Search results for: large Eddy simulation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11267

Search results for: large Eddy simulation

1607 Fast Estimation of Fractional Process Parameters in Rough Financial Models Using Artificial Intelligence

Authors: Dávid Kovács, Bálint Csanády, Dániel Boros, Iván Ivkovic, Lóránt Nagy, Dalma Tóth-Lakits, László Márkus, András Lukács

Abstract:

The modeling practice of financial instruments has seen significant change over the last decade due to the recognition of time-dependent and stochastically changing correlations among the market prices or the prices and market characteristics. To represent this phenomenon, the Stochastic Correlation Process (SCP) has come to the fore in the joint modeling of prices, offering a more nuanced description of their interdependence. This approach has allowed for the attainment of realistic tail dependencies, highlighting that prices tend to synchronize more during intense or volatile trading periods, resulting in stronger correlations. Evidence in statistical literature suggests that, similarly to the volatility, the SCP of certain stock prices follows rough paths, which can be described using fractional differential equations. However, estimating parameters for these equations often involves complex and computation-intensive algorithms, creating a necessity for alternative solutions. In this regard, the Fractional Ornstein-Uhlenbeck (fOU) process from the family of fractional processes offers a promising path. We can effectively describe the rough SCP by utilizing certain transformations of the fOU. We employed neural networks to understand the behavior of these processes. We had to develop a fast algorithm to generate a valid and suitably large sample from the appropriate process to train the network. With an extensive training set, the neural network can estimate the process parameters accurately and efficiently. Although the initial focus was the fOU, the resulting model displayed broader applicability, thus paving the way for further investigation of other processes in the realm of financial mathematics. The utility of SCP extends beyond its immediate application. It also serves as a springboard for a deeper exploration of fractional processes and for extending existing models that use ordinary Wiener processes to fractional scenarios. In essence, deploying both SCP and fractional processes in financial models provides new, more accurate ways to depict market dynamics.

Keywords: fractional Ornstein-Uhlenbeck process, fractional stochastic processes, Heston model, neural networks, stochastic correlation, stochastic differential equations, stochastic volatility

Procedia PDF Downloads 91
1606 Latitudinal Impact on Spatial and Temporal Variability of 7Be Activity Concentrations in Surface Air along Europe

Authors: M. A. Hernández-Ceballos, M. Marín-Ferrer, G. Cinelli, L. De Felice, T. Tollefsen, E. Nweke, P. V. Tognoli, S. Vanzo, M. De Cort

Abstract:

This study analyses the latitudinal impact of the spatial and temporal distribution on the cosmogenic isotope 7Be in surface air along Europe. The long-term database of the 6 sampling sites (Ivalo, Helsinki, Berlin, Freiburg, Sevilla and La Laguna), that regularly provide data to the Radioactivity Environmental Monitoring (REM) network managed by the Joint Research Centre (JRC) in Ispra, were used. The selection of the stations was performed attending to different factors, such as 1) heterogeneity in terms of latitude and altitude, and 2) long database coverage. The combination of these two parameters ensures a high degree of representativeness of the results. In the later, the temporal coverage varies between stations, being used in the present study sampling stations with a database more or less continuously from 1984 to 2011. The mean values of 7Be activity concentration presented a spatial distribution value ranging from 2.0 ± 0.9 mBq/m3 (Ivalo, north) to 4.8 ± 1.5 mBq/m3 (La Laguna, south). An increasing gradient with latitude was observed from the north to the south, 0.06 mBq/m3. However, there was no correlation with altitude, since all stations are sited within the atmospheric boundary layer. The analyses of the data indicated a dynamic range of 7Be activity for solar cycle and phase (maximum or minimum), having been observed different impact on stations according to their location. The results indicated a significant seasonal behavior, with the maximum concentrations occurring in the summer and minimum in the winter, although with differences in the values reached and in the month registered. Due to the large heterogeneity in the temporal pattern with which the individual radionuclide analyses were performed in each station, the 7Be monthly index was calculated to normalize the measurements and perform the direct comparison of monthly evolution among stations. Different intensity and evolution of the mean monthly index were observed. The knowledge of the spatial and temporal distribution of this natural radionuclide in the atmosphere is a key parameter for modeling studies of atmospheric processes, which are important phenomena to be taken into account in the case of a nuclear accident.

Keywords: Berilium-7, latitudinal impact in Europe, seasonal and monthly variability, solar cycle

Procedia PDF Downloads 322
1605 Electrospun Fibre Networks Loaded with Hydroxyapatite and Barium Titanate as Smart Scaffolds for Tissue Regeneration

Authors: C. Busuioc, I. Stancu, A. Nicoara, A. Zamfirescu, A. Evanghelidis

Abstract:

The field of tissue engineering has expanded its potential due to the use of composite biomaterials belonging to increasingly complex systems, leading to bone substitutes with properties that are continuously improving to meet the patient's specific needs. Furthermore, the development of biomaterials based on ceramic and polymeric phases is an unlimited resource for future scientific research, with the final aim of restoring the original tissue functionality. Thus, in the first stage, composite scaffolds based on polycaprolactone (PCL) or polylactic acid (PLA) and inorganic powders were prepared by employing the electrospinning technique. The targeted powders were: commercial and laboratory synthesized hydroxyapatite (HAp), as well as barium titanate (BT). By controlling the concentration of the powder within the precursor solution, together with the processing parameters, different types of three-dimensional architectures were achieved. In the second stage, both the mineral powders and hybrid composites were investigated in terms of composition, crystalline structure, and microstructure so that to demonstrate their suitability for tissue engineering applications. Regarding the scaffolds, these were proven to be homogeneous on large areas and loaded with mineral particles in different proportions. The biological assays demonstrated that the addition of inorganic powders leads to modified responses in the presence of simulated body fluid (SBF) or cell cultures. Through SBF immersion, the biodegradability coupled with bioactivity were highlighted, with fiber fragmentation and surface degradation, as well as apatite layer formation within the testing period. Moreover, the final composites represent supports accepted by the cells, favoring implant integration. Concluding, the purposed fibrous materials based on bioresorbable polymers and mineral powders, produced by the electrospinning technique, represent candidates with considerable potential in the field of tissue engineering. Future improvements can be attained by optimizing the synthesis process or by simultaneous incorporation of multiple inorganic phases with well-defined biological action in order to fabricate multifunctional composites.

Keywords: barium titanate, electrospinning, fibre networks, hydroxyapatite, smart scaffolds

Procedia PDF Downloads 94
1604 Specialised Financial Institutions and its Role in the Promotion of Small and Medium Enterprises in Kerala, India

Authors: K. V. Venugopalan

Abstract:

Micro, Small and Medium Enterprises (MSMEs) have been accepted as the engine of economic growth and for promoting equitable development. The major advantage of the sector is its employment potential at low capital cost. The labour intensity of the MSME sector is much higher than that of the large enterprises. The MSMEs constitute over 90% of total enterprises in most of the economies and are credited with generating the highest rates of employment growth and account for a major share of industrial production and exports. Kerala is a small state in India with the limited land area with high potential in educated human resources need micro, small and medium enterprises for development. Kerala has the highest Physical Quality of Life Index (PQLI) in India and the highest Human Development Index (HDI) at par with the developed countries SME play an important role in alleviating poverty and contribute significantly towards the growth of developing economies. Financial institutions can play a vital role for the promotion of micro, small and medium enterprises in Kerala. The study entitled “Financial Institutions and its role in the promotion of Small and Medium Enterprises in Kerala “examine the progress of MSME in Kerala and India and also the role of financial institutions and the problems faced by entrepreneurs for getting advances with reference to ‘Kerala Financial Corporation’-an agency set up by the government for promoting small and medium enterprises in the state. This study is based on both secondary and primary data. Primary data for the study was collected from those entrepreneurs who availed advances from financial institutions. The secondary data include the investment made, goods and services provided, the employment generated and the number of units registered in MSME sector for the last 10 years in Kerala. The study concluded that financial institutions providing finance with simple procedures and charging smaller interest rates will increase the number of MSME's and also contribute gross state domestic product and reduce the unemployment problem and poverty in the economy.

