls are becoming increasingly more complex and/or highly integrated as defined in SAE-ARP-4754A (Society Automotive Engineering - Certification considerations for highly-integrated or complex aircraft systems standard). Among other processes, the development of such systems requires careful Change and Configuration Management (CCM) to establish and maintain product integrity. Understand the maturity of CCM process based in historical approach is crucial for better implementation in hardware and software lifecycle. The sense of work organization, in all fields of development is directly related to the order and interrelation of the parties, changes in time, and record of these changes. Generally, is observed that engineers, administrators and managers invest more time in technical activities than in organization of work. More these professionals are focused in solving complex problems with a purely technical bias. CCM process is fundamental for development, production and operation of new products specially in the safety critical systems. The objective of this paper is open a discussion about the historical revision based in standards focus of CCM around the world in order to understand and reflect the importance across the years, the contribution of this process for technology evolution, to understand the mature of organizations in the system lifecycle project and the benefits of CCM to avoid errors and mistakes during the Lifecycle Product.

Keywords: changes, configuration management, historical, revision

Procedia PDF Downloads 202
871 Surface Modified Nano-Diamond/Polyimide Hybrid Composites

Authors: Hati̇ce Bi̇rtane, Asli Beyler Çi̇ği̇l, Memet Vezi̇r Kahraman

Abstract:

Polyimide (PI) is one of the most important super-engineering materials because of its mechanical properties and its thermal stability. Electronic industry is the typical extensive applications of polyimides including interlayer insulation films, buffer coating, films, alpha-ray shielding films, and alignment films for liquid crystal displays. The mechanical and thermal properties of polymers are generally improved by the addition of inorganic additives. The challenges in this area of high-performance organic/inorganic hybrid materials are to obtain significant improvements in the interfacial adhesion between the polymer matrix and the reinforcing material since the organic matrix is relatively incompatible with the inorganic phase. In this study, modified nanodiamond was prepared from the reaction of nanodiamond and (3-Mercaptopropyl)trimethoxysilane. Poly(amic acid) was prepared from the reaction of 3,3',4,4'-Benzophenonetetracarboxylic dianhydride (BTDA) and 4,4'-Oxydianiline (ODA). Polyimide/modified nanodiamond hybrids were prepared by blending of poly(amic acid) and organically modified nanodiamond. The morphology of the Polyimide/ modified nanodiamond hybrids was characterized by scanning electron microscopy (SEM). Chemical structure of polyimide and Polyimide/modified nanodiamond hybrids was characterized by FTIR. FTIR results showed that the Polyimide/modified nanodiamond hybrids were successfully prepared. A thermal property of the Polyimide/modified nanodiamond hybrids was characterized by thermogravimetric analysis (TGA).

Keywords: hybrid materials, nanodiamond, polyimide, polymer

Procedia PDF Downloads 244
870 Designing the First Oil Tanker Shipyard Facility in Kuwait

Authors: Fatma Al Abdullah, Shahad Al Ameer, Ritaj Jaragh, Fatimah Khajah, Rawan Qambar, Amr Nounou

Abstract:

Kuwait currently manufactures its tankers in foreign countries. Oil tankers play a role in the supply chain of the oil industry. Therefore, with Kuwait’s sufficient financial resources, the country should secure itself strategically in order to protect its oil industry to sustain economic development. The purpose of this report is designing an oil tankers’ shipyard facility. Basing the shipyard facility in Kuwait will have great economic rewards. The shipbuilding industry directly enhances the industrial chain in terms of new job and business opportunities as well as educational fields. Heavy Engineering Industries & Shipbuilding Co. K.S.C. (HEISCO) was chosen as a host due to benefits that will result from HEISCO’s existing infrastructure and expertise to reduce cost. The Facility Design methodology chosen has been used because it covers all aspects needed for the report. The oil tanker market is witnessing a shift from crude tankers to product tankers. Therefore the Panamax tanker (product tanker) was selected to be manufactured in the facility. The different departments needed in shipyards were identified based on studying different global shipyards. Technologies needed to build ships helped in the process design. It was noticed that ships are engineer to order. The new layout development of the proposed shipyard is currently in progress. A feasibility study will be conducted to ensure the success of the facility after developing the shipyard’s layout.

Keywords: oil tankers, shipbuilding, shipyard, facility design, Kuwait

Procedia PDF Downloads 467
869 The Contribution Study of Multi-component Thermal Fluid Enhancement in Offshore Medium and Deep Heavy Oilfields

Authors: Tao Lin, Hongzhi Song, Zhongtao Yuan, Shanshan Lin, Chunyue Tong

Abstract:

Offshore heavy oil in the production of thick oil fields, old wells of low production and low efficiency are mainly caused by plugging, heavy oil, insufficient stratigraphic energy, etc., the use of heat - gas - chemical and other composite production enhancement role, can be better to achieve the purpose of unblocking and increase the efficiency of the production. Through indoor physical simulation experiments, comprehensive grey correlation analysis, combined with theoretical methods to analyze the composite production enhancement effect of heat-gas-chemical and other factors was in the order of heat>gas>chemical agent; and quantitative analysis of the data shows that the contribution of heat is the highest in the range of 68.5%-82.8%, the gas role in the range of 9.3%-11.3%, and the contribution of the chemical agent in the range of 6.0%-22.2%. Combined with indoor physical simulation experiments and reservoir engineering calculations, it shows that the production capacity is restored and increased by about 50%, and numerical simulation calculations show that the cumulative increase in production by using thermal-gas-chemical decongestion process measures can be up to 40%. Through the optimization of this kind of compound production enhancement technology, it can meet the requirements of original production string operation, and this technology has the advantages of short, flat and fast operation and has good application prospects.

