Search results for: population scale
1540 User Experience in Relation to Eye Tracking Behaviour in VR Gallery
Authors: Veslava Osinska, Adam Szalach, Dominik Piotrowski
Abstract:
Contemporary VR technologies allow users to explore virtual 3D spaces where they can work, socialize, learn, and play. User's interaction with GUI and the pictures displayed implicate perceptual and also cognitive processes which can be monitored due to neuroadaptive technologies. These modalities provide valuable information about the users' intentions, situational interpretations, and emotional states, to adapt an application or interface accordingly. Virtual galleries outfitted by specialized assets have been designed using the Unity engine BITSCOPE project in the frame of CHIST-ERA IV program. Users interaction with gallery objects implies the questions about his/her visual interests in art works and styles. Moreover, an attention, curiosity, and other emotional states are possible to be monitored and analyzed. Natural gaze behavior data and eye position were recorded by built-in eye-tracking module within HTC Vive headset gogle for VR. Eye gaze results are grouped due to various users’ behavior schemes and the appropriate perpetual-cognitive styles are recognized. Parallelly usability tests and surveys were adapted to identify the basic features of a user-centered interface for the virtual environments across most of the timeline of the project. A total of sixty participants were selected from the distinct faculties of University and secondary schools. Users’ primary knowledge about art and was evaluated during pretest and this way the level of art sensitivity was described. Data were collected during two months. Each participant gave written informed consent before participation. In data analysis reducing the high-dimensional data into a relatively low-dimensional subspace ta non linear algorithms were used such as multidimensional scaling and novel technique technique t-Stochastic Neighbor Embedding. This way it can classify digital art objects by multi modal time characteristics of eye tracking measures and reveal signatures describing selected artworks. Current research establishes the optimal place on aesthetic-utility scale because contemporary interfaces of most applications require to be designed in both functional and aesthetical ways. The study concerns also an analysis of visual experience for subsamples of visitors, differentiated, e.g., in terms of frequency of museum visits, cultural interests. Eye tracking data may also show how to better allocate artefacts and paintings or increase their visibility when possible.Keywords: eye tracking, VR, UX, visual art, virtual gallery, visual communication
Procedia PDF Downloads 421539 Isolation of Nitrosoguanidine Induced NaCl Tolerant Mutant of Spirulina platensis with Improved Growth and Phycocyanin Production
Authors: Apurva Gupta, Surendra Singh
Abstract:
Spirulina spp., as a promising source of many commercially valuable products, is grown photo autotrophically in open ponds and raceways on a large scale. However, the economic exploitation in an open system seems to have been limited because of lack of multiple stress-tolerant strains. The present study aims to isolate a stable stress tolerant mutant of Spirulina platensis with improved growth rate and enhanced potential to produce its commercially valuable bioactive compounds. N-methyl-n'-nitro-n-nitrosoguanidine (NTG) at 250 μg/mL (concentration permitted 1% survival) was employed for chemical mutagenesis to generate random mutants and screened against NaCl. In a preliminary experiment, wild type S. platensis was treated with NaCl concentrations from 0.5-1.5 M to calculate its LC₅₀. Mutagenized colonies were then screened for tolerance at 0.8 M NaCl (LC₅₀), and the surviving colonies were designated as NaCl tolerant mutants of S. platensis. The mutant cells exhibited 1.5 times improved growth against NaCl stress as compared to the wild type strain in control conditions. This might be due to the ability of the mutant cells to protect its metabolic machinery against inhibitory effects of salt stress. Salt stress is known to adversely affect the rate of photosynthesis in cyanobacteria by causing degradation of the pigments. Interestingly, the mutant cells were able to protect its photosynthetic machinery and exhibited 4.23 and 1.72 times enhanced accumulation of Chl a and phycobiliproteins, respectively, which resulted in enhanced rate of photosynthesis (2.43 times) and respiration (1.38 times) against salt stress. Phycocyanin production in mutant cells was observed to enhance by 1.63 fold. Nitrogen metabolism plays a vital role in conferring halotolerance to cyanobacterial cells by influx of nitrate and efflux of Na+ ions from the cell. The NaCl tolerant mutant cells took up 2.29 times more nitrate as compared to the wild type and efficiently reduce it. Nitrate reductase and nitrite reductase activity in the mutant cells also improved by 2.45 and 2.31 times, respectively against salt stress. From these preliminary results, it could be deduced that enhanced nitrogen uptake and its efficient reduction might be a reason for adaptive and halotolerant behavior of the S. platensis mutant cells. Also, the NaCl tolerant mutant of S. platensis with significant improved growth and phycocyanin accumulation compared to the wild type can be commercially promising.Keywords: chemical mutagenesis, NaCl tolerant mutant, nitrogen metabolism, photosynthetic machinery, phycocyanin
Procedia PDF Downloads 1671538 Additive Manufacturing of Microstructured Optical Waveguides Using Two-Photon Polymerization
Authors: Leonnel Mhuka
Abstract:
Background: The field of photonics has witnessed substantial growth, with an increasing demand for miniaturized and high-performance optical components. Microstructured optical waveguides have gained significant attention due to their ability to confine and manipulate light at the subwavelength scale. Conventional fabrication methods, however, face limitations in achieving intricate and customizable waveguide structures. Two-photon polymerization (TPP) emerges as a promising additive manufacturing technique, enabling the fabrication of complex 3D microstructures with submicron resolution. Objectives: This experiment aimed to utilize two-photon polymerization to fabricate microstructured optical waveguides with precise control over geometry and dimensions. The objective was to demonstrate the feasibility of TPP as an additive manufacturing method for producing functional waveguide devices with enhanced performance. Methods: A femtosecond laser system operating at a wavelength of 800 nm was employed for two-photon polymerization. A custom-designed CAD model of the microstructured waveguide was converted into G-code, which guided the laser focus through a photosensitive polymer material. The waveguide structures were fabricated using a layer-by-layer approach, with each layer formed by localized polymerization induced by non-linear absorption of the laser light. Characterization of the fabricated waveguides included optical microscopy, scanning electron microscopy, and optical transmission measurements. The optical properties, such as mode confinement and propagation losses, were evaluated to assess the performance of the additive manufactured waveguides. Conclusion: The experiment successfully demonstrated the additive manufacturing of microstructured optical waveguides using two-photon polymerization. Optical microscopy and scanning electron microscopy revealed the intricate 3D structures with submicron resolution. The measured optical transmission indicated efficient light propagation through the fabricated waveguides. The waveguides exhibited well-defined mode confinement and relatively low propagation losses, showcasing the potential of TPP-based additive manufacturing for photonics applications. The experiment highlighted the advantages of TPP in achieving high-resolution, customized, and functional microstructured optical waveguides. Conclusion: his experiment substantiates the viability of two-photon polymerization as an innovative additive manufacturing technique for producing complex microstructured optical waveguides. The successful fabrication and characterization of these waveguides open doors to further advancements in the field of photonics, enabling the development of high-performance integrated optical devices for various applicationsKeywords: Additive Manufacturing, Microstructured Optical Waveguides, Two-Photon Polymerization, Photonics Applications
Procedia PDF Downloads 981537 Assessment of Climate Induced Hazards in Coastal Zone of Bangladesh: A Case Study of Koyra Upazilla under Khulna District and Shyamnagar Upazilla under Satkhira District
Authors: Kazi Ashief Mahmood
Abstract:
Geographically Bangladesh is located in a natural hazard prone area. Compared to the rest of the areas, the coastal sub-districts are more vulnerable to climate variability and change. However, the hydro-geophysical reality of the sub-districts predominantly determines their contexts of vulnerability and its nature differs accordingly. Intriguingly enough, the poorest of the areas appear to be the most cornered among the different vulnerable sectors. Among of these deprived segments; however, the women, the persons with disability and the minorities are generally more vulnerable and they face a high risk of marginalized. The most threatening hydro-geophysical climate vulnerability have been created by prolonged dry season as observed at Koyra Upazilla in Khulna districts and Shyamnagar in Satkhira districts. The prolonged dry season creates severe surface salinity by which farmers cannot produce or use their to cultivate. The absence of land-based production and employment in the area has led to severe food insecurity. As a result, farmers tend to change their livelihood option and many of them are forced to migrate to the other areas of the country in search of livelihood. Besides salinity intrusion, water logging, drought and different climate change induced hazards are endangering safe drinking water sources and putting small-holders out of agriculture-based livelihoods in the Koyra and Shyamnagar Upazilla. A sizeable fraction of small-holders are still trying to hold on to their small scale shrimp production, despite being under pressure to sell off their cultivating lands to their influential shrimp merchants. While their desperate effort to take advantage of the increasing salinity is somewhat successful, their families still face a greater risk of health hazards owing to the lack of safe drinking water. Unless the issues of salinity in drinking water cannot be redressed, the state of the affected people will be in great jeopardy. Most of the inhabitants of oKyra and Shyamnagar Upazilla are living under the poverty line. Thus, poverty is a major factor that intensifies the vulnerability caused by hydro-geophysical climatic conditions. The government and different NGOs are trying to improve the present scenario by implementing different disaster risk reduction projects along with poverty reduction for community empowerment.Keywords: assessment, climate change, climate induced hazards, coastal zone