Keywords: gross state domestic product, human development index, micro, small and medium enterprises

Procedia PDF Downloads 386
1603 High-Throughput Artificial Guide RNA Sequence Design for Type I, II and III CRISPR/Cas-Mediated Genome Editing

Authors: Farahnaz Sadat Golestan Hashemi, Mohd Razi Ismail, Mohd Y. Rafii

Abstract:

A huge revolution has emerged in genome engineering by the discovery of CRISPR (clustered regularly interspaced palindromic repeats) and CRISPR-associated system genes (Cas) in bacteria. The function of type II Streptococcus pyogenes (Sp) CRISPR/Cas9 system has been confirmed in various species. Other S. thermophilus (St) CRISPR-Cas systems, CRISPR1-Cas and CRISPR3-Cas, have been also reported for preventing phage infection. The CRISPR1-Cas system interferes by cleaving foreign dsDNA entering the cell in a length-specific and orientation-dependant manner. The S. thermophilus CRISPR3-Cas system also acts by cleaving phage dsDNA genomes at the same specific position inside the targeted protospacer as observed in the CRISPR1-Cas system. It is worth mentioning, for the effective DNA cleavage activity, RNA-guided Cas9 orthologs require their own specific PAM (protospacer adjacent motif) sequences. Activity levels are based on the sequence of the protospacer and specific combinations of favorable PAM bases. Therefore, based on the specific length and sequence of PAM followed by a constant length of target site for the three orthogonals of Cas9 protein, a well-organized procedure will be required for high-throughput and accurate mining of possible target sites in a large genomic dataset. Consequently, we created a reliable procedure to explore potential gRNA sequences for type I (Streptococcus thermophiles), II (Streptococcus pyogenes), and III (Streptococcus thermophiles) CRISPR/Cas systems. To mine CRISPR target sites, four different searching modes of sgRNA binding to target DNA strand were applied. These searching modes are as follows: i) coding strand searching, ii) anti-coding strand searching, iii) both strand searching, and iv) paired-gRNA searching. The output of such procedure highlights the power of comparative genome mining for different CRISPR/Cas systems. This could yield a repertoire of Cas9 variants with expanded capabilities of gRNA design, and will pave the way for further advance genome and epigenome engineering.

Keywords: CRISPR/Cas systems, gRNA mining, Streptococcus pyogenes, Streptococcus thermophiles

Procedia PDF Downloads 240
1602 Comparison of Parametric and Bayesian Survival Regression Models in Simulated and HIV Patient Antiretroviral Therapy Data: Case Study of Alamata Hospital, North Ethiopia

Authors: Zeytu G. Asfaw, Serkalem K. Abrha, Demisew G. Degefu

Abstract:

Background: HIV/AIDS remains a major public health problem in Ethiopia and heavily affecting people of productive and reproductive age. We aimed to compare the performance of Parametric Survival Analysis and Bayesian Survival Analysis using simulations and in a real dataset application focused on determining predictors of HIV patient survival. Methods: A Parametric Survival Models - Exponential, Weibull, Log-normal, Log-logistic, Gompertz and Generalized gamma distributions were considered. Simulation study was carried out with two different algorithms that were informative and noninformative priors. A retrospective cohort study was implemented for HIV infected patients under Highly Active Antiretroviral Therapy in Alamata General Hospital, North Ethiopia. Results: A total of 320 HIV patients were included in the study where 52.19% females and 47.81% males. According to Kaplan-Meier survival estimates for the two sex groups, females has shown better survival time in comparison with their male counterparts. The median survival time of HIV patients was 79 months. During the follow-up period 89 (27.81%) deaths and 231 (72.19%) censored individuals registered. The average baseline cluster of differentiation 4 (CD4) cells count for HIV/AIDS patients were 126.01 but after a three-year antiretroviral therapy follow-up the average cluster of differentiation 4 (CD4) cells counts were 305.74, which was quite encouraging. Age, functional status, tuberculosis screen, past opportunistic infection, baseline cluster of differentiation 4 (CD4) cells, World Health Organization clinical stage, sex, marital status, employment status, occupation type, baseline weight were found statistically significant factors for longer survival of HIV patients. The standard error of all covariate in Bayesian log-normal survival model is less than the classical one. Hence, Bayesian survival analysis showed better performance than classical parametric survival analysis, when subjective data analysis was performed by considering expert opinions and historical knowledge about the parameters. Conclusions: Thus, HIV/AIDS patient mortality rate could be reduced through timely antiretroviral therapy with special care on the potential factors. Moreover, Bayesian log-normal survival model was preferable than the classical log-normal survival model for determining predictors of HIV patients survival.

Keywords: antiretroviral therapy (ART), Bayesian analysis, HIV, log-normal, parametric survival models

Procedia PDF Downloads 167
1601 The Impact of the COVID-19 Pandemic on the Mental Health of Families Dealing with Attention-Deficit Hyperactivity Disorder

Authors: Alexis Winfield, Carly Sugar, Barbara Fenesi

Abstract:

The COVID-19 pandemic uprooted regular routines forcing many children to learn from home, requiring many adults to work from home, and cutting families off from support outside the home. Public health restrictions associated with the pandemic caused widespread psychological distress, including depression and anxiety, increased fear, panic, and stress. These trends are particularly concerning for families raising neuroatypical children, such as those with Attention-Deficit Hyperactivity Disorder (ADHD), as these children are already more likely than their typically developing peers to experience comorbid mental health issues and to experience greater distress when required to stay indoors. Families with children who have ADHD are also at greater risk for experiencing heightened familial stress due to the challenges associated with managing ADHD behavioural symptoms, greater parental discord and divorce, and greater financial difficulties compared to other families. The current study engaged families comprised of at least one child diagnosed with ADHD to elucidate 1) the unique ways that the COVID-19 pandemic affected their mental health and 2) the specific barriers these families faced to maintaining optimal mental wellbeing. A total of 33 participants (15 parent-child dyads) engaged in virtual interviews. Content analysis revealed that the most frequently identified mental health effects for families were increased child anxiety and disconnectedness, as well as deteriorating parental mental health. The most frequently identified barriers to maintaining optimal mental well-being were lack of routine, lack of social interaction and social support, and uncertainty and fear. Findings underscore areas of need during times of large-scale social isolation, bring voice to the families of children with ADHD, and contribute to our understanding of the pandemic’s impact on the wellbeing of vulnerable families. This work contributes to a growing body of research aimed at creating safeguards to support mental wellbeing for vulnerable families during times of crisis.

Keywords: attention-deficit hyperactivity disorder, COVID-19, mental health, vulnerable families

Procedia PDF Downloads 274
1600 Analysis of Extreme Rainfall Trends in Central Italy

Authors: Renato Morbidelli, Carla Saltalippi, Alessia Flammini, Marco Cifrodelli, Corrado Corradini

Abstract:

The trend of magnitude and frequency of extreme rainfalls seems to be different depending on the investigated area of the world. In this work, the impact of climate change on extreme rainfalls in Umbria, an inland region of central Italy, is examined using data recorded during the period 1921-2015 by 10 representative rain gauge stations. The study area is characterized by a complex orography, with altitude ranging from 200 to more than 2000 m asl. The climate is very different from zone to zone, with mean annual rainfall ranging from 650 to 1450 mm and mean annual air temperature from 3.3 to 14.2°C. Over the past 15 years, this region has been affected by four significant droughts as well as by six dangerous flood events, all with very large impact in economic terms. A least-squares linear trend analysis of annual maximums over 60 time series selected considering 6 different durations (1 h, 3 h, 6 h, 12 h, 24 h, 48 h) showed about 50% of positive and 50% of negative cases. For the same time series the non-parametrical Mann-Kendall test with a significance level 0.05 evidenced only 3% of cases characterized by a negative trend and no positive case. Further investigations have also demonstrated that the variance and covariance of each time series can be considered almost stationary. Therefore, the analysis on the magnitude of extreme rainfalls supplies the indication that an evident trend in the change of values in the Umbria region does not exist. However, also the frequency of rainfall events, with particularly high rainfall depths values, occurred during a fixed period has also to be considered. For all selected stations the 2-day rainfall events that exceed 50 mm were counted for each year, starting from the first monitored year to the end of 2015. Also, this analysis did not show predominant trends. Specifically, for all selected rain gauge stations the annual number of 2-day rainfall events that exceed the threshold value (50 mm) was slowly decreasing in time, while the annual cumulated rainfall depths corresponding to the same events evidenced trends that were not statistically significant. Overall, by using a wide available dataset and adopting simple methods, the influence of climate change on the heavy rainfalls in the Umbria region is not detected.