Keywords: MCTF, old heavy oil wells, low production and low efficiency, immobile tubular column, composite production increase

Procedia PDF Downloads 9
868 Reservoir Inflow Prediction for Pump Station Using Upstream Sewer Depth Data

Authors: Osung Im, Neha Yadav, Eui Hoon Lee, Joong Hoon Kim

Abstract:

Artificial Neural Network (ANN) approach is commonly used in lots of fields for forecasting. In water resources engineering, forecast of water level or inflow of reservoir is useful for various kind of purposes. Due to advantages of ANN, many papers were written for inflow prediction in river networks, but in this study, ANN is used in urban sewer networks. The growth of severe rain storm in Korea has increased flood damage severely, and the precipitation distribution is getting more erratic. Therefore, effective pump operation in pump station is an essential task for the reduction in urban area. If real time inflow of pump station reservoir can be predicted, it is possible to operate pump effectively for reducing the flood damage. This study used ANN model for pump station reservoir inflow prediction using upstream sewer depth data. For this study, rainfall events, sewer depth, and inflow into Banpo pump station reservoir between years of 2013-2014 were considered. Feed – Forward Back Propagation (FFBF), Cascade – Forward Back Propagation (CFBP), Elman Back Propagation (EBP) and Nonlinear Autoregressive Exogenous (NARX) were used as ANN model for prediction. A comparison of results with ANN model suggests that ANN is a powerful tool for inflow prediction using the sewer depth data.

Keywords: artificial neural network, forecasting, reservoir inflow, sewer depth

Procedia PDF Downloads 318
867 Fuel Inventory/ Depletion Analysis for a Thorium-Uranium Dioxide (Th-U) O2 Pin Cell Benchmark Using Monte Carlo and Deterministic Codes with New Version VIII.0 of the Evaluated Nuclear Data File (ENDF/B) Nuclear Data Library

Authors: Jamal Al-Zain, O. El Hajjaji, T. El Bardouni

Abstract:

A (Th-U) O2 fuel pin benchmark made up of 25 w/o U and 75 w/o Th was used. In order to analyze the depletion and inventory of the fuel for the pressurized water reactor pin-cell model. The new version VIII.0 of the ENDF/B nuclear data library was used to create a data set in ACE format at various temperatures and process the data using the MAKXSF6.2 and NJOY2016 programs to process the data at the various temperatures in order to conduct this study and analyze cross-section data. The infinite multiplication factor, the concentrations and activities of the main fission products, the actinide radionuclides accumulated in the pin cell, and the total radioactivity were all estimated and compared in this study using the Monte Carlo N-Particle 6 (MCNP6.2) and DRAGON5 programs. Additionally, the behavior of the Pressurized Water Reactor (PWR) thorium pin cell that is dependent on burn-up (BU) was validated and compared with the reference data obtained using the Massachusetts Institute of Technology (MIT-MOCUP), Idaho National Engineering and Environmental Laboratory (INEEL-MOCUP), and CASMO-4 codes. The results of this study indicate that all of the codes examined have good agreements.

Keywords: PWR thorium pin cell, ENDF/B-VIII.0, MAKXSF6.2, NJOY2016, MCNP6.2, DRAGON5, fuel burn-up.

Procedia PDF Downloads 103
866 Thermal Analysis and Computational Fluid Dynamics Simulation of Large-Scale Cryopump

Authors: Yue Shuai Zhao, Rong Ping Shao, Wei Sun, Guo Hua Ren, Yong Wang, Li Chen Sun

Abstract:

A large-scale cryopump (DN1250) used in large vacuum leak detecting system was designed and its performance experimentally investigated by Beijing Institute of Spacecraft Environment Engineering. The cryopump was cooled by four closed cycle helium refrigerators (two dual stage refrigerators and two single stage refrigerators). Detailed numerical analysis of the heat transfer in the first stage array and the second stage array were performed by using computational fluid dynamic method (CFD). Several design parameters were considered to find the effect on the temperature distribution and the cooldown time. The variation of thermal conductivity and heat capacity with temperature was taken into account. The thermal analysis method based on numerical techniques was introduced in this study, the heat transfer in the first stage array and the second stage cryopanel was carefully analyzed to determine important considerations in the thermal design of the cryopump. A performance test system according to the RNEUROP standards was built to test main performance of the cryopump. The experimental results showed that the structure of first stage array which was optimized by the method could meet the requirement of the cryopump well. The temperature of the cryopanel was down to 10K within 300 min, and the result of the experiment was accordant with theoretical analysis' conclusion. The test also showed that the pumping speed for N2 of the pump was up to 57,000 L/s, and the crossover was over than 300,000 Pa•L.