Procedia PDF Downloads 4021536 Vapour Liquid Equilibrium Measurement of CO₂ Absorption in Aqueous 2-Aminoethylpiperazine (AEP)
Authors: Anirban Dey, Sukanta Kumar Dash, Bishnupada Mandal
Abstract:
Carbondioxide (CO2) is a major greenhouse gas responsible for global warming and fossil fuel power plants are the main emitting sources. Therefore the capture of CO2 is essential to maintain the emission levels according to the standards. Carbon capture and storage (CCS) is considered as an important option for stabilization of atmospheric greenhouse gases and minimizing global warming effects. There are three approaches towards CCS: Pre combustion capture where carbon is removed from the fuel prior to combustion, Oxy-fuel combustion, where coal is combusted with oxygen instead of air and Post combustion capture where the fossil fuel is combusted to produce energy and CO2 is removed from the flue gases left after the combustion process. Post combustion technology offers some advantage as existing combustion technologies can still be used without adopting major changes on them. A number of separation processes could be utilized part of post –combustion capture technology. These include (a) Physical absorption (b) Chemical absorption (c) Membrane separation (d) Adsorption. Chemical absorption is one of the most extensively used technologies for large scale CO2 capture systems. The industrially important solvents used are primary amines like Monoethanolamine (MEA) and Diglycolamine (DGA), secondary amines like diethanolamine (DEA) and Diisopropanolamine (DIPA) and tertiary amines like methyldiethanolamine (MDEA) and Triethanolamine (TEA). Primary and secondary amines react fast and directly with CO2 to form stable carbamates while Tertiary amines do not react directly with CO2 as in aqueous solution they catalyzes the hydrolysis of CO2 to form a bicarbonate ion and a protonated amine. Concentrated Piperazine (PZ) has been proposed as a better solvent as well as activator for CO2 capture from flue gas with a 10 % energy benefit compared to conventional amines such as MEA. However, the application of concentrated PZ is limited due to its low solubility in water at low temperature and lean CO2 loading. So following the performance of PZ its derivative 2-Aminoethyl piperazine (AEP) which is a cyclic amine can be explored as an activator towards the absorption of CO2. Vapour liquid equilibrium (VLE) in CO2 capture systems is an important factor for the design of separation equipment and gas treating processes. For proper thermodynamic modeling accurate equilibrium data for the solvent system over a wide range of temperatures, pressure and composition is essential. The present work focuses on the determination of VLE data for (AEP + H2O) system at 40 °C for various composition range.Keywords: absorption, aminoethyl piperazine, carbondioxide, vapour liquid equilibrium
Procedia PDF Downloads 2651535 Extraction of Urban Building Damage Using Spectral, Height and Corner Information
Authors: X. Wang
Abstract:
Timely and accurate information on urban building damage caused by earthquake is important basis for disaster assessment and emergency relief. Very high resolution (VHR) remotely sensed imagery containing abundant fine-scale information offers a large quantity of data for detecting and assessing urban building damage in the aftermath of earthquake disasters. However, the accuracy obtained using spectral features alone is comparatively low, since building damage, intact buildings and pavements are spectrally similar. Therefore, it is of great significance to detect urban building damage effectively using multi-source data. Considering that in general height or geometric structure of buildings change dramatically in the devastated areas, a novel multi-stage urban building damage detection method, using bi-temporal spectral, height and corner information, was proposed in this study. The pre-event height information was generated using stereo VHR images acquired from two different satellites, while the post-event height information was produced from airborne LiDAR data. The corner information was extracted from pre- and post-event panchromatic images. The proposed method can be summarized as follows. To reduce the classification errors caused by spectral similarity and errors in extracting height information, ground surface, shadows, and vegetation were first extracted using the post-event VHR image and height data and were masked out. Two different types of building damage were then extracted from the remaining areas: the height difference between pre- and post-event was used for detecting building damage showing significant height change; the difference in the density of corners between pre- and post-event was used for extracting building damage showing drastic change in geometric structure. The initial building damage result was generated by combining above two building damage results. Finally, a post-processing procedure was adopted to refine the obtained initial result. The proposed method was quantitatively evaluated and compared to two existing methods in Port au Prince, Haiti, which was heavily hit by an earthquake in January 2010, using pre-event GeoEye-1 image, pre-event WorldView-2 image, post-event QuickBird image and post-event LiDAR data. The results showed that the method proposed in this study significantly outperformed the two comparative methods in terms of urban building damage extraction accuracy. The proposed method provides a fast and reliable method to detect urban building collapse, which is also applicable to relevant applications.Keywords: building damage, corner, earthquake, height, very high resolution (VHR)
Procedia PDF Downloads 2121534 Regeneration of a Liquid Desiccant Using Membrane Distillation to Unlock Coastal Desert Agriculture Potential
Authors: Kimberly J. Cribbs, Ryan M. Lefers, TorOve Leiknes, Noreddine Ghaffour
Abstract:
In Gulf Cooperation Council (GCC) countries, domestic agriculture is hindered by a lack of freshwater, poor soil quality, and ambient temperatures unsuitable for cultivation resulting in a heavy reliance on imported food. Attempts to minimize the risk of food insecurity by growing crops domestically creates a significant demand on limited freshwater resources in this region. Cultivating food in a greenhouse allows some of these challenges, such as poor soil quality and temperatures unsuitable for cultivation, to be overcome. One of the most common methods for greenhouse cooling is evaporative cooling. This method cools the air by the evaporation of water and requires a large amount of water relative to that needed for plant growth and air with a low relative humidity. Considering that much of the population in GCC countries live within 100 km of a coast and that sea water can be utilized for evaporative cooling, coastal agriculture could reduce the risk of food insecurity and water demand. Unfortunately, coastal regions tend to experience both high temperatures and high relative humidity causing evaporative cooling by itself to be inadequate. Therefore, dehumidification is needed prior to utilizing evaporative cooling. Utilizing a liquid desiccant for air dehumidification is promising, but the desiccant regeneration to retain its dehumidification potential remains a significant obstacle for the adoption of this technology. This project studied the regeneration of a magnesium chloride (MgCl₂) desiccant solution from 20wt% to 30wt% by direct contact membrane distillation (DCMD) and explored the possibility of using the recovered water for irrigation. Two 0.2 µm hydrophobic PTFE membranes were tested at feed temperatures of 80, 70, and 60°C and with a permeate temperature of 20°C. It was observed that the permeate flux increases as the difference between the feed and coolant temperature increases and also as the feed concentration decreases. At 21wt% the permeate flux was 34,17, and 14 L m⁻² h⁻¹ for feed temperatures of 80, 70, and 60°C, respectively. Salt rejection decreased overtime; however, it remained greater than 99.9% over an experimental time span of 10 hours. The results show that DCMD can successfully regenerate the magnesium chloride desiccant solution.Keywords: agriculture, direct contact membrane distillation, GCC countries, liquid desiccant, water recovery
Procedia PDF Downloads 1471533 A Review on Stormwater Harvesting and Reuse
Authors: Fatema Akram, Mohammad G. Rasul, M. Masud K. Khan, M. Sharif I. I. Amir
Abstract:
Australia is a country of some 7,700 million square kilometres with a population of about 22.6 million. At present water security is a major challenge for Australia. In some areas the use of water resources is approaching and in some parts it is exceeding the limits of sustainability. A focal point of proposed national water conservation programs is the recycling of both urban storm-water and treated wastewater. But till now it is not widely practiced in Australia, and particularly storm-water is neglected. In Australia, only 4% of storm-water and rainwater is recycled, whereas less than 1% of reclaimed wastewater is reused within urban areas. Therefore, accurately monitoring, assessing and predicting the availability, quality and use of this precious resource are required for better management. As storm-water is usually of better quality than untreated sewage or industrial discharge, it has better public acceptance for recycling and reuse, particularly for non-potable use such as irrigation, watering lawns, gardens, etc. Existing storm-water recycling practice is far behind of research and no robust technologies developed for this purpose. Therefore, there is a clear need for using modern technologies for assessing feasibility of storm-water harvesting and reuse. Numerical modelling has, in recent times, become a popular tool for doing this job. It includes complex hydrological and hydraulic processes of the study area. The hydrologic model computes storm-water quantity to design the system components, and the hydraulic model helps to route the flow through storm-water infrastructures. Nowadays water quality module is incorporated with these models. Integration of Geographic Information System (GIS) with these models provides extra advantage of managing spatial information. However for the overall management of a storm-water harvesting project, Decision Support System (DSS) plays an important role incorporating database with model and GIS for the proper management of temporal information. Additionally DSS includes evaluation tools and Graphical user interface. This research aims to critically review and discuss all the aspects of storm-water harvesting and reuse such as available guidelines of storm-water harvesting and reuse, public acceptance of water reuse, the scopes and recommendation for future studies. In addition to these, this paper identifies, understand and address the importance of modern technologies capable of proper management of storm-water harvesting and reuse.Keywords: storm-water management, storm-water harvesting and reuse, numerical modelling, geographic information system, decision support system, database