Keywords: climate changes, rainfall extremes, rainfall magnitude and frequency, central Italy

Procedia PDF Downloads 219
1599 Assessing the Competitiveness of Green Charcoal Energy as an Alternative Source of Cooking Fuel in Uganda

Authors: Judith Awacorach, Quentin Gausset

Abstract:

Wood charcoal and firewood are the primary sources of energy for cooking fuel in most Sub-Saharan African countries, including Uganda. This leads to unsustainable forest use and to rapid deforestation. Green charcoal (made out of agricultural residues that are carbonized, reduced in char powder, and glued in briquettes, using a binder such as sugar molasse, cassava flour or clay) is a promising and sustainable alternative to wood charcoal and firewood. It is considered as renewable energy because the carbon emissions released by the combustion of green charcoal are immediately captured again in the next agricultural cycle. If practiced on a large scale, this has the potential to replace wood charcoal and stop deforestation. However, the uptake of green charcoal for cooking remains low in Uganda despite the introduction of the technology 15 years ago. The present paper reviews the barriers to the production and commercialization of green charcoal. The paper is based on the study of 13 production sites, recording the raw materials used, the production techniques, the quantity produced, the frequency of production, and the business model. Observations were made on each site, and interviews were conducted with the managers of the facilities and with one or two employees in the larger facilities. We also interviewed project administrators from four funding agencies interested in financing green charcoal production. The results of our research identify the main barriers as follows: 1) The price of green charcoal is not competitive (it is more labor and capital-intensive than wood charcoal). 2) There is a problem with quality control and labeling (one finds a wide variety of green charcoal with very different performances). 3) The carbonization of agricultural crop residues is a major bottleneck in green char production. Most briquettes are produced with wood charcoal dust or powder, which is a by-product of wood charcoal. As such, they increase the efficiency of wood charcoal but do not yet replace it. 4) There is almost no marketing chain for the product (most green charcoal is sold directly from producer to consumer without any middleman). 5) The financing institutions are reluctant to lend money for this kind of activity. 6) Storage can be challenging since briquettes can dissolve due to moisture. In conclusion, a number of important barriers need to be overcome before green charcoal can become a serious alternative to wood charcoal.

Keywords: briquettes, competitiveness, deforestation, green charcoal, renewable energy

Procedia PDF Downloads 27
1598 Analyzing Water Waves in Underground Pumped Storage Reservoirs: A Combined 3D Numerical and Experimental Approach

Authors: Elena Pummer, Holger Schuettrumpf

Abstract:

By today underground pumped storage plants as an outstanding alternative for classical pumped storage plants do not exist. They are needed to ensure the required balance between production and demand of energy. As a short to medium term storage pumped storage plants have been used economically over a long period of time, but their expansion is limited locally. The reasons are in particular the required topography and the extensive human land use. Through the use of underground reservoirs instead of surface lakes expansion options could be increased. Fulfilling the same functions, several hydrodynamic processes result in the specific design of the underground reservoirs and must be implemented in the planning process of such systems. A combined 3D numerical and experimental approach leads to currently unknown results about the occurring wave types and their behavior in dependence of different design and operating criteria. For the 3D numerical simulations, OpenFOAM was used and combined with an experimental approach in the laboratory of the Institute of Hydraulic Engineering and Water Resources Management at RWTH Aachen University, Germany. Using the finite-volume method and an explicit time discretization, a RANS-Simulation (k-ε) has been run. Convergence analyses for different time discretization, different meshes etc. and clear comparisons between both approaches lead to the result, that the numerical and experimental models can be combined and used as hybrid model. Undular bores partly with secondary waves and breaking bores occurred in the underground reservoir. Different water levels and discharges change the global effects, defined as the time-dependent average of the water level as well as the local processes, defined as the single, local hydrodynamic processes (water waves). Design criteria, like branches, directional changes, changes in cross-section or bottom slope, as well as changes in roughness have a great effect on the local processes, the global effects remain unaffected. Design calculations for underground pumped storage plants were developed on the basis of existing formulae and the results of the hybrid approach. Using the design calculations reservoirs heights as well as oscillation periods can be determined and lead to the knowledge of construction and operation possibilities of the plants. Consequently, future plants can be hydraulically optimized applying the design calculations on the local boundary conditions.

Keywords: energy storage, experimental approach, hybrid approach, undular and breaking Bores, 3D numerical approach

Procedia PDF Downloads 199
1597 Photocatalytic Active Surface of LWSCC Architectural Concretes

Authors: P. Novosad, L. Osuska, M. Tazky, T. Tazky

Abstract:

Current trends in the building industry are oriented towards the reduction of maintenance costs and the ecological benefits of buildings or building materials. Surface treatment of building materials with photocatalytic active titanium dioxide added into concrete can offer a good solution in this context. Architectural concrete has one disadvantage – dust and fouling keep settling on its surface, diminishing its aesthetic value and increasing maintenance e costs. Concrete surface – silicate material with open porosity – fulfils the conditions of effective photocatalysis, in particular, the self-cleaning properties of surfaces. This modern material is advantageous in particular for direct finishing and architectural concrete applications. If photoactive titanium dioxide is part of the top layers of road concrete on busy roads and the facades of the buildings surrounding these roads, exhaust fumes can be degraded with the aid of sunshine; hence, environmental load will decrease. It is clear that options for removing pollutants like nitrogen oxides (NOx) must be found. Not only do these gases present a health risk, they also cause the degradation of the surfaces of concrete structures. The photocatalytic properties of titanium dioxide can in the long term contribute to the enhanced appearance of surface layers and eliminate harmful pollutants dispersed in the air, and facilitate the conversion of pollutants into less toxic forms (e.g., NOx to HNO3). This paper describes verification of the photocatalytic properties of titanium dioxide and presents the results of mechanical and physical tests on samples of architectural lightweight self-compacting concretes (LWSCC). The very essence of the use of LWSCC is their rheological ability to seep into otherwise extremely hard accessible or inaccessible construction areas, or sections thereof where concrete compacting will be a problem, or where vibration is completely excluded. They are also able to create a solid monolithic element with a large variety of shapes; the concrete will at the same meet the requirements of both chemical aggression and the influences of the surrounding environment. Due to their viscosity, LWSCCs are able to imprint the formwork elements into their structure and thus create high quality lightweight architectural concretes.

Keywords: photocatalytic concretes, titanium dioxide, architectural concretes, Lightweight Self-Compacting Concretes (LWSCC)

Procedia PDF Downloads 278
1596 A Study on Adsorption Ability of MnO2 Nanoparticles to Remove Methyl Violet Dye from Aqueous Solution

Authors: Zh. Saffari, A. Naeimi, M. S. Ekrami-Kakhki, Kh. Khandan-Barani

Abstract:

The textile industries are becoming a major source of environmental contamination because an alarming amount of dye pollutants are generated during the dyeing processes. Organic dyes are one of the largest pollutants released into wastewater from textile and other industrial processes, which have shown severe impacts on human physiology. Nano-structure compounds have gained importance in this category due their anticipated high surface area and improved reactive sites. In recent years several novel adsorbents have been reported to possess great adsorption potential due to their enhanced adsorptive capacity. Nano-MnO2 has great potential applications in environment protection field and has gained importance in this category because it has a wide variety of structure with large surface area. The diverse structures, chemical properties of manganese oxides are taken advantage of in potential applications such as adsorbents, sensor catalysis and it is also used for wide catalytic applications, such as degradation of dyes. In this study, adsorption of Methyl Violet (MV) dye from aqueous solutions onto MnO2 nanoparticles (MNP) has been investigated. The surface characterization of these nano particles was examined by Particle size analysis, Scanning Electron Microscopy (SEM), Fourier Transform Infrared (FTIR) spectroscopy and X-Ray Diffraction (XRD). The effects of process parameters such as initial concentration, pH, temperature and contact duration on the adsorption capacities have been evaluated, in which pH has been found to be most effective parameter among all. The data were analyzed using the Langmuir and Freundlich for explaining the equilibrium characteristics of adsorption. And kinetic models like pseudo first- order, second-order model and Elovich equation were utilized to describe the kinetic data. The experimental data were well fitted with Langmuir adsorption isotherm model and pseudo second order kinetic model. The thermodynamic parameters, such as Free energy of adsorption (ΔG°), enthalpy change (ΔH°) and entropy change (ΔS°) were also determined and evaluated.

