Search results for: stationary satellite
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1106

Search results for: stationary satellite

176 A Decadal Flood Assessment Using Time-Series Satellite Data in Cambodia

Authors: Nguyen-Thanh Son

Abstract:

Flood is among the most frequent and costliest natural hazards. The flood disasters especially affect the poor people in rural areas, who are heavily dependent on agriculture and have lower incomes. Cambodia is identified as one of the most climate-vulnerable countries in the world, ranked 13th out of 181 countries most affected by the impacts of climate change. Flood monitoring is thus a strategic priority at national and regional levels because policymakers need reliable spatial and temporal information on flood-prone areas to form successful monitoring programs to reduce possible impacts on the country’s economy and people’s likelihood. This study aims to develop methods for flood mapping and assessment from MODIS data in Cambodia. We processed the data for the period from 2000 to 2017, following three main steps: (1) data pre-processing to construct smooth time-series vegetation and water surface indices, (2) delineation of flood-prone areas, and (3) accuracy assessment. The results of flood mapping were verified with the ground reference data, indicating the overall accuracy of 88.7% and a Kappa coefficient of 0.77, respectively. These results were reaffirmed by close agreement between the flood-mapping area and ground reference data, with the correlation coefficient of determination (R²) of 0.94. The seasonally flooded areas observed for 2010, 2015, and 2016 were remarkably smaller than other years, mainly attributed to the El Niño weather phenomenon exacerbated by impacts of climate change. Eventually, although several sources potentially lowered the mapping accuracy of flood-prone areas, including image cloud contamination, mixed-pixel issues, and low-resolution bias between the mapping results and ground reference data, our methods indicated the satisfactory results for delineating spatiotemporal evolutions of floods. The results in the form of quantitative information on spatiotemporal flood distributions could be beneficial to policymakers in evaluating their management strategies for mitigating the negative effects of floods on agriculture and people’s likelihood in the country.

Keywords: MODIS, flood, mapping, Cambodia

Procedia PDF Downloads 126
175 Effects of Gender on Kinematics Kicking in Soccer

Authors: Abdolrasoul Daneshjoo

Abstract:

Soccer is a game which draws more attention in different countries especially in Brazil. Kicking among different skills in soccer and soccer players is an excellent role for the success and preference of a team. The way of point gaining in this game is passing the ball over the goal lines which are gained by shoot skill in attack time and or during the penalty kicks.Regarding the above assumption, identifying the effective factors in instep kicking in different distances shoot with maximum force and high accuracy or pass and penalty kick, may assist the coaches and players in raising qualitative level of performing the skill.The aim of the present study was to study of a few kinematical parameters in instep kicking from 5 and 7 meter distance among the male and female elite soccer players.24 right dominant lower limb subjects (12 males and 12 females) among Tehran elite soccer players with average and the standard deviation (22.5 ± 1.5) & (22.08± 1.31) years, height of (179.5 ± 5.81) & (164.3 ± 4.09) cm, weight of (69.66 ± 4.09) & (53.16 ± 3.51) kg, %BMI (21.06 ± .731) & (19.67 ± .709), having playing history of (4 ± .73) & (3.08 ± .66) years respectively participated in this study. They had at least two years of continuous playing experience in Tehran soccer league.For sampling player's kick; Kinemetrix Motion analysis with three cameras with 1000 Hz was used. Five reflective markers were placed laterally on the kicking leg over anatomical points (the iliac crest, major trochanter, lateral epicondyle of femur, lateral malleolus, and lateral aspect of distal head of the fifth metatarsus). Instep kick was filmed, with one step approach and 30 to 45 degrees angle from stationary ball. Three kicks were filmed, one kick selected for further analyses. Using Kinemetrix 3D motion analysis software, the position of the markers was analyzed. Descriptive statistics were used to describe the mean and standard deviation, while the analysis of variance, and independent t-test (P < 0.05) were used to compare the kinematic parameters between two genders.Among the evaluated parameters, the knee acceleration, the thigh angular velocity, the angle of knee proportionately showed significant relationship with consequence of kick. While company performance on 5m in 2 genders, significant differences were observed in internal – external displacement of toe, ankle, hip and the velocity of toe, ankle and the acceleration of toe and the angular velocity of pelvic, thigh and before time contact . Significant differences showed the internal – external displacement of toe, the ankle, the knee and the hip, the iliac crest and the velocity of toe, the ankle and acceleration of ankle and angular velocity of the pelvic and the knee.