Procedia PDF Downloads 3711532 Hydrological Benefits Sharing Concepts in Constructing Friendship Dams on Transboundary Tigris River Between Iraq and Turkey
Authors: Thair Mahmood Altaiee
Abstract:
Because of the increasing population and the growing water requirements from the transboundary water resources within riparian countries in addition to un-proper management of these transboundary water resources, it is likely that a conflicts on the water will be occurred. So it is mandatory to search solutions to mitigate the action and probabilities of these undesired conflicts. One of the solutions for these crises may be sharing the riparian countries in the management of their transboundary water resources and share benefit. Effective cooperation on a transboundary river is any action by the riparian countries that lead to improve management of the river to their mutual acceptance. In principle, friendship dams constructed by riparian countries may play an important role in preventing conflicts like the Turkish-Syrian friendship dam on Asi river (Orontes), Iranian-Tukmenistan dam on Hariroud river, Bulgarian-Turkish dam on Tundzha river, Brazil-Paraguay dam on Parana river, and Aras dam between Iran and Azerbaijan. The objective of this study is to focus the light on the hydrological aspects of cooperation in constructing dams on the transboundary rivers, which may consider an option to prevent conflicts on water between the riparian countries. The various kinds of benefits and external impacts associated with cooperation in dams construction on the transboundary rivers with a real examples will be presented and analyzed. The hydrological benefit sharing from cooperation in dams construction, which type of benefit sharing mechanisms are applicable to dams, and how they vary were discussed. The study considered the cooperative applicability to dams on shared rivers according to selected case study of friendship dams in the world to illustrate the relevance of the cooperation concepts and the feasibility of such propose cooperation between Turkey and Iraq within the Tigris river. It is found that the opportunities of getting benefit from cooperation depend mainly on the hydrological boundary and location of the dam in relation to them. The desire to cooperate on dams construction on transboundary rivers exists if the location of a dam upstream will increase aggregate net benefits. The case studies show that various benefit sharing mechanisms due to cooperation in constructing friendship dams on the riparian countries border are possible for example when the downstream state (Iraq) convinces the upstream state (Turkey) to share building a dam on Tigris river across the Iraqi –Turkish border covering the cost and sharing the net benefit derived from this dam. These initial findings may provide guidance for riparian states engaged in and donors facilitating negotiation on dam projects on transboundary rivers.Keywords: friendship dams, transboundary rivers, water cooperation, benefit sharing
Procedia PDF Downloads 1401531 Sports Activities and their Impact on Disability
Authors: Ajved Ahmed
Abstract:
This research paper explores the intricate relationship between sports activities and disability, aiming to shed light on the multifaceted impacts of sports participation on individuals with disabilities. As the world grapples with the challenges posed by the growing population of people with disabilities, understanding the role of sports in their lives becomes increasingly important. The paper begins by providing a comprehensive overview of the diverse forms of disabilities, emphasizing the wide spectrum of physical, sensory, and cognitive impairments. It then delves into the benefits of sports activities for individuals with disabilities, highlighting the profound physical, psychological, and social advantages that engagement in sports can offer. These benefits encompass improved physical fitness, enhanced self-esteem and mental well-being, increased social integration, and a sense of empowerment and independence. Furthermore, the paper examines the barriers and challenges that individuals with disabilities often encounter when attempting to participate in sports activities, ranging from inaccessible facilities to societal prejudices and stereotypes. It underscores the critical role of inclusive sports programs, adaptive equipment, and policy initiatives in overcoming these barriers and fostering an environment where everyone can enjoy the benefits of sports. Through a comprehensive review of existing research and case studies, the paper also explores specific sports and their suitability for various types of disabilities. It discusses adapted sports like wheelchair basketball, blind soccer, and para-swimming, showcasing how these tailored activities not only accommodate disabilities but also promote excellence and competition at the highest levels. Additionally, the research paper delves into the economic and societal implications of increased sports participation among individuals with disabilities. It explores the potential for greater inclusion in the workforce, reduced healthcare costs, and the fostering of a more inclusive and accepting society. This research paper underscores the profound impact of sports activities on individuals with disabilities, highlighting their potential to improve physical health, mental well-being, and social integration. It calls for continued efforts to break down barriers and promote inclusive sports programs to ensure that everyone, regardless of their abilities, can access the transformative power of sports. Ultimately, this study contributes to a broader understanding of disability and sports, emphasizing the importance of inclusivity and accessibility in creating a more equitable and healthier society.Keywords: sports and health, sports and disability, curing disability through sports, health benefits of sports
Procedia PDF Downloads 621530 The Sources of Anti-Immigrant Sentiments in Russia
Authors: Anya Glikman, Anastasia Gorodzeisky
Abstract:
Since the late 1990th labor immigration and its consequences on the society have become one of the most frequently discussed and debated issues in Russia. Social scientists point that the negative attitudes towards immigrants among Russian majority population is widespread, and their level, at least, twice as high as their level in most other European countries. Moreover, recent study by Gorodzeisky, Glikman and Maskyleison (2014) demonstrates that the two sets of individual level predictors of anti-foreigner sentiment – socio-economic status and conservative views and ideologies – that have been repeatedly proved in research in Western countries are not effective in predicting of anti-foreigner sentiment in Post-Socialist Russia. Apparently, the social mechanisms underlying anti-foreigner sentiment in Western countries, which are characterized by stable regimes and relatively long immigration histories, do not play a significant role in the explanation of anti-foreigner sentiment in Post-Socialist Russia. The present study aims to examine alternative possible sources of anti-foreigner sentiment in Russia while controlling for socio-economic position of individuals and conservative views. More specifically, following the research literature on the topic worldwide, we aim to examine whether and to what extent human values (such as tradition, universalism, safety and power), ethnic residential segregation, fear of crime and exposure to mass media affect anti-foreigner sentiments in Russia. To do so, we estimate a series of multivariate regression equations using the data obtained from 2012 European Social Survey. The national representative sample consists of 2337 Russian born respondents. Descriptive results reveal that about 60% percent of Russians view the impact of immigrants on the country in negative terms. Further preliminary analysis show that anti-foreigner sentiments are associated with exposer to mass media as well as with fear of crime. Specifically, respondents who devoted more time watching news on TV channels and respondents who express higher levels of fear of crime tend to report higher levels of anti-immigrants sentiments. The findings would be discussed in light of sociological perspective and the context of Russian society.Keywords: anti-immigrant sentiments, fear of crime, human values, mass media, Russia
Procedia PDF Downloads 4651529 Genome Sequencing, Assembly and Annotation of Gelidium Pristoides from Kenton-on-Sea, South Africa
Authors: Sandisiwe Mangali, Graeme Bradley
Abstract:
Genome is complete set of the organism's hereditary information encoded as either deoxyribonucleic acid or ribonucleic acid in most viruses. The three different types of genomes are nuclear, mitochondrial and the plastid genome and their sequences which are uncovered by genome sequencing are known as an archive for all genetic information and enable researchers to understand the composition of a genome, regulation of gene expression and also provide information on how the whole genome works. These sequences enable researchers to explore the population structure, genetic variations, and recent demographic events in threatened species. Particularly, genome sequencing refers to a process of figuring out the exact arrangement of the basic nucleotide bases of a genome and the process through which all the afore-mentioned genomes are sequenced is referred to as whole or complete genome sequencing. Gelidium pristoides is South African endemic Rhodophyta species which has been harvested in the Eastern Cape since the 1950s for its high economic value which is one motivation for its sequencing. Its endemism further motivates its sequencing for conservation biology as endemic species are more vulnerable to anthropogenic activities endangering a species. As sequencing, mapping and annotating the Gelidium pristoides genome is the aim of this study. To accomplish this aim, the genomic DNA was extracted and quantified using the Nucleospin Plank Kit, Qubit 2.0 and Nanodrop. Thereafter, the Ion Plus Fragment Library was used for preparation of a 600bp library which was then sequenced through the Ion S5 sequencing platform for two runs. The produced reads were then quality-controlled and assembled through the SPAdes assembler with default parameters and the genome assembly was quality assessed through the QUAST software. From this assembly, the plastid and the mitochondrial genomes were then sampled out using Gelidiales organellar genomes as search queries and ordered according to them using the Geneious software. The Qubit and the Nanodrop instruments revealed an A260/A280 and A230/A260 values of 1.81 and 1.52 respectively. A total of 30792074 reads were obtained and produced a total of 94140 contigs with resulted into a sequence length of 217.06 Mbp with N50 value of 3072 bp and GC content of 41.72%. A total length of 179281bp and 25734 bp was obtained for plastid and mitochondrial respectively. Genomic data allows a clear understanding of the genomic constituent of an organism and is valuable as foundation information for studies of individual genes and resolving the evolutionary relationships between organisms including Rhodophytes and other seaweeds.Keywords: Gelidium pristoides, genome, genome sequencing and assembly, Ion S5 sequencing platform
Procedia PDF Downloads 1471528 Energy Usage in Isolated Areas of Honduras
Authors: Bryan Jefry Sabillon, Arlex Molina Cedillo
Abstract:
Currently, the raise in the demand of electrical energy as a consequence of the development of technology and population growth, as well as some projections made by ‘La Agencia Internacional de la Energía’ (AIE) and research institutes, reveal alarming data about the expected raise of it in the next few decades. Because of this, something should be made to raise the awareness of the rational and efficient usage of this resource. Because of the global concern of providing electrical energy to isolated areas, projects consisting of energy generation using renewable resources are commonly carried out. On a socioeconomically and cultural point of view, it can be foreseen a positive impact that would result for the society to have this resource. This article is focused on the great potential that Honduras shows, as a country that is looking forward to produce renewable energy due to the crisis that it’s living nowadays. Because of this, we present a detailed research that exhibits the main necessities that the rural communities are facing today, to allay the negative aspects due to the scarcity of electrical energy. We also discuss which should be the type of electrical generation method to be used, according to the disposition, geography, climate, and of course the accessibility of each area. Honduras is actually in the process of developing new methods for the generation of energy; therefore, it is of our concern to talk about renewable energy, the exploitation of which is a global trend. Right now the countries’ main energetic generation methods are: hydrological, thermic, wind, biomass and photovoltaic (this is one of the main sources of clean electrical generation). The use of these resources was possible partially due to the studies made by the organizations that focus on electrical energy and its demand, such as ‘La Cooperación Alemana’ (GIZ), ‘La Secretaria de Energía y Recursos Naturales’ (SERNA), and ‘El Banco Centroamericano de Integración Económica’ (BCIE), which eased the complete guide that is to be used in the protocol to be followed to carry out the three stages of this type of projects: 1) Licences and Permitions, 2) Fincancial Aspects and 3) The inscription for the Protocol in Kyoto. This article pretends to take the reader through the necessary information (according to the difficult accessibility that each zone might present), about the best option of electrical generation in zones that are totally isolated from the net, pretending to use renewable resources to generate electrical energy. We finally conclude that the usage of hybrid systems of generation of energy for small remote communities brings about a positive impact, not only because of the fact of providing electrical energy but also because of the improvements in education, health, sustainable agriculture and livestock, and of course the advances in the generation of energy which is the main concern of this whole article.Keywords: energy, isolated, renewable, accessibility
Procedia PDF Downloads 2281527 Growth Stimulating Effects of Aspilia africana Fed to Female Pseudo-Ruminant Herbivores (Rabbits) at Different Physiological States
Authors: Nseabasi Nsikakabasi Etim
Abstract:
In recent times, there has been a significant shortfall in between the production and supply of animal protein to meet the ever increasing population. To meet the increasing demand for animal protein, there is a need to focus attention on the production of livestock whose nutritional requirement does not put much strain on the limited sources of feed ingredients to which men subscribe. An example of such livestock is the rabbit. Rabbit is a pseudo-ruminant herbivore which utilizes much undigested and unabsorbed feed materials as sources of nutrient for maintenance and production. Thus, this study was conducted to investigate the effects of feeding Aspilia africana as forage on the growth rates of female pseudo-ruminant herbivores (rabbits) at different physiological states. Thirty (30) Dutch breed rabbit does of 5–6 months of age were used for the experiment which was conducted in a completely randomized design for four months. The rabbits were divided into three treatment groups, ten does per treatment group; which consisted of mixed forages (Centrosema pubescent (200g), Panicum maximum (200g) and Ipomea batatas leaves (100g) without Aspilia africana (T1; control), fresh Aspilia africana (500g/dose/day) (T2) and wilted Aspilia africana (500g/dose/day) (T3). Rabbits in all treatment groups received the same concentrate (300g/animal/day) throughout the period of the study and mixed forages from the commencement of the experiment till the does kindled. After parturition, fresh and wilted Aspilia africana were introduced in treatments 2 and three respectively, whereas the control group continued on mixed forages throughout the study. The result of the study revealed that the initial average body weight of the rabbit does was 1.74kg. At mating and gestation periods, the body weights of the does in T2 was significantly higher (P<0.05) than the rest. There were no significant differences (P<0.05) in the body weights of does at kindling between the various treatment groups. During the physiological states of lactation, weaning and re-mating, the control group (T1) had significantly lower body weight than those of the treated groups (T2 and T3). Furthermore, T2 had significantly higher body weight than T3. The study revealed that Aspilia africana; mainly the fresh leaves have greater growth stimulating effects when fed to pseudo-ruminants (rabbits), thereby enhancing body weights of does during lactation and weaning.Keywords: Aspilia africana, herbivores, pseudo-ruminants, physiological states
Procedia PDF Downloads 6891526 Epidemiological and Clinical Characteristics of Five Rare Pathological Subtypes of Hepatocellular Carcinoma
Authors: Xiaoyuan Chen
Abstract:
Background: This study aimed to characterize the epidemiological and clinical features of five rare subtypes of hepatocellular carcinoma (HCC) and to create a competing risk nomogram for predicting cancer-specific survival. Methods: This study used the Surveillance, Epidemiology, and End Results database to analyze the clinicopathological data of 50,218 patients with classic HCC and five rare subtypes (ICD-O-3 Histology Code=8170/3-8175/3) between 2004 and 2018. The annual percent change (APC) was calculated using Joinpoint regression, and a nomogram was developed based on multivariable competing risk survival analyses. The prognostic performance of the nomogram was evaluated using the Akaike information criterion, Bayesian information criterion, C-index, calibration curve, and area under the receiver operating characteristic curve. Decision curve analysis was used to assess the clinical value of the models. Results: The incidence of scirrhous carcinoma showed a decreasing trend (APC=-6.8%, P=0.025), while the morbidity of other rare subtypes remained stable from 2004 to 2018. The incidence-based mortality plateau in all subtypes during the period. Clear cell carcinoma was the most common subtype (n=551, 1.1%), followed by fibrolamellar (n=241, 0.5%), scirrhous (n=82, 0.2%), spindle cell (n=61, 0.1%), and pleomorphic (n=17, ~0%) carcinomas. Patients with fibrolamellar carcinoma were younger and more likely to have non-cirrhotic liver and better prognoses. Scirrhous carcinoma shared almost the same macro clinical characteristics and outcomes as classic HCC. Clear cell carcinoma tended to occur in the Asia-Pacific elderly male population, and more than half of them were large HCC (Size>5cm). Sarcomatoid (including spindle cell and pleomorphic) carcinoma was associated with larger tumor size, poorer differentiation, and more dismal prognoses. The pathological subtype, T stage, M stage, surgery, alpha-fetoprotein, and cancer history were identified as independent predictors in patients with rare subtypes. The nomogram showed good calibration, discrimination, and net benefits in clinical practice. Conclusion: The rare subtypes of HCC had distinct clinicopathological features and biological behaviors compared with classic HCC. Our findings could provide a valuable reference for clinicians. The constructed nomogram could accurately predict prognoses, which is beneficial for individualized management.Keywords: hepatocellular carcinoma, pathological subtype, fibrolamellar carcinoma, scirrhous carcinoma, clear cell carcinoma, spindle cell carcinoma, pleomorphic carcinoma
Procedia PDF Downloads 741525 A Theoretical Approach of Tesla Pump
Authors: Cristian Sirbu-Dragomir, Stefan-Mihai Sofian, Adrian Predescu
Abstract:
This paper aims to study Tesla pumps for circulating biofluids. It is desired to make a small pump for the circulation of biofluids. This type of pump will be studied because it has the following characteristics: It doesn’t have blades which results in very small frictions; Reduced friction forces; Low production cost; Increased adaptability to different types of fluids; Low cavitation (towards 0); Low shocks due to lack of blades; Rare maintenance due to low cavity; Very small turbulences in the fluid; It has a low number of changes in the direction of the fluid (compared to rotors with blades); Increased efficiency at low powers.; Fast acceleration; The need for a low torque; Lack of shocks in blades at sudden starts and stops. All these elements are necessary to be able to make a small pump that could be inserted into the thoracic cavity. The pump will be designed to combat myocardial infarction. Because the pump must be inserted in the thoracic cavity, elements such as Low friction forces, shocks as low as possible, low cavitation and as little maintenance as possible are very important. The operation should be performed once, without having to change the rotor after a certain time. Given the very small size of the pump, the blades of a classic rotor would be very thin and sudden starts and stops could cause considerable damage or require a very expensive material. At the same time, being a medical procedure, the low cost is important in order to be easily accessible to the population. The lack of turbulence or vortices caused by a classic rotor is again a key element because when it comes to blood circulation, the flow must be laminar and not turbulent. The turbulent flow can even cause a heart attack. Due to these aspects, Tesla's model could be ideal for this work. Usually, the pump is considered to reach an efficiency of 40% being used for very high powers. However, the author of this type of pump claimed that the maximum efficiency that the pump can achieve is 98%. The key element that could help to achieve this efficiency or one as close as possible is the fact that the pump will be used for low volumes and pressures. The key elements to obtain the best efficiency for this model are the number of rotors placed in parallel and the distance between them. The distance between them must be small, which helps to obtain a pump as small as possible. The principle of operation of such a rotor is to place in several parallel discs cut inside. Thus the space between the discs creates the vacuum effect by pulling the liquid through the holes in the rotor and throwing it outwards. Also, a very important element is the viscosity of the liquid. It dictates the distance between the disks to achieve a lossless power flow.Keywords: lubrication, temperature, tesla-pump, viscosity
Procedia PDF Downloads 1781524 The Effectiveness of Exercise Therapy on Decreasing Pain in Women with Temporomandibular Disorders and How Their Brains Respond: A Pilot Randomized Controlled Trial
Authors: Zenah Gheblawi, Susan Armijo-Olivo, Elisa B. Pelai, Vaishali Sharma, Musa Tashfeen, Angela Fung, Francisca Claveria
Abstract:
Due to physiological differences between men and women, pain is experienced differently between the two sexes. Chronic pain disorders, notably temporomandibular disorders (TMDs), disproportionately affect women in diagnosis, and pain severity in opposition of their male counterparts. TMDs are a type of musculoskeletal disorder that target the masticatory muscles, temporalis muscle, and temporomandibular joints, causing considerable orofacial pain which can usually be referred to the neck and back. Therapeutic methods are scarce, and are not TMD-centered, with the latest research suggesting that subjects with chronic musculoskeletal pain disorders have abnormal alterations in the grey matter of their brains which can be remedied with exercise, and thus, decreasing the pain experienced. The aim of the study is to investigate the effects of exercise therapy in TMD female patients experiencing chronic jaw pain and to assess the consequential effects on brain activity. In a randomized controlled trial, the effectiveness of an exercise program to improve brain alterations and clinical outcomes in women with TMD pain will be tested. Women with chronic TMD pain will be randomized to either an intervention arm or a placebo control group. Women in the intervention arm will receive 8 weeks of progressive exercise of motor control training using visual feedback (MCTF) of the cervical muscles, twice per week. Women in the placebo arm will receive innocuous transcutaneous electrical nerve stimulation during 8 weeks as well. The primary outcomes will be changes in 1) pain, measured with the Visual Analogue Scale, 2) brain structure and networks, measured by fractional anisotropy (brain structure) and the blood-oxygen level dependent signal (brain networks). Outcomes will be measured at baseline, after 8 weeks of treatment, and 4 months after treatment ends and will determine effectiveness of MCTF in managing TMD, through improved clinical outcomes. Results will directly inform and guide clinicians in prescribing more effective interventions for women with TMD. This study is underway, and no results are available at this point. The results of this study will have substantial implications on the advancement in understanding the scope of plasticity the brain has in regards with pain, and how it can be used to improve the treatment and pain of women with TMD, and more generally, other musculoskeletal disorders.Keywords: exercise therapy, musculoskeletal disorders, physical therapy, rehabilitation, tempomandibular disorders
Procedia PDF Downloads 2911523 Rheological Study of Wheat-Chickpea Flour Blend Bread for People with Type-2 Diabetes
Authors: Tasleem Zafar, Jiwan Sidhu
Abstract:
Introduction: Chickpea flour is known to offer many benefits to diabetic persons, especially in maintaining their blood sugar levels in the acceptable range. Under this project we have studied the chemical composition and antioxidant capacity of white flour (WF), whole wheat flour (WWF) and chickpea flour (BF), in addition to the effect of replacement of WF and WWF with BF on the rheological characteristics of these flour blends, with the ultimate objective of producing acceptable quality flat as well as pan-bread for the diabetic consumers. Methods: WF and WWF were replaced with BF ranging from 0 to 40%, to investigate its effect on the rheological properties and functionality of blended flour dough using farinograph, viscoamylograph, mixograph and falling number apparatus as per the AACC standard methods. Texture Profile Analysis (TPA) was carried on the WF, WWF, and their blends with BF using Stable Micro System Texture Analyzer. Effect of certain additives, such as freeze-dried amla fruit powder (Phyllanthus emblica L.), guar gum, and xanthan gum on the dough rheological properties were also studied. Results: Freeze-dried amla fruit powder was found to be very rich in ascorbic acid and other phenolics having higher antioxidant activity. A decreased farinograph water absorption, increased dough development time, higher mixing tolerance index (i.e., weakening of dough), decreased resistance to extension, lower ratio numbers were obtained when the replacement with BF was increased from 0 to 40%. The BF gave lower peak viscosity, lower paste breakdown, and lower setback values when compared with WF. The falling number values were significantly lower in WWF (meaning higher α-amylase activity) than both the WF and BF. Texture Profile Analysis (TPA) carried on the WF, WWF, and their blends with BF showed significant variations in hardness and compressibility values, dough becoming less hard and less compressible when the replacement of WF and WWF with BF was increased from 0 to 40%. Conclusions: To overcome the deleterious effects of adding BF to WF and WWF on the rheological properties will be an interesting challenge when good quality pan bread and Arabic flatbread have to be commercially produced in a bakery. Use of freeze-dried amla fruit powder, guar gum, and xanthan gum did show some promise to improve the mixing characteristics of WF, WWF, and their blends with BF, and these additives are expected to be useful in producing an acceptable quality flat as well as pan-bread on a commercial scale.Keywords: wheat flour, chickpea flour, amla fruit, rheology
Procedia PDF Downloads 1561522 Management of Soil Borne Plant Diseases Using Agricultural Waste Residues as Green Waste and Organic Amendment
Authors: Temitayo Tosin Alawiye
Abstract:
Plant disease control is important in maintaining plant vigour, grain quantity, abundance of food, feed, and fibre produced by farmers all over the world. Farmers make use of different methods in controlling these diseases but one of the commonly used method is the use of chemicals. However, the continuous and excessive usages of these agrochemicals pose a danger to the environment, man and wildlife. The more the population growth the more the food security challenge which leads to more pressure on agronomic growth. Agricultural waste also known as green waste are the residues from the growing and processing of raw agricultural products such as fruits, vegetables, rice husk, corn cob, mushroom growth medium waste, coconut husk. They are widely used in land bioremediation, crop production and protection which include disease control. These agricultural wastes help the crop by improving the soil fertility, increase soil organic matter and reduce in many cases incidence and severity of disease. The objective was to review the agricultural waste that has worked effectively against certain soil-borne diseases such as Fusarium oxysporum, Pythiumspp, Rhizoctonia spp so as to help minimize the use of chemicals. Climate change is a major problem of agriculture and vice versa. Climate change and agriculture are interrelated. Change in climatic conditions is already affecting agriculture with effects unevenly distributed across the world. It will increase the risk of food insecurity for some vulnerable groups such as the poor in Sub Saharan Africa. The food security challenge will become more difficult as the world will need to produce more food estimated to feed billions of people in the near future with Africa likely to be the biggest hit. In order to surmount this hurdle, smallholder farmers in Africa must embrace climate-smart agricultural techniques and innovations which includes the use of green waste in agriculture, conservative agriculture, pasture and manure management, mulching, intercropping, etc. Training and retraining of smallholder farmers on the use of green energy to mitigate the effect of climate change should be encouraged. Policy makers, academia, researchers, donors, and farmers should pay more attention to the use of green energy as a way of reducing incidence and severity of soilborne plant diseases to solve looming food security challenges.Keywords: agricultural waste, climate change, green energy, soil borne plant disease