Keywords: MnO2 nanoparticles, adsorption, methyl violet, isotherm models, kinetic models, surface chemistry

Procedia PDF Downloads 244
1595 Theoretical Framework and Empirical Simulation of Policy Design on Trans-Dimensional Resource Recycling

Authors: Yufeng Wu, Yifan Gu, Bin Li, Wei Wang

Abstract:

Resource recycling process contains a subsystem with interactions of three dimensions including coupling allocation of primary and secondary resources, responsibility coordination of stakeholders in forward and reverse supply chains, and trans-boundary transfer of hidden resource and environmental responsibilities between regions. Overlap or lack of responsibilities is easy to appear at the intersection of the three management dimensions. It is urgent to make an overall design of the policy system for recycling resources. From theoretical perspective, this paper analyzes the unique external differences of resource and environment in various dimensions and explores the reason why the effects of trans-dimensional policies are strongly correlated. Taking the example of the copper resources contained in the waste electrical and electronic equipment, this paper constructs reduction effect accounting model of resources recycling and set four trans-dimensional policy scenarios including resources tax and environmental tax reform of the raw and secondary resources, application of extended producer responsibility system, promotion of clean development mechanism, and strict entry barriers of imported wastes. In these ways, the paper simulates the impact effect of resources recycling process on resource deduction and emission reduction of waste water and gas, and constructs trans-dimensional policy mix scenario through integrating dominant strategy. The results show that combined application of various dimensional policies can achieve incentive compatibility and the trans-dimensional policy mix scenario can reach a better effect. Compared with baseline scenario, this scenario will increase 91.06% copper resources reduction effect and improve emission reduction of waste water and gas by eight times from 2010 to 2030. This paper further analyzes the development orientation of policies in various dimension. In resource dimension, the combined application of compulsory, market and authentication methods should be promoted to improve the use ratio of secondary resources. In supply chain dimension, resource value, residual functional value and potential information value contained in waste products should be fully excavated to construct a circular business system. In regional dimension, it should give full play to the comparative advantages of manufacturing power to improve China’s voice in resource recycling in the world.

Keywords: resource recycling, trans-dimension, policy design, incentive compatibility, life cycle

Procedia PDF Downloads 108
1594 Biodiesel Production from Edible Oil Wastewater Sludge with Bioethanol Using Nano-Magnetic Catalysis

Authors: Wighens Ngoie Ilunga, Pamela J. Welz, Olewaseun O. Oyekola, Daniel Ikhu-Omoregbe

Abstract:

Currently, most sludge from the wastewater treatment plants of edible oil factories is disposed to landfills, but landfill sites are finite and potential sources of environmental pollution. Production of biodiesel from wastewater sludge can contribute to energy production and waste minimization. However, conventional biodiesel production is energy and waste intensive. Generally, biodiesel is produced from the transesterification reaction of oils with alcohol (i.e., Methanol, ethanol) in the presence of a catalyst. Homogeneously catalysed transesterification is the conventional approach for large-scale production of biodiesel as reaction times are relatively short. Nevertheless, homogenous catalysis presents several challenges such as high probability of soap. The current study aimed to reuse wastewater sludge from the edible oil industry as a novel feedstock for both monounsaturated fats and bioethanol for the production of biodiesel. Preliminary results have shown that the fatty acid profile of the oilseed wastewater sludge is favourable for biodiesel production with 48% (w/w) monounsaturated fats and that the residue left after the extraction of fats from the sludge contains sufficient fermentable sugars after steam explosion followed by an enzymatic hydrolysis for the successful production of bioethanol [29% (w/w)] using a commercial strain of Saccharomyces cerevisiae. A novel nano-magnetic catalyst was synthesised from mineral processing alkaline tailings, mainly containing dolomite originating from cupriferous ores using a modified sol-gel. The catalyst elemental chemical compositions and structural properties were characterised by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infra-red (FTIR) and the BET for the surface area with 14.3 m²/g and 34.1 nm average pore diameter. The mass magnetization of the nano-magnetic catalyst was 170 emu/g. Both the catalytic properties and reusability of the catalyst were investigated. A maximum biodiesel yield of 78% was obtained, which dropped to 52% after the fourth transesterification reaction cycle. The proposed approach has the potential to reduce material costs, energy consumption and water usage associated with conventional biodiesel production technologies. It may also mitigate the impact of conventional biodiesel production on food and land security, while simultaneously reducing waste.

Keywords: biodiesel, bioethanol, edible oil wastewater sludge, nano-magnetism

Procedia PDF Downloads 129
1593 Reflective Thinking and Experiential Learning – A Quasi-Experimental Quanti-Quali Response to Greater Diversification of Activities, Greater Integration of Student Profiles

Authors: Paulo Sérgio Ribeiro de Araújo Bogas

Abstract:

Although several studies have assumed (at least implicitly) that learners' approaches to learning develop into deeper approaches to higher education, there appears to be no clear theoretical basis for this assumption and no empirical evidence. As a scientific contribution to this discussion, a pedagogical intervention of a quasi-experimental nature was developed, with a mixed methodology, evaluating the intervention within a single curricular unit of Marketing, using cases based on real challenges of brands, business simulation, and customer projects. Primary and secondary experiences were incorporated in the intervention: the primary experiences are the experiential activities themselves; the secondary experiences result from the primary experience, such as reflection and discussion in work teams. A diversified learning relationship was encouraged through the various connections between the different members of the learning community. The present study concludes that in the same context, the student's responses can be described as students who reinforce the initial deep approach, students who maintain the initial deep approach level, and others who change from an emphasis on the deep approach to one closer to superficial. This typology did not always confirm studies reported in the literature, namely, whether the initial level of deep processing would influence the superficial and the opposite. The result of this investigation points to the inclusion of pedagogical and didactic activities that integrate different motivations and initial strategies, leading to the possible adoption of deep approaches to learning since it revealed statistically significant differences in the difference in the scores of the deep/superficial approach and the experiential level. In the case of real challenges, the categories of “attribution of meaning and meaning of studied” and the possibility of “contact with an aspirational context” for their future professional stand out. In this category, the dimensions of autonomy that will be required of them were also revealed when comparing the classroom context of real cases and the future professional context and the impact they may have on the world. Regarding the simulated practice, two categories of response stand out: on the one hand, the motivation associated with the possibility of measuring the results of the decisions taken, an awareness of oneself, and, on the other hand, the additional effort that this practice required for some of the students.