Keywords: cryopump, temperature distribution, thermal analysis, CFD Simulation

Procedia PDF Downloads 304
865 Rapides-Des-Îles Main Spillway - Rehabilitation

Authors: Maryam Kamali Nezhad

Abstract:

As part of the project to rehabilitate the main spillway ("main") of the Rapides-des-Îles development in 2019, it was noted that there is a difference between the water level of the intake gauge and the level measured at the main spillway. The Rapides-des-Îles Generating Station is a Hydro-Québec hydroelectric generating station and dam located on the Ottawa River in the Abitibi-Témiscamingue administrative region of Québec. This plant, with an installed capacity of 176 MW, was commissioned in 1966. During the start-up meeting held at the site in May 2019, it was noticed that the water level upstream of the main spillway was considerably higher than the water level at the powerhouse intake. Measurements showed that the level was 229.46 m, whereas the normal operating level (NOL) and the critical maximum level (CML) used in the design were 228.60 m and 229.51 m, respectively. Considering that the water level had almost reached the maximum critical level of the structure despite a flood with a recurrence period of about 100 years, the work was suspended while the project was being decided. This is the first time since the Rapides des îles project was commissioned that a significant difference in elevation between the water level at the powerhouse (intake) and the main spillway has been observed. Following this observation, the contractor's work was suspended. The objective of this study is to identify the reason(s) for this problem and find solutions. Then determine the new upstream levels at the main spillway at which the safety of the structure is ensured and then adjust the engineering of the main spillway in the rehabilitation project accordingly.

Keywords: spillway, rehabilitation, water level, powerhouse, normal operating level, critical maximum level, safety of the structure

Procedia PDF Downloads 73
864 3D Finite Element Analysis for Mechanics of Soil-Tool Interaction

Authors: A. Armin, R. Fotouhi, W. Szyszkowski

Abstract:

This paper is part of a study to develop robots for farming. As such power requirement to operate equipment attach to such robots become an important factor. Soil-tool interaction play major role in power consumption, thus predicting accurately the forces which act on the blade during the farming is prime importance for optimal designing of farm equipment. In this paper a finite element investigation for tillage tools and soil interaction is described by using an inelastic constitutive material law for agriculture application. A 3-dimentional (3D) nonlinear finite element analysis (FEA) is developed to examine behavior of a blade with different rake angles moving in a block of soil, and to estimate the blade force. The soil model considered is an elastic-plastic with non-associated Drucker-Prager material model. Special use of contact elements are employed to consider connection between soil-blade and soil-soil surfaces. The FEA results are compared with experiment ones, which show good agreement in accurately predicting draft forces developed on the blade when it moves through the soil. Also, a very good correlation was obtained between FEA results and analytical results from classical soil mechanics theories for straight blades. These comparisons verified the FEA model developed. For analyzing complicated soil-tool interactions and for optimum design of blades, this method will be useful.

Keywords: finite element analysis, soil-blade contact modeling, blade force, mechanical engineering

Procedia PDF Downloads 296
863 Comparison of Direct and Indirect Tensile Strength of Brittle Materials and Accurate Estimate of Tensile Strength

Authors: M. Etezadi, A. Fahimifar

Abstract:

In many geotechnical designs in rocks and rock masses, tensile strength of rock and rock mass is needed. The difficulties associated with performing a direct uniaxial tensile test on a rock specimen have led to a number of indirect methods for assessing the tensile strength that in the meantime the Brazilian test is more popular. Brazilian test is widely applied in rock engineering because specimens are easy to prepare, the test is easy to conduct and uniaxial compression test machines are quite common. This study compares experimental results of direct and Brazilian tensile tests carried out on two rock types and three concrete types using 39 cylindrical and 28 disc specimens. The tests are performed using Servo-Control device. The relationship between direct and indirect tensile strength of specimens is extracted using linear regression. In the following, tensile strength of direct and indirect test is evaluated using finite element analysis. The results are analyzed and effective factors on results are studied. According to the experimental results Brazilian test is shown higher tensile strength than direct test. Because of decreasing the contact surface of grains and increasing the uniformity in concrete specimens with fine aggregate (largest grain size= 6mm), higher tensile strength in direct test is shown. The experimental and numerical results of tensile strength are compared and empirical relationship witch is obtained from experimental tests is validated.

Keywords: tensile strength, brittle materials, direct and indirect tensile test, numerical modeling

Procedia PDF Downloads 550
862 Generation of Electro-Encephalography Readiness Potentials by Intention

Authors: Seokbeen Lim, Gilwon Yoon

Abstract:

The readiness potential in brain waves is a brain activity related with an intention whose potential arises even before its conscious intention. This study was carried out in order to understand the generation and mechanism of the readiness potential more. The experiment with two subjects was conducted in two ways following the Oddball task protocol. Firstly, auditory stimuli were randomly presented to the subjects. The subject was allowed to press the keyboard with the right index finger only when the subject heard the target stimulus but not the standard stimulus. Secondly, unlike the first one, the auditory stimuli were randomly presented, and the subjects pressed the keyboard in the same manner, but at the same time with grasping action of the left hand. The readiness potential showed up for both of these experiments. In the first Oddball experiment, the readiness potential was detected only when the target stimulus was presented. However, in the second Oddball experiment with the left hand action of grasping something, the readiness potential was detected at the presentation of for both standard and target stimuli. However, detected readiness potentials with the target stimuli were larger than those of the standard stimuli. We found an interesting phenomenon that the readiness potential was able to be detected even the standard stimulus. This indicates that motor-related readiness potentials can be generated only by the intention to move. These results present a new perspective in psychology and brain engineering since subconscious brain action may be prior to conscious recognition of the intention.