Procedia PDF Downloads 2681521 Taraxacum Officinale (Dandelion) and Its Phytochemical Approach to Malignant Diseases
Authors: Angel Champion
Abstract:
Chemotherapy and radiation use an acidified approach to induce apoptosis, which only kills mature cancer cells while resulting in gene and cell damage with significant levels of toxicity in tumor-affected tissues and organs. The acid approach, where the cells exterminated are not differentiated, induces the disappearance of white blood cells from the blood. This increases susceptibility to infection in severe forms of cancer spread. However, chemotherapy and radiation cannot kill cancer stem cells that metastasize, being the leading cause of 98% of cancer fatalities. With over 12 million new cancer cases symptomatic each year, including common malignancies such as Hepatocellular Carcinoma (HCC), this study aims to assess the bioactive constituents and phytochemical composition of Taraxacum Officinale (Dandelion). This analysis enables pharmaceutical quality and potency to be applied to studies on cancer cell proliferation and apoptosis. A phytochemical screening is carried out to identify the antioxidant components of Dandelion root, stem, and flower extract. The constituents tested for are phlorotannins, carbohydrates, glycosides, saponins, flavonoids, alkaloids, sterols, triterpenes, and anthraquinone glycosides. To conserve the existing phenolic compounds, a portion of the constituent tests will be examined with an acid, alcohol, or aqueous solvent. As a result, the qualitative and quantitative variations within the Dandelion extract that measure uniform effective potency are vital to the conformity for producing medicinal products. These medicines will be constructed with a consistent, uniform composition that physicians can use to control and effectively eradicate malignant diseases safely. Taraxacum Officinale's phytochemical composition comprises a highly-graded potency due to present bioactive contents that will essentially drive out malignant disease within the human body. Its high potency rate is powerful enough to eliminate both mature cancer cells and cancer stem cells without the cell and gene damage induced by chemotherapy and radiation. Correspondingly, the high margins of cancer mortality on a global scale are mitigated. This remarkable contribution to modern therapeutics will essentially optimize the margins of natural products and their derivatives, which account for 50% of pharmaceuticals in modern therapeutics, while preventing the adverse effects of radiation and chemotherapy drugs.Keywords: antioxidant, apoptosis, metastasize, phytochemical, proliferation, potency
Procedia PDF Downloads 721520 The Ongoing Impact of Secondary Stressors on Businesses in Northern Ireland Affected by Flood Events
Authors: Jill Stephenson, Marie Vaganay, Robert Cameron, Caoimhe McGurk, Neil Hewitt
Abstract:
Purpose: The key aim of the research was to identify the secondary stressors experienced by businesses affected by single or repeated flooding and to determine to what extent businesses were affected by these stressors, along with any resulting impact on health. Additionally, the research aimed to establish the likelihood of businesses being re-exposed to the secondary stressors through assessing awareness of flood risk, implementation of property protection measures and level of community resilience. Design/methodology/approach: The chosen research method involved the distribution of a questionnaire survey to businesses affected by either single or repeated flood events. The questionnaire included the Impact of Event Scale (a 15-item self-report measure which assesses subjective distress caused by traumatic events). Findings: 55 completed questionnaires were returned by flood impacted businesses. 89% of the businesses had sustained internal flooding while 11% had experienced external flooding. The results established that the key secondary stressors experienced by businesses, in order of priority, were: flood damage, fear of reoccurring flooding, prevention of access to the premise/closure, loss of income, repair works, length of closure and insurance issues. There was a lack of preparedness for potential future floods and consequent vulnerability to the emergence of secondary stressors among flood affected businesses, as flood resistance or flood resilience measures had only been implemented by 11% and 13% respectively. In relation to the psychological repercussions, the Impact of Event scores suggested that potential prevalence of post-traumatic stress disorder (PTSD) was noted among 8 out of 55 respondents (l5%). Originality/value: The results improve understanding of the enduring repercussions of flood events on businesses, indicating that not only residents may be susceptible to the detrimental health impacts of flood events and single flood events may be just as likely as reoccurring flooding to contribute to ongoing stress. Lack of financial resources is a possible explanation for the lack of implementation of property protection measures among businesses, despite 49% experiencing flooding on multiple occasions. Therefore it is recommended that policymakers should consider potential sources of financial support or grants towards flood defences for flood impacted businesses. Any form of assistance should be made available to businesses at the earliest opportunity as there was no significant association between the time of the last flood event and the likelihood of experiencing PTSD symptoms.Keywords: flood event, flood resilience, flood resistance, PTSD, secondary stressors
Procedia PDF Downloads 4281519 Human Insecurity and Migration in the Horn of Africa: Causes and Decision Processes
Authors: Belachew Gebrewold
Abstract:
The Horn of Africa is marred by complex and systematic internal and external political, economic and social-cultural causes of conflict that result in internal displacement and migration. This paper engages with them and shows how such a study can help us to understand migration, both in this region and more generally. The conflict has occurred within states, between states, among proxies, between armies. Human insecurities as a result of the state collapse of Somalia, the rise of Islamic fundamentalism in the whole region, recurrent drought affecting the livelihoods of subsistence farmers as well as nomads, exposure to hunger, environmental degradation, youth unemployment, rapid growth of slums around big cities, and political repression (especially in Eritrea) have been driving various segments of the regional population into regional and international migration. Eritrea has been going through a brutal dictatorship which pushes many Eritreans to flee their country and be exposed to human trafficking, torture, detention, and agony on their way to Europe mainly through Egypt, Libya and Israel. Similarly, Somalia has been devastated since 1991 by unending civil war, state collapse, and radical Islamists. There are some important aspects to highlight in the conflict-migration nexus in the Horn of Africa: first, the main push factor for the Somalis and Eritreans to leave their countries and risk their lives is the physical insecurity they have been facing in their countries. Secondly, as a result of the conflict the economic infrastructure is massively destroyed. Investment is rare; job opportunities are out of sight. Thirdly, in such a grim situation the politically and economically induced decision to migrate is a household decision, not only an individual decision. Based on this third point this research study took place in the Horn of Africa between 2014 and 2016 during different occasions. The main objective of the research was to understanding how the increasing migration is affecting the socio-economic and socio-political environment, and conversely how the socio-economic and socio-political environments are increasing migration decisions; and whether and how these decisions are individual or family decisions. The main finding is the higher the human insecurity, the higher the family decision; the lower the human insecurity, the higher the individual decision. These findings apply not only to the Eritrean, Somali migrants but also to Ethiopian migrants. But the general impacts of migration on sending countries’ human security is quite mixed and complex.Keywords: Eritrea, Ethiopia, Horn of Africa, insecurity, migration, Somalia
Procedia PDF Downloads 2751518 Impact of Research-Informed Teaching and Case-Based Teaching on Memory Retention and Recall in University Students
Authors: Durvi Yogesh Vagani
Abstract:
This research paper explores the effectiveness of Research-informed teaching and Case-based teaching in enhancing the retention and recall of memory during discussions among university students. Additionally, it investigates the impact of using Artificial Intelligence (AI) tools on the quality of research conducted by students and its correlation with better recollection. The study hypothesizes that Case-based teaching will lead to greater recall and storage of information. The research gap in the use of AI in educational settings, particularly with actual participants, is addressed by leveraging a multi-method approach. The hypothesis is that the use of AI, such as ChatGPT and Bard, would lead to better retention and recall of information. Before commencing the study, participants' attention levels and IQ were assessed using the Digit Span Test and the Wechsler Adult Intelligence Scale, respectively, to ensure comparability among participants. Subsequently, participants were divided into four conditions, each group receiving identical information presented in different formats based on their assigned condition. Following this, participants engaged in a group discussion on the given topic. Their responses were then evaluated against a checklist. Finally, participants completed a brief test to measure their recall ability after the discussion. Preliminary findings suggest that students who utilize AI tools for learning demonstrate improved grasping of information and are more likely to integrate relevant information into discussions compared to providing extraneous details. Furthermore, Case-based teaching fosters greater attention and recall during discussions, while Research-informed teaching leads to greater knowledge for application. By addressing the research gap in AI application in education, this study contributes to a deeper understanding of effective teaching methodologies and the role of technology in student learning outcomes. The implication of the present research is to tailor teaching methods based on the subject matter. Case-based teaching facilitates application-based teaching, and research-based teaching can be beneficial for theory-heavy topics. Integrating AI in education. Combining AI with research-based teaching may optimize instructional strategies and deepen learning experiences. This research suggests tailoring teaching methods in psychology based on subject matter. Case-based teaching suits practical subjects, facilitating application, while research-based teaching aids understanding of theory-heavy topics. Integrating AI in education could enhance learning outcomes, offering detailed information tailored to students' needs.Keywords: artificial intelligence, attention, case-based teaching, memory recall, memory retention, research-informed teaching