Keywords: experiential learning, higher education, mixed methods, reflective learning, marketing

Procedia PDF Downloads 68
1592 Emissions and Total Cost of Ownership Assessment of Hybrid Propulsion Concepts for Bus Transport with Compressed Natural Gases or Diesel Engine

Authors: Volker Landersheim, Daria Manushyna, Thinh Pham, Dai-Duong Tran, Thomas Geury, Omar Hegazy, Steven Wilkins

Abstract:

Air pollution is one of the emerging problems in our society. Targets of reduction of CO₂ emissions address low-carbon and resource-efficient transport. (Plug-in) hybrid electric propulsion concepts offer the possibility to reduce total cost of ownership (TCO) and emissions for public transport vehicles (e.g., bus application). In this context, typically, diesel engines are used to form the hybrid propulsion system of the vehicle. Though the technological development of diesel engines experience major advantages, some challenges such as the high amount of particle emissions remain relevant. Gaseous fuels (i.e., compressed natural gases (CNGs) or liquefied petroleum gases (LPGs) represent an attractive alternative to diesel because of their composition. In the framework of the research project 'Optimised Real-world Cost-Competitive Modular Hybrid Architecture' (ORCA), which was funded by the EU, two different hybrid-electric propulsion concepts have been investigated: one using a diesel engine as internal combustion engine and one using CNG as fuel. The aim of the current study is to analyze specific benefits for the aforementioned hybrid propulsion systems for predefined driving scenarios with regard to emissions and total cost of ownership in bus application. Engine models based on experimental data for diesel and CNG were developed. For the purpose of designing optimal energy management strategies for each propulsion system, maps-driven or quasi-static models for specific engine types are used in the simulation framework. An analogous modelling approach has been chosen to represent emissions. This paper compares the two concepts regarding their CO₂ and NOx emissions. This comparison is performed for relevant bus missions (urban, suburban, with and without zero-emission zone) and with different energy management strategies. In addition to the emissions, also the downsizing potential of the combustion engine has been analysed to minimize the powertrain TCO (pTCO) for plug-in hybrid electric buses. The results of the performed analyses show that the hybrid vehicle concept using the CNG engine shows advantages both with respect to emissions as well as to pTCO. The pTCO is 10% lower, CO₂ emissions are 13% lower, and the NOx emissions are more than 50% lower than with the diesel combustion engine. These results are consistent across all usage profiles under investigation.

Keywords: bus transport, emissions, hybrid propulsion, pTCO, CNG

Procedia PDF Downloads 125
1591 Women’s Empowerment on Modern Contraceptive Use in Poor-Rich Segment of Population: Evidence From South Asian Countries

Authors: Muhammad Asim, Mehvish Amjad

Abstract:

Background: Less than half of women in South Asia (SA) use any modern contraceptive method which leads to a huge burden of unintended pregnancies, unsafe abortions, maternal deaths, and socioeconomic loss. Women empowerment plays a pivotal role in improving various health seeking behaviours, including contraceptive use. The objective of this study to explore the association between women's empowerment and modern contraceptive, among rich and poor segment of population in SA. Methods: We used the most recent, large-scale, demographic health survey data of five South Asian countries, namely Afghanistan, Pakistan, Bangladesh, India, and Nepal. The outcome variable was the current use of modern contraceptive methods. The main exposure variable was a combination (interaction) of socio-economic status (SES) and women’s level of empowerment (low, medium, and high), where SES was bifurcated into poor and rich; and women empowerment was divided into three categories: decision making, attitude to violence and social independence. Moreover, overall women empowerment indicator was also created by using three dimensions of women empowerment. We applied both descriptive statistics and multivariable logistic regression techniques for data analyses. Results: Most of the women possessed ‘medium’ level of empowerment across South Asian Countries. The lowest attitude to violence empowerment was found in Afghanistan, and the lowest social independence empowerment was observed in Bangladesh across SA. However, Pakistani women have the lowest decision-making empowerment in the region. The lowest modern contraceptive use (22.1%) was found in Afghanistan and the highest (53.2%) in Bangladesh. The multivariate results depict that the overall measure of women empowerment does not affect modern contraceptive use among poor and rich women in most of South Asian countries. However, the decision-making empowerment plays a significant role among both poor and rich women to use modern contraceptive methods across South Asian countries. Conclusions: The effect of women’s empowerment on modern contraceptive use is not consistent across countries, and among poor and rich segment of population. Of the three dimensions of women’s empowerment, the autonomy of decision making in household affairs emerged as a stronger determinant of mCPR as compared with social independence and attitude towards violence against women.

Keywords: women empowerment, modern contraceptive use, South Asia, socio economic status

Procedia PDF Downloads 59
1590 Development and Validation of First Derivative Method and Artificial Neural Network for Simultaneous Spectrophotometric Determination of Two Closely Related Antioxidant Nutraceuticals in Their Binary Mixture”

Authors: Mohamed Korany, Azza Gazy, Essam Khamis, Marwa Adel, Miranda Fawzy

Abstract:

Background: Two new, simple and specific methods; First, a Zero-crossing first-derivative technique and second, a chemometric-assisted spectrophotometric artificial neural network (ANN) were developed and validated in accordance with ICH guidelines. Both methods were used for the simultaneous estimation of the two closely related antioxidant nutraceuticals ; Coenzyme Q10 (Q) ; also known as Ubidecarenone or Ubiquinone-10, and Vitamin E (E); alpha-tocopherol acetate, in their pharmaceutical binary mixture. Results: For first method: By applying the first derivative, both Q and E were alternatively determined; each at the zero-crossing of the other. The D1 amplitudes of Q and E, at 285 nm and 235 nm respectively, were recorded and correlated to their concentrations. The calibration curve is linear over the concentration range of 10-60 and 5.6-70 μg mL-1 for Q and E, respectively. For second method: ANN (as a multivariate calibration method) was developed and applied for the simultaneous determination of both analytes. A training set (or a concentration set) of 90 different synthetic mixtures containing Q and E, in wide concentration ranges between 0-100 µg/mL and 0-556 µg/mL respectively, were prepared in ethanol. The absorption spectra of the training sets were recorded in the spectral region of 230–300 nm. A Gradient Descend Back Propagation ANN chemometric calibration was computed by relating the concentration sets (x-block) to their corresponding absorption data (y-block). Another set of 45 synthetic mixtures of the two drugs, in defined range, was used to validate the proposed network. Neither chemical separation, preparation stage nor mathematical graphical treatment were required. Conclusions: The proposed methods were successfully applied for the assay of Q and E in laboratory prepared mixtures and combined pharmaceutical tablet with excellent recoveries. The ANN method was superior over the derivative technique as the former determined both drugs in the non-linear experimental conditions. It also offers rapidity, high accuracy, effort and money saving. Moreover, no need for an analyst for its application. Although the ANN technique needed a large training set, it is the method of choice in the routine analysis of Q and E tablet. No interference was observed from common pharmaceutical additives. The results of the two methods were compared together

Keywords: coenzyme Q10, vitamin E, chemometry, quantitative analysis, first derivative spectrophotometry, artificial neural network

Procedia PDF Downloads 426
1589 Library Outreach After COVID: Making the Case for In-Person Library Visits

Authors: Lucas Berrini

Abstract:

Academic libraries have always struggled with engaging with students and faculty. Striking the balance between what the community needs and what the library can afford has also been a point of contention for libraries. As academia begins to return to a new normal after COVID, library staff are rethinking how remind patrons that the library is open and ready for business. NC Wesleyan, a small liberal arts school in eastern North Carolina, decided to be proactive and reach out to the academic community. After shutting down in 2020 for COVID, the campus library saw a marked decrease in in-person attendance. For a small school whose operational budget was tied directly to tuition payments, it was imperative for the library to remind faculty and staff that they were open for business. At the beginning of the Summer 2022 term and continuing into the fall, the reference team created a marketing plan using email, physical meetings, and virtual events targeted at students and faculty as well as community members who utilized the facilities prior to COVID. The email blasts were gentle reminders that the building was open and available for use The target audiences were the community at large. Several of the emails contained reminders of previous events in the library that were student centered. The next phase of the email campaign centers on reminding the community about the libraries physical and electronic resources, including the makerspace lab. Language will indicate that student voices are needed, and a QR code is included for students to leave feedback as to what they want to see in the library. The final phase of the email blasts were faculty focused and invited them to connect with library reference staff for an in-person consultation on their research needs. While this phase is ongoing, the response has been positive, and staff are compiling data in hopes of working with administration to implement some of the requested services and materials. These email blasts will be followed up by in-person meetings with faculty and students who responded to the QR codes. This research is ongoing. This type of targeted outreach is new for Wesleyan. It is the hope of the library that by the end of Fall 2022, there will be a plan in place to address the needs and concerns of the students and faculty. Furthermore, the staff hopes to create a new sense of community for the students and staff of the university.