Keywords: readiness potential, auditory stimuli, event-related potential, electroencephalography, oddball task

Procedia PDF Downloads 204
861 Effect of Magnetic Field in Treatment of Lower Back Myofascial Pain Syndrome: A Randomized Controlled Trial

Authors: Ahmed M. F. El Shiwi

Abstract:

Background: Low back pain affects about 60% to 90% of the working-age population in modern industrial society. Myofascial pain syndrome is a condition characterized by muscles shortening with increased tone and associated with trigger points that aggravated with the activity of daily living. Purpose: To examine the effects of magnetic field therapy in patients with lower back myofascial pain syndrome. Methods: Thirty patients were assigned randomly into two groups. Subjects in the experimental group (n=15) with main age of 36.73 (2.52) received traditional physical therapy program (Infrared radiation, ultrasonic, stretching and strengthening exercises for back muscles) as well as magnetic field, and control group (n=15) with main age of 37.27 (2.52) received traditional physical therapy only. The following parameters including pain severity, functional disability and lumbar range of motion (flexion, extension, right side bending, and left side bending) were measured before and after four weeks of treatment. Results: The results showed significant improvement in all parameters in the experimental group compared with those in the control group. Interpretation/Conclusion: By the present date, it is possible to conclude that a magnetic field is effective as a method of treatment for lower back myofascial pain syndrome patients with the parameters used in the present study.

Keywords: magnetic field, lower back pain, myofascial pain syndrome, biological systems engineering

Procedia PDF Downloads 441
860 Generalized Limit Equilibrium Solution for the Lateral Pile Capacity Problem

Authors: Tomer Gans-Or, Shmulik Pinkert

Abstract:

The determination of lateral pile capacity per unit length is a key aspect in geotechnical engineering. Traditional approaches for assessing piles lateral capacity in cohesive soils involve the application of upper-bound and lower-bound plasticity theorems. However, a comprehensive solution encompassing the entire spectrum of soil strength parameters, particularly in frictional soils with or without cohesion, is still lacking. This research introduces an innovative implementation of the slice method limit equilibrium solution for lateral capacity assessment. For any given numerical discretization of the soil's domain around the pile, the lateral capacity evaluation is based on mobilized strength concept. The critical failure geometry is then found by a unique optimization procedure which includes both factor of safety minimization and geometrical optimization. The robustness of this suggested methodology is that the solution is independent of any predefined assumptions. Validation of the solution is accomplished through a comparison with established plasticity solutions for cohesive soils. Furthermore, the study demonstrates the applicability of the limit equilibrium method to address unresolved cases related to frictional and cohesive-frictional soils. Beyond providing capacity values, the method enables the utilization of the mobilized strength concept to generate safety-factor distributions for scenarios representing pre-failure states.

Keywords: lateral pile capacity, slice method, limit equilibrium, mobilized strength

Procedia PDF Downloads 62
859 Challenges in the Material and Action-Resistance Factor Design for Embedded Retaining Wall Limit State Analysis

Authors: Kreso Ivandic, Filip Dodigovic, Damir Stuhec

Abstract:

The paper deals with the proposed 'Material' and 'Action-resistance factor' design methods in designing the embedded retaining walls. The parametric analysis of evaluating the differences of the output values mutually and compared with classic approach computation was performed. There is a challenge with the criteria for choosing the proposed calculation design methods in Eurocode 7 with respect to current technical regulations and regular engineering practice. The basic criterion for applying a particular design method is to ensure minimum an equal degree of reliability in relation to the current practice. The procedure of combining the relevant partial coefficients according to design methods was carried out. The use of mentioned partial coefficients should result in the same level of safety, regardless of load combinations, material characteristics and problem geometry. This proposed approach of the partial coefficients related to the material and/or action-resistance should aimed at building a bridge between calculations used so far and pure probability analysis. The measure to compare the results was to determine an equivalent safety factor for each analysis. The results show a visible wide span of equivalent values of the classic safety factors.