Procedia PDF Downloads 281517 Evaluation of an Integrated Supersonic System for Inertial Extraction of CO₂ in Post-Combustion Streams of Fossil Fuel Operating Power Plants
Authors: Zarina Chokparova, Ighor Uzhinsky
Abstract:
Carbon dioxide emissions resulting from burning of the fossil fuels on large scales, such as oil industry or power plants, leads to a plenty of severe implications including global temperature raise, air pollution and other adverse impacts on the environment. Besides some precarious and costly ways for the alleviation of CO₂ emissions detriment in industrial scales (such as liquefaction of CO₂ and its deep-water treatment, application of adsorbents and membranes, which require careful consideration of drawback effects and their mitigation), one physically and commercially available technology for its capture and disposal is supersonic system for inertial extraction of CO₂ in after-combustion streams. Due to the flue gas with a carbon dioxide concentration of 10-15 volume percent being emitted from the combustion system, the waste stream represents a rather diluted condition at low pressure. The supersonic system induces a flue gas mixture stream to expand using a converge-and-diverge operating nozzle; the flow velocity increases to the supersonic ranges resulting in rapid drop of temperature and pressure. Thus, conversion of potential energy into the kinetic power causes a desublimation of CO₂. Solidified carbon dioxide can be sent to the separate vessel for further disposal. The major advantages of the current solution are its economic efficiency, physical stability, and compactness of the system, as well as needlessness of addition any chemical media. However, there are several challenges yet to be regarded to optimize the system: the way for increasing the size of separated CO₂ particles (as they are represented on a micrometers scale of effective diameter), reduction of the concomitant gas separated together with carbon dioxide and provision of CO₂ downstream flow purity. Moreover, determination of thermodynamic conditions of the vapor-solid mixture including specification of the valid and accurate equation of state remains to be an essential goal. Due to high speeds and temperatures reached during the process, the influence of the emitted heat should be considered, and the applicable solution model for the compressible flow need to be determined. In this report, a brief overview of the current technology status will be presented and a program for further evaluation of this approach is going to be proposed.Keywords: CO₂ sequestration, converging diverging nozzle, fossil fuel power plant emissions, inertial CO₂ extraction, supersonic post-combustion carbon dioxide capture
Procedia PDF Downloads 1401516 Obstacles and Ways-Forward to Upgrading Nigeria Basic Nursing Schools: A Survey of Perception of Teaching Hospitals’ Nurse Trainers and Stakeholders
Authors: Chijioke Oliver Nwodoh, Jonah Ikechukwu Eze, Loretta Chika Ukwuaba, Ifeoma Ndubuisi, Ada Carol Nwaneri, Ijeoma Lewechi Okoronkwo
Abstract:
Presence of nursing workforce with unequal qualification and status in Nigeria has undermined the growth of nursing profession in the country. Upgrading of the existing basic and post-basic nursing schools to degree-awarding institutions in Nigeria is a way-forward to solving this inequality problem and Nigeria teaching hospitals are in vantage position for this project due to the already existing supportive structure and manpower in those hospitals. What the nurse trainers and the stakeholders of the teaching hospitals may hold for or against the upgrading is a determining factor for the upgrading project, but that is not clear and has not been investigated in Nigeria. The study investigated the perception of nurse trainers and stakeholders of teaching hospitals in Enugu State of Nigeria on the obstacles and ways-forward to upgrading nursing schools to degree-awarding institutions in Nigeria. The study specifically elicited what the subjects may view as obstacles to upgrading basic and post-basic nursing schools to degree-awarding institutions in Nigeria and ascertained their suggestions on the possible ways of overcoming the obstacles. By utilizing cross-sectional descriptive design and a purposive sampling procedure, 78 accessible subjects out of a total population of 87 were used for the study. The generated data from the subjects were analyzed using frequencies, percentages and mean for the research questions and Pearson’s chi-square for the hypotheses, with the aid of Statistical Package for Social Sciences Version 20.0. The result showed that lack of extant policy, fund, and disunity among policy makers and stakeholders of nursing profession are the main obstacles to the upgrading. However, the respondents did not see items like: stakeholders and nurse trainers of basic and post-basic schools of nursing; fear of admitting and producing poor quality nurses; and so forth, as obstacles to the upgrading project. Institution of the upgrading policy by Nursing and Midwifery Council of Nigeria, funding, awareness creation for the upgrading and unison among policy makers and stakeholders of nursing profession are the major possible ways to overcome the obstacles. The difference in the subjects’ perceptions between the two hospitals was found to be statistically insignificant (p > 0.05). It is recommended that the policy makers and stakeholders of nursing in Nigeria should unite and liaise with Federal Ministries of Health and Education for modalities and actualization of upgrading nursing schools to degree-awarding institutions in Nigeria.Keywords: nurse trainers, obstacles, perception, stakeholders, teaching hospital, upgrading basic nursing schools, ways-forward
Procedia PDF Downloads 1421515 Li2S Nanoparticles Impact on the First Charge of Li-ion/Sulfur Batteries: An Operando XAS/XES Coupled With XRD Analysis
Authors: Alice Robba, Renaud Bouchet, Celine Barchasz, Jean-Francois Colin, Erik Elkaim, Kristina Kvashnina, Gavin Vaughan, Matjaz Kavcic, Fannie Alloin
Abstract:
With their high theoretical energy density (~2600 Wh.kg-1), lithium/sulfur (Li/S) batteries are highly promising, but these systems are still poorly understood due to the complex mechanisms/equilibria involved. Replacing S8 by Li2S as the active material allows the use of safer negative electrodes, like silicon, instead of lithium metal. S8 and Li2S have different conductivity and solubility properties, resulting in a profoundly changed activation process during the first cycle. Particularly, during the first charge a high polarization and a lack of reproducibility between tests are observed. Differences observed between raw Li2S material (micron-sized) and that electrochemically produced in a battery (nano-sized) may indicate that the electrochemical process depends on the particle size. Then the major focus of the presented work is to deepen the understanding of the Li2S material charge mechanism, and more precisely to characterize the effect of the initial Li2S particle size both on the mechanism and the electrode preparation process. To do so, Li2S nanoparticles were synthetized according to two ways: a liquid path synthesis and a dissolution in ethanol, allowing Li2S nanoparticles/carbon composites to be made. Preliminary chemical and electrochemical tests show that starting with Li2S nanoparticles could effectively suppress the high initial polarization but also influence the electrode slurry preparation. Indeed, it has been shown that classical formulation process - a slurry composed of Polyvinylidone Fluoride polymer dissolved in N-methyle-2-pyrrolidone - cannot be used with Li2S nanoparticles. This reveals a complete different Li2S material behavior regarding polymers and organic solvents when going at the nanometric scale. Then the coupling between two operando characterizations such as X-Ray Diffraction (XRD) and X-Ray Absorption and Emission Spectroscopy (XAS/XES) have been carried out in order to interpret the poorly understood first charge. This study discloses that initial particle size of the active material has a great impact on the working mechanism and particularly on the different equilibria involved during the first charge of the Li2S based Li-ion batteries. These results explain the electrochemical differences and particularly the polarization differences observed during the first charge between micrometric and nanometric Li2S-based electrodes. Finally, this work could lead to a better active material design and so to more efficient Li2S-based batteries.Keywords: Li-ion/Sulfur batteries, Li2S nanoparticles effect, Operando characterizations, working mechanism
Procedia PDF Downloads 2651514 The Impact of Undisturbed Flow Speed on the Correlation of Aerodynamic Coefficients as a Function of the Angle of Attack for the Gyroplane Body
Authors: Zbigniew Czyz, Krzysztof Skiba, Miroslaw Wendeker
Abstract:
This paper discusses the results of aerodynamic investigation of the Tajfun gyroplane body designed by a Polish company, Aviation Artur Trendak. This gyroplane has been studied as a 1:8 scale model. Scaling objects for aerodynamic investigation is an inherent procedure in any kind of designing. If scaling, the criteria of similarity need to be satisfied. The basic criteria of similarity are geometric, kinematic and dynamic. Despite the results of aerodynamic research are often reduced to aerodynamic coefficients, one should pay attention to how values of coefficients behave if certain criteria are to be satisfied. To satisfy the dynamic criterion, for example, the Reynolds number should be focused on. This is the correlation of inertial to viscous forces. With the multiplied flow speed by the specific dimension as a numerator (with a constant kinematic viscosity coefficient), flow speed in a wind tunnel research should be increased as many times as an object is decreased. The aerodynamic coefficients specified in this research depend on the real forces that act on an object, its specific dimension, medium speed and variations in its density. Rapid prototyping with a 3D printer was applied to create the research object. The research was performed with a T-1 low-speed wind tunnel (its diameter of the measurement volume is 1.5 m) and a six-element aerodynamic internal scales, WDP1, at the Institute of Aviation in Warsaw. This T-1 wind tunnel is low-speed continuous operation with open space measurement. The research covered a number of the selected speeds of undisturbed flow, i.e. V = 20, 30 and 40 m/s, corresponding to the Reynolds numbers (as referred to 1 m) Re = 1.31∙106, 1.96∙106, 2.62∙106 for the angles of attack ranging -15° ≤ α ≤ 20°. Our research resulted in basic aerodynamic characteristics and observing the impact of undisturbed flow speed on the correlation of aerodynamic coefficients as a function of the angle of attack of the gyroplane body. If the speed of undisturbed flow in the wind tunnel changes, the aerodynamic coefficients are significantly impacted. At speed from 20 m/s to 30 m/s, drag coefficient, Cx, changes by 2.4% up to 9.9%, whereas lift coefficient, Cz, changes by -25.5% up to 15.7% if the angle of attack of 0° excluded or by -25.5% up to 236.9% if the angle of attack of 0° included. Within the same speed range, the coefficient of a pitching moment, Cmy, changes by -21.1% up to 7.3% if the angles of attack -15° and -10° excluded or by -142.8% up to 618.4% if the angle of attack -15° and -10° included. These discrepancies in the coefficients of aerodynamic forces definitely need to consider while designing the aircraft. For example, if load of certain aircraft surfaces is calculated, additional correction factors definitely need to be applied. This study allows us to estimate the discrepancies in the aerodynamic forces while scaling the aircraft. This work has been financed by the Polish Ministry of Science and Higher Education.Keywords: aerodynamics, criteria of similarity, gyroplane, research tunnel
Procedia PDF Downloads 3911513 The Staphylococcus aureus Exotoxin Recognition Using Nanobiosensor Designed by an Antibody-Attached Nanosilica Method
Authors: Hamed Ahari, Behrouz Akbari Adreghani, Vadood Razavilar, Amirali Anvar, Sima Moradi, Hourieh Shalchi
Abstract:
Considering the ever increasing population and industrialization of the developmental trend of humankind's life, we are no longer able to detect the toxins produced in food products using the traditional techniques. This is due to the fact that the isolation time for food products is not cost-effective and even in most of the cases, the precision in the practical techniques like the bacterial cultivation and other techniques suffer from operator errors or the errors of the mixtures used. Hence with the advent of nanotechnology, the design of selective and smart sensors is one of the greatest industrial revelations of the quality control of food products that in few minutes time, and with a very high precision can identify the volume and toxicity of the bacteria. Methods and Materials: In this technique, based on the bacterial antibody connection to nanoparticle, a sensor was used. In this part of the research, as the basis for absorption for the recognition of bacterial toxin, medium sized silica nanoparticles of 10 nanometer in form of solid powder were utilized with Notrino brand. Then the suspension produced from agent-linked nanosilica which was connected to bacterial antibody was positioned near the samples of distilled water, which were contaminated with Staphylococcus aureus bacterial toxin with the density of 10-3, so that in case any toxin exists in the sample, a connection between toxin antigen and antibody would be formed. Finally, the light absorption related to the connection of antigen to the particle attached antibody was measured using spectrophotometry. The gene of 23S rRNA that is conserved in all Staphylococcus spp., also used as control. The accuracy of the test was monitored by using serial dilution (l0-6) of overnight cell culture of Staphylococcus spp., bacteria (OD600: 0.02 = 107 cell). It showed that the sensitivity of PCR is 10 bacteria per ml of cells within few hours. Result: The results indicate that the sensor detects up to 10-4 density. Additionally, the sensitivity of the sensors was examined after 60 days, the sensor by the 56 days had confirmatory results and started to decrease after those time periods. Conclusions: Comparing practical nano biosensory to conventional methods like that culture and biotechnology methods(such as polymerase chain reaction) is accuracy, sensitiveness and being unique. In the other way, they reduce the time from the hours to the 30 minutes.Keywords: exotoxin, nanobiosensor, recognition, Staphylococcus aureus
Procedia PDF Downloads 3851512 Development of Special Education in Moldova: Paradoxes of Inclusion
Authors: Liya Kalinnikova Magnusson
Abstract:
The present and ongoing research investigation are focusing on special educational origins in Moldova for children with disabilities and its development towards inclusion. The research is coordinated with related research on inclusion in Ukraine and other countries. The research interest in these issues in Moldova is caused by several reasons. The first one is based upon one of the intensive processes of deconstruction of special education institutions in Moldova since 1989. A large number of children with disabilities have been dropping out of these institutions: from 11400 students in 1989 to 5800 students in 1996, corresponding to 1% of all school-age Moldovan learners. Despite the fact that a huge number of students was integrated into regular schools and the dynamics of this data across the country was uneven (the opposite, the dynamics of exclusion was raised in Trans-Dniester on the border of Moldova), the volume of the change was evident and traditional special educational provision was under stable decline. The second reason is tied to transitional challenges, which Moldova met under the force to economic liberalisation that led the country to poverty. Deinstitutionalization of the entire state system took place in the situation of economic polarization of the society. The level of social benefits was dramatically diminished, increasing inequality. The most vulnerable from the comprehensive income consideration were families with many children, children with disabilities, children with health problems, etc.: each third child belonged to the poorest population. In 2000-2001: 87,4% of all families with children had incomes below the minimum wage. The research question raised based upon these considerations has been addressed to the investigation of particular patterns of the origins of special education and its development towards inclusion in Moldova from 1980 until the present date: what is the pattern of special education origins and what are particular arrangements of special education development towards inclusion against inequality? This is a qualitative study, with relevant peer review resources connected to the research question and national documents of educational reforms towards inclusion retrospectively and contemporary, analysed by a content analysis approach. This study utilises long term statistics completed by the respective international agencies as a result of regular monitoring of the implementation of educational reforms. The main findings were composed in three big themes: adoption of the Soviet pattern of special education, ‘endemic stress’ of breaking the pattern, and ‘paradoxes of resolution’.Keywords: special education, statistics, educational reforms, inclusion, children with disabilities, content analysis
Procedia PDF Downloads 1671511 Effectiveness Assessment of a Brazilian Larvicide on Aedes Control
Authors: Josiane N. Muller, Allan K. R. Galardo, Tatiane A. Barbosa, Evan P. Ferro, Wellington M. Dos Santos, Ana Paula S. A. Correa, Edinaldo C. Rego, Jose B. P. Lima
Abstract:
The susceptibility status of an insect population to any larvicide depends on several factors such includes genetic constitution, environmental conditions and others. The mosquito Aedes aegypti is the primary vector of three important viral diseases, Zika, Dengue, and Chikungunya. The frequent outbreaks of those diseases in different parts of Brazil demonstrate the importance of testing the susceptibility of vectors in different environments. Since the control of this mosquito leads to the control of disease, alternatives for vector control that value the different Brazilian environmental conditions are needed for effective actions. The aim of this study was to evaluate a new commercial formulation of Bacillus thuringiensis israelenses (DengueTech: Brazilian innovative technology) in the Brazilian Legal Amazon considering the climate conditions. Semi-field tests were conducted in the Institute of Scientific and Technological Research of the State of Amapa in two different environments, one in a shaded area and the other exposed to sunlight. The mosquito larvae were exposed to larvicide concentration and a control; each group was tested in three containers of 40 liters each. To assess persistence 50 third instar larvae of Aedes aegypti laboratory lineages (Rockefeller) and 50 larvae of Aedes aegypti collected in the municipality of Macapa, Brazil’s Amapa state, were added weekly and after 24 hours the mortality was assessed. In total 16 tests were performed, where 12 were done with replacement of water (1/5 of the volume, three times per week). The effectiveness of the product was determined through mortality of ≥ 80%, as recommend by the World Health Organization. The results demonstrated that high-water temperatures (26-35 °C) on the containers influenced the residual time of the product, where the maximum effect achieved was 21 days in the shaded area; and no effectiveness of 60 days was found in any of the tests, as expected according to the larvicide company. The test with and without water replacement did not present significant differences in the mortality rate. Considering the different environments and climate, these results stimulate the need to test larvicide and its effectiveness in specific environmental settings in order to identify the parameters required for better results. Thus, we see the importance of semi-field researches considering the local climate conditions for a successful control of Aedes aegypti.Keywords: Aedes aegypti, bioassay, larvicida, vector control
Procedia PDF Downloads 128