Keywords: academic, education, libraries, outreach

Procedia PDF Downloads 73
1588 An Analysis of Gamification in the Post-Secondary Classroom

Authors: F. Saccucci

Abstract:

Gamification has now started to take root in the post-secondary classroom. Educators have learned much about gamification to date but there is still a great deal to learn. One definition of gamification is the ability to engage post-secondary students with games that are fun and correlate to class room curriculum. There is no shortage of literature illustrating the advantages of gamification in the class room. This study is an extension of similar thought as well as an extension of a previous study where in class testing proved with the used of paired T-test that gamification did significantly improve the students’ understanding of subject material. Gamification itself in the class room can range from high end computer simulated software to paper based games of which both have advantages and disadvantages. This analysis used a paper based game to highlight certain qualitative advantages of gamification. The paper based game in this analysis was inexpensive, required low preparation time for the faculty member and consumed approximately 20 minutes of class room time. Data for the study was collected through in class student feedback surveys and narrative from the faculty member moderating the game. Students were randomly selected into groups of four. Qualitative advantages identified in this analysis included: 1. Students had a chance to meet, connect and know other students. 2. Students enjoyed the gamification process given there was a sense of fun and competition. 3. The post assessment that followed the simulation game was not part of their grade calculation therefore it was an opportunity to participate in a low risk activity whereby students could subsequently self-assess their understanding of the subject material. 4. In the view of the student, content knowledge did increase after the gamification process. These qualitative advantages identified in this analysis contribute to the argument that there should be an attempt to use gamification in today’s post-secondary class room. The analysis also highlighted that eighty (80) percent of the respondents believe twenty minutes devoted to the gamification process was appropriate, however twenty (20) percentage of respondents believed that rather than scheduling a gamification process and its post quiz in the last week, a review for the final exam may have been more useful. An additional study to this hopes to determine if the scheduling of the gamification had any correlation to a percentage of the students not wanting to be engaged in the process. As well, the additional study hopes to determine at what incremental level of time invested in class room gamification produce no material incremental benefits to the student as well as determine if any correlation exist between respondents preferring not to have it at the end of the semester to students not believing the gamification process added to the increase of their curricular knowledge.

Keywords: gamification, inexpensive, non-quantitative advantages, post-secondary

Procedia PDF Downloads 191
1587 Optimization of Culture Conditions of Paecilomyces tenuipes, Entomopathogenic Fungi Inoculated into the Silkworm Larva, Bombyx mori

Authors: Sunghee Nam

Abstract:

Entomopathogenic fungi is a Cordyceps species that is isolated from dead silkworm and cicada. Fungi on cicadas were described in old Chinese medicinal books and from ancient times, vegetable wasps and plant worms were widely known to have active substance and have been studied for pharmacological use. Among many fungi belonging to the genus Cordyceps, Cordyceps sinensis have been demonstrated to yield natural products possessing various biological activities and many bioactive components. Generally, It is commonly used to replenish the kidney and soothe the lung, and for the treatment of fatigue. Due to their commercial and economic importance, the demand for Cordyceps has been rapidly increased. However, a supply of Cordyceps specimen could not meet the increasing demand because of their sole dependence on field collection and habitat destruction. Because it is difficult to obtain many insect hosts in nature and the edibility of host insect needs to be verified in a pharmacological aspect. Recently, this setback was overcome that P. tenuipes was able to be cultivated in a large scale using silkworm as host. Pharmacological effects of P. tenuipes cultured on silkworm such as strengthening immune function, anti-fatigue, anti-tumor activity and controlling liver etc. have been proved. They are widely commercialized. In this study, we attempted to establish a method for stable growth inhibition of P. tenuipes on silkworm hosts and an optimal condition for synnemata formation. To determine optimum culturing conditions, temperature and light conditions were varied. The length and number of synnemata was highest at 25℃ temperature and 100~300 lux illumination. On an average, the synnemata of wild P. tenuipes measures 70 ㎜ in length and 20 in number; those of the cultured strain were relatively shorter and more in number. The number of synnemata may have increased as a result of inoculating the host with highly concentrated conidia, while the length may have decreased due to limited nutrition per individual. It is not able that changes in light illumination cause morphological variations in the synnemata. However, regulation of only light and temperature could not produce stromata like perithecia, asci, and ascospores.

Keywords: optimization of culture conditions of paecilomyces tenuipes, entomopathogenic fungi optimization of culture conditions of paecilomyces tenuipes, entomopathogenic fungi silkworm larva, bombyx mori

Procedia PDF Downloads 241
1586 Analysis of the Homogeneous Turbulence Structure in Uniformly Sheared Bubbly Flow Using First and Second Order Turbulence Closures

Authors: Hela Ayeb Mrabtini, Ghazi Bellakhal, Jamel Chahed

Abstract:

The presence of the dispersed phase in gas-liquid bubbly flow considerably alters the liquid turbulence. The bubbles induce turbulent fluctuations that enhance the global liquid turbulence level and alter the mechanisms of turbulence. RANS modeling of uniformly sheared flows on an isolated sphere centered in a control volume is performed using first and second order turbulence closures. The sphere is placed in the production-dissipation equilibrium zone where the liquid velocity is set equal to the relative velocity of the bubbles. The void fraction is determined by the ratio between the sphere volume and the control volume. The analysis of the turbulence statistics on the control volume provides numerical results that are interpreted with regard to the effect of the bubbles wakes on the turbulence structure in uniformly sheared bubbly flow. We assumed for this purpose that at low void fraction where there is no hydrodynamic interaction between the bubbles, the single-phase flow simulation on an isolated sphere is representative on statistical average of a sphere network. The numerical simulations were firstly validated against the experimental data of bubbly homogeneous turbulence with constant shear and then extended to produce numerical results for a wide range of shear rates from 0 to 10 s^-1. These results are compared with our turbulence closure proposed for gas-liquid bubbly flows. In this closure, the turbulent stress tensor in the liquid is split into a turbulent dissipative part produced by the gradient of the mean velocity which also contains the turbulence generated in the bubble wakes and a pseudo-turbulent non-dissipative part induced by the bubbles displacements. Each part is determined by a specific transport equation. The simulations of uniformly sheared flows on an isolated sphere reproduce the mechanisms related to the turbulent part, and the numerical results are in perfect accordance with the modeling of the transport equation of the turbulent part. The reduction of second order turbulence closure provides a description of the modification of turbulence structure by the bubbles presence using a dimensionless number expressed in terms of two-time scales characterizing the turbulence induced by the shear and that induced by bubbles displacements. The numerical simulations carried out in the framework of a comprehensive analysis reproduce particularly the attenuation of the turbulent friction showed in the experimental results of bubbly homogeneous turbulence subjected to a constant shear.

Keywords: gas-liquid bubbly flows, homogeneous turbulence, turbulence closure, uniform shear

Procedia PDF Downloads 446
1585 Kinematic Modelling and Task-Based Synthesis of a Passive Architecture for an Upper Limb Rehabilitation Exoskeleton

Authors: Sakshi Gupta, Anupam Agrawal, Ekta Singla

Abstract:

An exoskeleton design for rehabilitation purpose encounters many challenges, including ergonomically acceptable wearing technology, architectural design human-motion compatibility, actuation type, human-robot interaction, etc. In this paper, a passive architecture for upper limb exoskeleton is proposed for assisting in rehabilitation tasks. Kinematic modelling is detailed for task-based kinematic synthesis of the wearable exoskeleton for self-feeding tasks. The exoskeleton architecture possesses expansion and torsional springs which are able to store and redistribute energy over the human arm joints. The elastic characteristics of the springs have been optimized to minimize the mechanical work of the human arm joints. The concept of hybrid combination of a 4-bar parallelogram linkage and a serial linkage were chosen, where the 4-bar parallelogram linkage with expansion spring acts as a rigid structure which is used to provide the rotational degree-of-freedom (DOF) required for lowering and raising of the arm. The single linkage with torsional spring allows for the rotational DOF required for elbow movement. The focus of the paper is kinematic modelling, analysis and task-based synthesis framework for the proposed architecture, keeping in considerations the essential tasks of self-feeding and self-exercising during rehabilitation of partially healthy person. Rehabilitation of primary functional movements (activities of daily life, i.e., ADL) is routine activities that people tend to every day such as cleaning, dressing, feeding. We are focusing on the feeding process to make people independent in respect of the feeding tasks. The tasks are focused to post-surgery patients under rehabilitation with less than 40% weakness. The challenges addressed in work are ensuring to emulate the natural movement of the human arm. Human motion data is extracted through motion-sensors for targeted tasks of feeding and specific exercises. Task-based synthesis procedure framework will be discussed for the proposed architecture. The results include the simulation of the architectural concept for tracking the human-arm movements while displaying the kinematic and static study parameters for standard human weight. D-H parameters are used for kinematic modelling of the hybrid-mechanism, and the model is used while performing task-based optimal synthesis utilizing evolutionary algorithm.