Keywords: action-resistance factor design, classic approach, embedded retaining wall, Eurocode 7, limit states, material factor design

Procedia PDF Downloads 231
858 Approved Cyclic Treatment System of Grey Water

Authors: Hanen Filali, Mohamed Hachicha

Abstract:

Treated grey water (TGW) reuse emerged as an alternative resource to meet the growing demand for water for agricultural irrigation and reduce the pressure on limited existing fresh water. However, this reuse needs adapted management in order to avoid environmental and health risks. In this work, the treatment of grey water (GW) was studied from a cyclic treatment system that we designed and implemented in the greenhouse of National Research Institute for Rural Engineering, Water and Forests (INRGREF). This system is composed of three levels for treatment (TGW 1, TGW 2, and TGW 3). Each level includes a sandy soil box. The use of grey water was moderated depending on the chemical and microbiological quality obtained. Different samples of soils and treated grey water were performed and analyzed for 14 irrigation cycles. TGW through cyclic treatment showed physicochemical parameters like pH, electrical conductivity (EC), chemical oxygen demand (COD), biological oxygen demand (BOD5) in the range of 7,35-7,91, 1,69-5,03 dS/m, 102,6-54,2 mgO2/l, and 31,33-15,74 mgO2/l, respectively. Results showed a reduction in the pollutant load with a significant effect on the three treatment levels; however, an increase in salinity was observed during all irrigation cycles. Microbiological results showed good grey water treatment with low health risk on irrigated soil. Treated water quality was below permissible Tunisian standards (NT106.03), and treated water is suitable for non-potable options.

Keywords: treated grey water, irrigation, cyclic treatment, soils, physico-chemical parameters, microbiological parameters

Procedia PDF Downloads 95
857 Carbon Skimming: Towards an Application to Summarise and Compare Embodied Carbon to Aid Early-Stage Decision Making

Authors: Rivindu Nethmin Bandara Menik Hitihamy Mudiyanselage, Matthias Hank Haeusler, Ben Doherty

Abstract:

Investors and clients in the Architectural, Engineering and Construction industry find it difficult to understand complex datasets and reports with little to no graphic representation. The stakeholders examined in this paper include designers, design clients and end-users. Communicating embodied carbon information graphically and concisely can aid with decision support early in a building's life cycle. It is essential to create a common visualisation approach as the level of knowledge about embodied carbon varies between stakeholders. The tool, designed in conjunction with Bates Smart, condenses Tally Life Cycle Assessment data to a carbon hot-spotting visualisation, highlighting the sections with the highest amounts of embodied carbon. This allows stakeholders at every stage of a given project to have a better understanding of the carbon implications with minimal effort. It further allows stakeholders to differentiate building elements by their carbon values, which enables the evaluation of the cost-effectiveness of the selected materials at an early stage. To examine and build a decision-support tool, an action-design research methodology of cycles of iterations was used along with precedents of embodied carbon visualising tools. Accordingly, the importance of visualisation and Building Information Modelling are also explored to understand the best format for relaying these results.

Keywords: embodied carbon, visualisation, summarisation, data filtering, early-stage decision-making, materiality

Procedia PDF Downloads 83
856 Dynamic Process of Single Water Droplet Impacting on a Hot Heptane Surface

Authors: Mingjun Xu, Shouxiang Lu

Abstract:

Understanding the interaction mechanism between the water droplet and pool fire has an important significance in engineering application of water sprinkle/spray/mist fire suppression. The micro impact process is unclear when the droplet impacts on the burning liquid surface at present. To deepen the understanding of the mechanisms of pool fire suppression with water spray/mist, dynamic processes of single water droplet impinging onto a hot heptane surface are visualized with the aid of a high-speed digital camera at 2000 fps. Each test is repeated 20 times. The water droplet diameter is around 1.98 mm, and the impact Weber number ranges from 30 to 695. The heptane is heated by a hot plate to mimic the burning condition, and the temperature varies from 30 to 90°C. The results show that three typical phenomena, including penetration, crater-jet and surface bubble, are observed, and the pool temperature has a significant influence on the critical condition for the appearance of each phenomenon. A global picture of different phenomena is built according to impact Weber number and pool temperature. In addition, the pool temperature and Weber number have important influences on the characteristic parameters including maximum crater depth, crown height and liquid column height. For a fixed Weber number, the liquid column height increases with pool temperature.

Keywords: droplet impact, fire suppression, hot surface, water spray

Procedia PDF Downloads 243
855 A Coupled Extended-Finite-Discrete Element Method: On the Different Contact Schemes between Continua and Discontinua

Authors: Shervin Khazaeli, Shahab Haj-zamani

Abstract:

Recently, advanced geotechnical engineering problems related to soil movement, particle loss, and modeling of local failure (i.e. discontinua) as well as modeling the in-contact structures (i.e. continua) are of the great interest among researchers. The aim of this research is to meet the requirements with respect to the modeling of the above-mentioned two different domains simultaneously. To this end, a coupled numerical method is introduced based on Discrete Element Method (DEM) and eXtended-Finite Element Method (X-FEM). In the coupled procedure, DEM is employed to capture the interactions and relative movements of soil particles as discontinua, while X-FEM is utilized to model in-contact structures as continua, which may consist of different types of discontinuities. For verification purposes, the new coupled approach is utilized to examine benchmark problems including different contacts between/within continua and discontinua. Results are validated by comparison with those of existing analytical and numerical solutions. This study proves that extended-finite-discrete element method can be used to robustly analyze not only contact problems, but also other types of discontinuities in continua such as (i) crack formations and propagations, (ii) voids and bimaterial interfaces, and (iii) combination of previous cases. In essence, the proposed method can be used vastly in advanced soil-structure interaction problems to investigate the micro and macro behaviour of the surrounding soil and the response of the embedded structure that contains discontinuities.

Keywords: contact problems, discrete element method, extended-finite element method, soil-structure interaction

Procedia PDF Downloads 505
854 Demetallization of Crude Oil: Comparative Analysis of Deasphalting and Electrochemical Removal Methods of Ni and V

Authors: Nurlan Akhmetov, Abilmansur Yeshmuratov, Aliya Kurbanova, Gulnar Sugurbekova, Murat Baisariyev

Abstract:

Extraction of the vanadium and nickel compounds is complex due to the high stability of porphyrin, nickel is catalytic poison which deactivates catalysis during the catalytic cracking of the oil, while vanadyl is abrasive and valuable metal. Thus, high concentration of the Ni and V in the crude oil makes their removal relevant. Two methods of the demetallization of crude oil were tested, therefore, the present research is conducted for comparative analysis of the deasphalting with organic solvents (cyclohexane, carbon tetrachloride, chloroform) and electrochemical method. Percentage of Ni extraction reached maximum of approximately 55% by using the electrochemical method in electrolysis cell, which was developed for this research and consists of three sections: oil and protonating agent (EtOH) solution between two conducting membranes which divides it from two capsules of 10% sulfuric acid and two graphite electrodes which cover all three parts in electrical circuit. Ions of metals pass through membranes and remain in acid solutions. The best result was obtained in 60 minutes with ethanol to oil ratio 25% to 75% respectively, current fits in to the range from 0.3A to 0.4A, voltage changed from 12.8V to 17.3V. Maximum efficiency of deasphalting, with cyclohexane as the solvent, in Soxhlet extractor was 66.4% for Ni and 51.2% for V. Thus, applying the voltammetry, ICP MS (Inductively coupled plasma mass spectrometry) and AAS (atomic absorption spectroscopy), these mentioned types of metal extraction methods were compared in this paper.

Keywords: electrochemistry, deasphalting of crude oil, demetallization of crude oil, petrolium engineering

Procedia PDF Downloads 235
853 A Study on the Synthetic Resin of Fire Risk Using the Room Corner Test

Authors: Ji Hun Choi, Seung Un Chae, Kyeong Suk Cho

Abstract:

Synthetic resins are widely used in various fields including electricity, engineering, construction and agriculture. Many of interior and exterior finishing materials for buildings are synthetic resin products. In this study, full-scale fire tests were conducted on polyvinyl chloride, polypropylene and urethane in accordance with the “ISO 9705: Fire test - Full-scale room test for surface products” to measure heat release rate, toxic gas emission and smoke production rate. Based on the tests, fire growth pattern and fire risk were analyzed. Findings from the tests conducted on polyvinyl chloride and urethane are as follows. The total heat release rate and total smoke production rate of polyvinyl chloride were 98.89MW and 5284.41m2, respectively and its highest CO2 concentration was 0.149%. The values obtained from the test with urethane were 469.94 MW, 3396.28 m2 and 1.549%. While heat release rate and CO2 concentration were higher in urethane implying its high combustibility, smoke production rate was 1.5 times higher in polyvinyl chloride. Follow-up tests are planned to be conducted to accumulate data for the evaluation of heat emission and fire risk associated with synthetic resins.

Keywords: synthetic resins, fire test, full-scale test, heat release rate, smoke production rate, polyvinyl chloride, polypropylene, urethane

Procedia PDF Downloads 433
852 Magneto-Thermo-Mechanical Analysis of Electromagnetic Devices Using the Finite Element Method

Authors: Michael G. Pantelyat

Abstract:

Fundamental basics of pure and applied research in the area of magneto-thermo-mechanical numerical analysis and design of innovative electromagnetic devices (modern induction heaters, novel thermoelastic actuators, rotating electrical machines, induction cookers, electrophysical devices) are elaborated. Thus, mathematical models of magneto-thermo-mechanical processes in electromagnetic devices taking into account main interactions of interrelated phenomena are developed. In addition, graphical representation of coupled (multiphysics) phenomena under consideration is proposed. Besides, numerical techniques for nonlinear problems solution are developed. On this base, effective numerical algorithms for solution of actual problems of practical interest are proposed, validated and implemented in applied 2D and 3D computer codes developed. Many applied problems of practical interest regarding modern electrical engineering devices are numerically solved. Investigations of the influences of various interrelated physical phenomena (temperature dependences of material properties, thermal radiation, conditions of convective heat transfer, contact phenomena, etc.) on the accuracy of the electromagnetic, thermal and structural analyses are conducted. Important practical recommendations on the choice of rational structures, materials and operation modes of electromagnetic devices under consideration are proposed and implemented in industry.