Keywords: passive mechanism, task-based synthesis, emulating human-motion, exoskeleton

Procedia PDF Downloads 123
1584 Partial Least Square Regression for High-Dimentional and High-Correlated Data

Authors: Mohammed Abdullah Alshahrani

Abstract:

The research focuses on investigating the use of partial least squares (PLS) methodology for addressing challenges associated with high-dimensional correlated data. Recent technological advancements have led to experiments producing data characterized by a large number of variables compared to observations, with substantial inter-variable correlations. Such data patterns are common in chemometrics, where near-infrared (NIR) spectrometer calibrations record chemical absorbance levels across hundreds of wavelengths, and in genomics, where thousands of genomic regions' copy number alterations (CNA) are recorded from cancer patients. PLS serves as a widely used method for analyzing high-dimensional data, functioning as a regression tool in chemometrics and a classification method in genomics. It handles data complexity by creating latent variables (components) from original variables. However, applying PLS can present challenges. The study investigates key areas to address these challenges, including unifying interpretations across three main PLS algorithms and exploring unusual negative shrinkage factors encountered during model fitting. The research presents an alternative approach to addressing the interpretation challenge of predictor weights associated with PLS. Sparse estimation of predictor weights is employed using a penalty function combining a lasso penalty for sparsity and a Cauchy distribution-based penalty to account for variable dependencies. The results demonstrate sparse and grouped weight estimates, aiding interpretation and prediction tasks in genomic data analysis. High-dimensional data scenarios, where predictors outnumber observations, are common in regression analysis applications. Ordinary least squares regression (OLS), the standard method, performs inadequately with high-dimensional and highly correlated data. Copy number alterations (CNA) in key genes have been linked to disease phenotypes, highlighting the importance of accurate classification of gene expression data in bioinformatics and biology using regularized methods like PLS for regression and classification.

Keywords: partial least square regression, genetics data, negative filter factors, high dimensional data, high correlated data

Procedia PDF Downloads 29
1583 New Suspension Mechanism for a Formula Car using Camber Thrust

Authors: Shinji Kajiwara

Abstract:

The basic ability of a vehicle is the ability to “run”, “turn” and “stop”. The safeness and comfort during a drive on various road surfaces and speed depends on the performance of these basic abilities of the vehicle. Stability and maneuverability of a vehicle is vital in automotive engineering. Stability of a vehicle is the ability of the vehicle to revert back to a stable state during a drive when faced with crosswind and irregular road conditions. Maneuverability of a vehicle is the ability of the vehicle to change direction during a drive swiftly based on the steering of the driver. The stability and maneuverability of a vehicle can also be defined as the driving stability of the vehicle. Since fossil fueled vehicle is the main type of transportation today, the environmental factor in automotive engineering is also vital. By improving the fuel efficiency of the vehicle, the overall carbon emission will be reduced thus reducing the effect of global warming and greenhouse gas on the Earth. Another main focus of the automotive engineering is the safety performance of the vehicle especially with the worrying increase of vehicle collision every day. With better safety performance on a vehicle, every driver will be more confidence driving every day. Next, let us focus on the “turn” ability of a vehicle. By improving this particular ability of the vehicle, the cornering limit of the vehicle can be improved thus increasing the stability and maneuverability factor. In order to improve the cornering limit of the vehicle, a study to find the balance between the steering systems, the stability of the vehicle, higher lateral acceleration and the cornering limit detection must be conducted. The aim of this research is to study and develop a new suspension system that that will boost the lateral acceleration of the vehicle and ultimately improving the cornering limit of the vehicle. This research will also study environmental factor and the stability factor of the new suspension system. The double wishbone suspension system is widely used in four-wheel vehicle especially for high cornering performance sports car and racing car. The double wishbone designs allow the engineer to carefully control the motion of the wheel by controlling such parameters as camber angle, caster angle, toe pattern, roll center height, scrub radius, scuff and more. The development of the new suspension system will focus on the ability of the new suspension system to optimize the camber control and to improve the camber limit during a cornering motion. The research will be carried out using the CAE analysis tool. Using this analysis tool we will develop a JSAE Formula Machine equipped with the double wishbone system and also the new suspension system and conduct simulation and conduct studies on performance of both suspension systems.

Keywords: automobile, camber thrust, cornering force, suspension

Procedia PDF Downloads 308
1582 Of Digital Games and Dignity: Rationalizing E-Sports Amidst Stereotypes Associated with Gamers

Authors: Sarthak Mohapatra, Ajith Babu, Shyam Prasad Ghosh

Abstract:

The community of gamers has been at the crux of stigmatization and marginalization by the larger society, resulting in dignity erosion. India presents a unique context where e-sports have recently seen large-scale investments, a massive userbase, and appreciable demand for gaming as a career option. Yet the apprehension towards gaming is salient among parents and non-gamers who engage in the de-dignification of gamers, by advocating the discourse of violence promotion via video games. Even the government is relentless in banning games due to data privacy issues. Thus, the current study explores the experiences of gamers and how they navigate these de-dignifying circumstances. The study follows an exploratory qualitative approach where in-depth interviews are used as data collection tools guided by a semi-structured questionnaire. A total of 25 individuals were interviewed comprising casual gamers, professional gamers, and individuals who are indirectly impacted by gaming including parents, relatives, and friends of gamers. Thematic analysis via three-level coding is used to arrive at broad themes (categories) and their sub-themes. The results indicate that the de-dignification of gamers results from attaching stereotypes of introversion, aggression, low intelligence, and low aspirations to them. It is interesting to note that the intensity of de-dignification varies and is more salient in violent shooting games which are perceived to require low cognitive resources to master. The moral disengagement of gamers while playing violent video games becomes the basis for de-dignification. Findings reveal that circumventing de-dignification required gamers to engage in several tactics that included playing behind closed doors, consciously hiding the gamer identity, rationalizing behavior by idolizing professionals, bragging about achievements within the game, and so on. Theoretically, it contributes to dignity and social identity literature by focusing on stereotyping and stigmatization. From a policy perspective, improving legitimacy toward gaming is expected to improve the social standing of gamers and professionals. For practitioners, it is important that proper channels of promotion and communication are used to educate the non-gamers so that the stereotypes blur away.

Keywords: dignity, social identity, stereotyping, video games

Procedia PDF Downloads 77
1581 Comparative Analysis of a Self-Supporting Wall of Granite Slabs in a Multi-Leaves Enclosure System

Authors: Miguel Angel Calvo Salve

Abstract:

Building enclosures and façades not only have an aesthetic component they must also ensure thermal comfort and improve the acoustics and air quality in buildings. The role of facades design, its assemblies, and construction are key in developing a greener future in architecture. This research and study focus on the design of a multi-leaves building envelope, with a self-supporting wall of granite slabs. The study will demonstrate the advantages of its use in compare with the hanging stone veneer in a vented cladding system. Using the Design of the School of Music and Theatre of the Atlantic Area in Spain as a case study where the multi-leaves enclosure system consists in a self-supported outer leaf of large granite slabs of 15cm. of thickness, a vent cavity with thermal isolation, a brick wall, and a series of internal layers. The methodology used were simulations and data collected in building. The advantages of the self-supporting wall of granite slabs in the outer leaf (15cm). compared with a hanging stone veneer in a vented cladding system can summarize the goals as follows: Using the stone in more natural way, by compression. The weight of the stone slabs goes directly to a strip-footing and don't overload the reinforced concrete structure of the building. The weight of the stone slabs provides an external aerial soundproofing, preventing the sound transmission to the structure. The thickness of the stone slabs is enough to provide the external waterproofing of the building envelope. The self-supporting system with minimum anchorages allows having a continuous and external thermal isolation without thermal bridges. The thickness of ashlars masonry provides a thermal inertia that balances the temperatures between day and night in the external thermal insulation layer. The absence of open joints gives the quality of a continuous envelope transmitting the sensations of the stone, the heaviness in the facade, the rhythm of the music and the sequence of the theatre. The main cost of stone due his bigger thickness is more than compensated with the reduction in assembly costs. Don´t need any substructure systems for hanging stone veneers.