Keywords: electromagnetic devices, multiphysics, numerical analysis, simulation and design

Procedia PDF Downloads 386
851 Green Hydrogen: Exploring Economic Viability and Alluring Business Scenarios

Authors: S. Sakthivel

Abstract:

Currently, the global economy is based on the hydrocarbon economy, which is referencing the global hydrocarbon industry. Problems of using these fossil fuels (like oil, NG, coal) are emitting greenhouse gases (GHGs) and price fluctuation, supply/distribution, etc. These challenges can be overcome by using clean energy as hydrogen. The hydrogen economy is the use of hydrogen as a low carbon fuel, particularly for hydrogen vehicles, alternative industrial feedstock, power generation, and energy storage, etc. Engineering consulting firms have a significant role in this ambition and green hydrogen value chain (i.e., integration of renewables, production, storage, and distribution to end-users). Typically, the cost of green hydrogen is a function of the price of electricity needed, the cost of the electrolyser, and the operating cost to run the system. This article focuses on economic viability and explores the alluring business scenarios globally. Break-even analysis was carried out for green hydrogen production and in order to evaluate and compare the impact of the electricity price on the production costs of green hydrogen and relate it to fossil fuel-based brown/grey/blue hydrogen costs. It indicates that the cost of green hydrogen production will fall drastically due to the declining costs of renewable electricity prices and along with the improvement and scaling up of electrolyser manufacturing. For instance, in a scenario where electricity prices are below US$ 40/MWh, green hydrogen cost is expected to reach cost competitiveness.

Keywords: green hydrogen, cost analysis, break-even analysis, renewables, electrolyzer

Procedia PDF Downloads 143
850 Develop a Conceptual Data Model of Geotechnical Risk Assessment in Underground Coal Mining Using a Cloud-Based Machine Learning Platform

Authors: Reza Mohammadzadeh

Abstract:

The major challenges in geotechnical engineering in underground spaces arise from uncertainties and different probabilities. The collection, collation, and collaboration of existing data to incorporate them in analysis and design for given prospect evaluation would be a reliable, practical problem solving method under uncertainty. Machine learning (ML) is a subfield of artificial intelligence in statistical science which applies different techniques (e.g., Regression, neural networks, support vector machines, decision trees, random forests, genetic programming, etc.) on data to automatically learn and improve from them without being explicitly programmed and make decisions and predictions. In this paper, a conceptual database schema of geotechnical risks in underground coal mining based on a cloud system architecture has been designed. A new approach of risk assessment using a three-dimensional risk matrix supported by the level of knowledge (LoK) has been proposed in this model. Subsequently, the model workflow methodology stages have been described. In order to train data and LoK models deployment, an ML platform has been implemented. IBM Watson Studio, as a leading data science tool and data-driven cloud integration ML platform, is employed in this study. As a Use case, a data set of geotechnical hazards and risk assessment in underground coal mining were prepared to demonstrate the performance of the model, and accordingly, the results have been outlined.

Keywords: data model, geotechnical risks, machine learning, underground coal mining

Procedia PDF Downloads 275
849 Time-Course Lipid Accumulation and Transcript Analyses of Lipid Biosynthesis Gene of Chlorella sp.3 under Nitrogen Limited Condition

Authors: Jyoti Singh, Swati Dubey, Mukta Singh, R. P. Singh

Abstract:

The freshwater microalgae Chlorella sp. is alluring considerable interest as a source for biofuel production due to its fast growth rate and high lipid content. Under nitrogen limited conditions, they can accumulate significant amounts of lipids. Thus, it is important to gain insight into the molecular mechanism of their lipid metabolism. In this study under nitrogen limited conditions, regular pattern of growth characteristics lipid accumulation and gene expression analysis of key regulatory genes of lipid biosynthetic pathway were carried out in microalgae Chlorella sp 3. Our results indicated that under nitrogen limited conditions there is a significant increase in the lipid content and lipid productivity, achieving 44.21±2.64 % and 39.34±0.66 mg/l/d at the end of the cultivation, respectively. Time-course transcript patterns of lipid biosynthesis genes i.e. acetyl coA carboxylase (accD) and diacylglycerol acyltransferase (dgat) showed that during late log phase of microalgae Chlorella sp.3 both the genes were significantly up regulated as compared to early log phase. Moreover, the transcript level of the dgat gene is two-fold higher than the accD gene. The results suggested that both the genes responded sensitively to the nitrogen limited conditions during the late log stage, which proposed their close relevance to lipid biosynthesis. Further, this transcriptome data will be useful for engineering microalgae species by targeting these genes for genetic modification to improve microalgal biofuel quality and production.

Keywords: biofuel, gene, lipid, microalgae

Procedia PDF Downloads 310
848 Development of Residual Power Series Methods for Efficient Solutions of Stiff Differential Equations

Authors: Gebreegziabher Hailu

Abstract:

This paper presents the development of residual power series methods aimed at efficiently solving stiff differential equations, which pose significant challenges in numerical analysis due to their rapid changes in solution behavior. The RPSM is a numerical approach that generates polynomial-based approximate solutions without the need for linearization, discretization, or perturbation techniques, making it straightforward to implement and less prone to computational errors. We introduce an approach that utilizes power series expansions combined with residual minimization techniques to enhance convergence and stability. By analyzing the theoretical foundations of stiffness, we delve into the formulation of the residual power series method, detailing how it effectively captures the dynamics of stiff systems while maintaining computational efficiency. Numerical experiments demonstrate the method's superiority in terms of accuracy and computational cost when compared to traditional methods like implicit Runge-Kutta or multistep techniques. We also explore adaptive strategies within our framework to automatically adjust parameters based on the stiffness characteristics of the problem at hand. Ultimately, our findings contribute to the broader toolkit for tackling stiff differential equations, offering a robust alternative that promises to streamline computational workflows in various applied mathematics and engineering contexts.

Keywords: residual power series methods, stiff differential equoations, numerical approach, Runge Kutta methods

Procedia PDF Downloads 26
847 Workplace Risk Assessment in a Paint Factory

Authors: Rula D. Alshareef, Safa S. Alqathmi, Ghadah K. Alkhouldi, Reem O. Bagabas, Farheen B. Hasan

Abstract:

Safety engineering is among the most crucial considerations in any work environment. Providing mentally, physically, and environmentally safe work conditions must be the top priority of any successful organization. Company X is a local paint production company in Saudi Arabia; in a month, the factory experienced two significant accidents, which indicates that workers’ safety is overlooked. The aim of the research is to examine the risks, assess the root causes and recommend control measures that will eventually contribute to providing a safe workplace. The methodology used is sectioned into three phases, risk identification, assessment, and finally, mitigation. In the identification phase, the team used Rapid Entire Body Assessment (REBA) and National Institute for Occupational Safety and Health Lifting Index (NIOSH LI) tools to holistically establish knowledge about the current risk posed to the factory. The physical hazards in the factory were assessed in two different operations, which are mixing and filling/packaging. For the risk assessment phase, the hazards were deeply analyzed through their severity and impact. Additionally, through risk mitigation, the Rapid Entire Body Assessment (REBA) score decreased from 11 to 7, and the National Institute for Occupational Safety and Health Lifting Index (NIOSH LI) has been reduced from 5.27 to 1.85.

Keywords: ergonomics, safety, workplace risks, hazards, awkward posture, fatigue, work environment

Procedia PDF Downloads 79
846 Conversion of Glycerol to 3-Hydroxypropanoic Acid by Genetically Engineered Bacillus subtilis

Authors: Aida Kalantari, Boyang Ji, Tao Chen, Ivan Mijakovic

Abstract:

3-hydroxypropanoic acid (3-HP) is one of the most important biomass-derivable platform chemicals that can be converted into a number of industrially important compounds. There have been several attempts at production of 3-HP from renewable sources in cell factories, focusing mainly on Escherichia coli, Klebsiella pneumoniae, and Saccharomyces cerevisiae. Despite the significant progress made in this field, commercially exploitable large-scale production of 3-HP in microbial strains has still not been achieved. In this study, we investigated the potential of Bacillus subtilis to be used as a microbial platform for bioconversion of glycerol into 3-HP. Our recombinant B. subtilis strains overexpress the two-step heterologous pathway containing glycerol dehydratase and aldehyde dehydrogenase from various backgrounds. The recombinant strains harboring the codon-optimized synthetic pathway from K. pneumoniae produced low levels of 3-HP. Since the enzymes in the heterologous pathway are sensitive to oxygen, we had to perform our experiments in micro-aerobic conditions. Under these conditions, the cell produces lactate in order to regenerate NAD+, and we found the lactate production to be in competition with the production of 3-HP. Therefore, based on the in silico predictions, we knocked out the glycerol kinase (glpk), which in combination with growth on glucose, resulted in improving the 3-HP titer to 1 g/L and the removal of lactate. Cultivation of the same strain in an enriched medium improved the 3-HP titer up to 7.6 g/L. Our findings provide the first report of successful introduction of the biosynthetic pathway for conversion of glycerol into 3-HP in B. subtilis.

Keywords: bacillus subtilis, glycerol, 3-hydroxypropanoic acid, metabolic engineering

Procedia PDF Downloads 247
845 Carbon Fiber Manufacturing Conditions to Improve Interfacial Adhesion

Authors: Filip Stojcevski, Tim Hilditch, Luke Henderson

Abstract:

Although carbon fibre composites are becoming ever more prominent in the engineering industry, interfacial failure still remains one of the most common limitations to material performance. Carbon fiber surface treatments have played a major role in advancing composite properties however research into the influence of manufacturing variables on a fiber manufacturing line is lacking. This project investigates the impact of altering carbon fiber manufacturing conditions on a production line (specifically electrochemical oxidization and sizing variables) to assess fiber-matrix adhesion. Pristine virgin fibers were manufactured and interfacial adhesion systematically assessed from a microscale (single fiber) to a mesoscale (12k tow), and ultimately a macroscale (laminate). Correlations between interfacial shear strength (IFSS) at each level is explored as a function of known interfacial bonding mechanisms; namely mechanical interlocking, chemical adhesion and fiber wetting. Impact of these bonding mechanisms is assessed through extensive mechanical, topological and chemical characterisation. They are correlated to performance as a function of IFSS. Ultimately this study provides a bottoms up approach to improving composite laminates. By understanding the scaling effects from a singular fiber to a composite laminate and linking this knowledge to specific bonding mechanisms, material scientists can make an informed decision on the manufacturing conditions most beneficial for interfacial adhesion.

Keywords: carbon fibers, interfacial adhesion, surface treatment, sizing

Procedia PDF Downloads 265