Keywords: self-supporting wall, stone cladding systems, hanging veneer cladding systems, sustainability of facade systems

Procedia PDF Downloads 41
1580 Food Foam Characterization: Rheology, Texture and Microstructure Studies

Authors: Rutuja Upadhyay, Anurag Mehra

Abstract:

Solid food foams/cellular foods are colloidal systems which impart structure, texture and mouthfeel to many food products such as bread, cakes, ice-cream, meringues, etc. Their heterogeneous morphology makes the quantification of structure/mechanical relationships complex. The porous structure of solid food foams is highly influenced by the processing conditions, ingredient composition, and their interactions. Sensory perceptions of food foams are dependent on bubble size, shape, orientation, quantity and distribution and determines the texture of foamed foods. The state and structure of the solid matrix control the deformation behavior of the food, such as elasticity/plasticity or fracture, which in turn has an effect on the force-deformation curves. The obvious step in obtaining the relationship between the mechanical properties and the porous structure is to quantify them simultaneously. Here, we attempt to research food foams such as bread dough, baked bread and steamed rice cakes to determine the link between ingredients and the corresponding effect of each of them on the rheology, microstructure, bubble size and texture of the final product. Dynamic rheometry (SAOS), confocal laser scanning microscopy, flatbed scanning, image analysis and texture profile analysis (TPA) has been used to characterize the foods studied. In all the above systems, there was a common observation that when the mean bubble diameter is smaller, the product becomes harder as evidenced by the increase in storage and loss modulus (G′, G″), whereas when the mean bubble diameter is large the product is softer with decrease in moduli values (G′, G″). Also, the bubble size distribution affects texture of foods. It was found that bread doughs with hydrocolloids (xanthan gum, alginate) aid a more uniform bubble size distribution. Bread baking experiments were done to study the rheological changes and mechanisms involved in the structural transition of dough to crumb. Steamed rice cakes with xanthan gum (XG) addition at 0.1% concentration resulted in lower hardness with a narrower pore size distribution and larger mean pore diameter. Thus, control of bubble size could be an important parameter defining final food texture.

Keywords: food foams, rheology, microstructure, texture

Procedia PDF Downloads 317
1579 Optical Characterization of Transition Metal Ion Doped ZnO Microspheres Synthesized via Laser Ablation in Air

Authors: Parvathy Anitha, Nilesh J. Vasa, M. S. Ramachandra Rao

Abstract:

ZnO is a semiconducting material with a direct wide band gap of 3.37 eV and a large exciton binding energy of 60 meV at room temperature. Microspheres with high sphericity and symmetry exhibit unique functionalities which makes them excellent omnidirectional optical resonators. Hence there is an advent interest in fabrication of single crystalline semiconductor microspheres especially magnetic ZnO microspheres, as ZnO is a promising material for semiconductor device applications. Also, ZnO is non-toxic and biocompatible, implying it is a potential material for biomedical applications. Room temperature Photoluminescence (PL) spectra of the fabricated ZnO microspheres were measured, at an excitation wavelength of 325 nm. The ultraviolet (UV) luminescence observed is attributed to the room-temperature free exciton related near-band-edge (NBE) emission in ZnO. Besides the NBE luminescence, weak and broad visible luminescence (~560nm) was also observed. This broad emission band in the visible range is associated with oxygen vacancies related to structural defects. In transition metal (TM) ion-doped ZnO, 3d levels emissions of TM ions will modify the inherent characteristic emissions of ZnO. A micron-sized ZnO crystal has generally a wurtzite structure with a natural hexagonal cross section, which will serve as a WGM (whispering gallery mode) lasing micro cavity due to its high refractive index (~2.2). But hexagonal cavities suffers more optical loss at their corners in comparison to spherical structures; hence spheres may be a better candidate to achieve effective light confinement. In our study, highly smooth spherical shaped micro particles with different diameters ranging from ~4 to 6 μm were grown on different substrates. SEM (Scanning Electron Microscopy) and AFM (Atomic Force Microscopy) images show the presence of uniform smooth surfaced spheres. Raman scattering measurements from the fabricated samples at 488 nm light excitation provide convincing supports for the wurtzite structure of the prepared ZnO microspheres. WGM lasing studies from TM-doped ZnO microparticles are in progress.

Keywords: laser ablation, microcavity, photoluminescence, ZnO microsphere

Procedia PDF Downloads 200
1578 Luminescent Properties of Sm³⁺-Doped Silica Nanophosphor Synthesized from Highly Active Amorphous Nanosilica Derived from Rice Husk

Authors: Celestine Mbakaan, Iorkyaa Ahemen, A. D. Onoja, A. N. Amah, Emmanuel Barki

Abstract:

Rice husk (RH) is a natural sheath that forms and covers the grain of rice. The husk composed of hard materials, including opaline silica and lignin. It separates from its grain during rice milling. RH also contains approximately 15 to 28 wt % of silica in hydrated amorphous form. Nanosilica was derived from the husk of different rice varieties after pre-treating the husk (RH) with HCl and calcination at 550°C. Nanosilica derived from the husk of Osi rice variety produced the highest silica yield, and further pretreatment with 0.8 M H₃PO₄ acid removed more mineral impurities. The silica obtained from this rice variety was selected as a host matrix for doping with Sm³⁺ ions. Rice husk silica (RH-SiO₂) doped with samarium (RH-SiO₂: xSm³⁺ (x=0.01, 0.05, and 0.1 molar ratios) nanophosphors were synthesized via the sol-gel method. The structural analysis by X-ray diffraction analysis (XRD) reveals amorphous structure while the surface morphology, as revealed by SEM and TEM, indicates agglomerates of nano-sized spherical particles with an average particle size measuring 21 nm. The nanophosphor has a large surface area measuring 198.0 m²/g, and Fourier transform infrared spectroscopy (FT-IR) shows only a single absorption band which is strong and broad with a valley at 1063 cm⁻¹. Diffuse reflectance spectroscopy (DRS) shows strong absorptions at 319, 345, 362, 375, 401, and 474 nm, which can be exclusively assigned to the 6H5/2→4F11/2, 3H7/2, 4F9/2, 4D5/2, 4K11/2, and 4M15/2 + 4I11/2, transitions of Sm³⁺ respectively. The photoluminescence excitation spectra show that near UV and blue LEDs can effectively be used as excitation sources to produce red-orange and yellow-orange emission from Sm³⁺ ion-doped RH-SiO₂ nanophosphors. The photoluminescence (PL) of the nanophosphors gives three main lines; 568, 605, and 652 nm, which are attributed to the intra-4f shell transitions from the excited level to ground levels, respectively under excitation wavelengths of 365 and 400 nm. The result, as confirmed from the 1931 CIE coordinates diagram, indicates the emission of red-orange light by RH-SiO₂: xSm³⁺ (x=0.01 and 0.1 molar ratios) and yellow-orange light from RH-SiO₂: 0.05 Sm³⁺. Finally, the result shows that RH-SiO₂ doped with samarium (Sm³⁺) ions can be applicable in display applications.

Keywords: luminescence, nanosilica, nanophosphors, Sm³⁺

Procedia PDF Downloads 119