Keywords: biomechanics, kinematics, instep kicking, soccer

Procedia PDF Downloads 502
174 Exploration of in-situ Product Extraction to Increase Triterpenoid Production in Saccharomyces Cerevisiae

Authors: Mariam Dianat Sabet Gilani, Lars M. Blank, Birgitta E. Ebert

Abstract:

Plant-derived lupane-type, pentacyclic triterpenoids are biologically active compounds that are highly interesting for applications in medical, pharmaceutical, and cosmetic industries. Due to the low abundance of these valuable compounds in their natural sources, and the environmentally harmful downstream process, alternative production methods, such as microbial cell factories, are investigated. Engineered Saccharomyces cerevisiae strains, harboring the heterologous genes for betulinic acid synthesis, can produce up to 2 g L-1 triterpenoids, showing high potential for large-scale production of triterpenoids. One limitation of the microbial synthesis is the intracellular product accumulation. It not only makes cell disruption a necessary step in the downstream processing but also limits productivity and product yield per cell. To overcome these restrictions, the aim of this study is to develop an in-situ extraction method, which extracts triterpenoids into a second organic phase. Such a continuous or sequential product removal from the biomass keeps the cells in an active state and enables extended production time or biomass recycling. After screening of twelve different solvents, selected based on product solubility, biocompatibility, as well as environmental and health impact, isopropyl myristate (IPM) was chosen as a suitable solvent for in-situ product removal from S. cerevisiae. Impedance-based single-cell analysis and off-gas measurement of carbon dioxide emission showed that cell viability and physiology were not affected by the presence of IPM. Initial experiments demonstrated that after the addition of 20 vol % IPM to cultures in the stationary phase, 40 % of the total produced triterpenoids were extracted from the cells into the organic phase. In future experiments, the application of IPM in a repeated batch process will be tested, where IPM is added at the end of each batch run to remove triterpenoids from the cells, allowing the same biocatalysts to be used in several sequential batch steps. Due to its high biocompatibility, the amount of IPM added to the culture can also be increased to more than 20 vol % to extract more than 40 % triterpenoids in the organic phase, allowing the cells to produce more triterpenoids. This highlights the potential for the development of a continuous large-scale process, which allows biocatalysts to produce intracellular products continuously without the necessity of cell disruption and without limitation of the cell capacity.

Keywords: betulinic acid, biocompatible solvent, in-situ extraction, isopropyl myristate, process development, secondary metabolites, triterpenoids, yeast

Procedia PDF Downloads 153
173 Simulating the Surface Runoff for the Urbanized Watershed of Mula-Mutha River from Western Maharashtra, India

Authors: Anargha A. Dhorde, Deshpande Gauri, Amit G. Dhorde

Abstract:

Mula-Mutha basin is one of the speedily urbanizing watersheds, wherein two major urban centers, Pune and Pimpri-Chinchwad, have developed at a shocking rate in the last two decades. Such changing land use/land cover (LULC) is prone to hydrological problems and flash floods are a frequent, eventuality in the lower reaches of the basin. The present research brings out the impact of varying LULC, impervious surfaces on urban surface hydrology and generates storm-runoff scenarios for the hydrological units. The two multi-temporal satellite images were processed and supervised classification is performed with > 75% accuracy. The built-up has increased from 14.4% to 34.37% in the 28 years span, which is concentrated in and around the Pune-PCMC region. Impervious surfaces that were obtained by population calibrated multiple regression models. Almost 50% area of the watershed is impervious, which attribute to increase surface runoff and flash floods. The SCS-CN method was employed to calculate surface runoff of the watershed. The comparison between calculated and measured values of runoff was performed in a statistically precise way which shows no significant difference. Increasing built-up areas, as well as impervious surface areas due to rapid urbanization and industrialization, may lead to generating high runoff volumes in the basin especially in the urbanized areas of the watershed and along the major transportation arteries. Simulations generated with 50 mm and 100 mm rainstorm depth conspicuously noted that most of the changes in terms of increased runoff are constricted to the highly urbanized areas. Considering whole watershed area, the runoff values 39 m³ generated with 1'' rainfall whereas only urbanized areas of the basin (Pune and Pimpari-Chinchwad) were generated 11154 m³ runoff. Such analysis is crucial in providing information regarding their intensity and location, which proves instrumental in their analysis in order to formulate proper mitigation measures and rehabilitation strategies.

Keywords: land use/land cover, LULC, impervious surfaces, surface hydrology, storm-runoff scenarios

Procedia PDF Downloads 218
172 Evaluating Radiative Feedback Mechanisms in Coastal West Africa Using Regional Climate Models

Authors: Akinnubi Rufus Temidayo

Abstract:

Coastal West Africa is highly sensitive to climate variability, driven by complex ocean-atmosphere interactions that shape temperature, precipitation, and extreme weather. Radiative feedback mechanisms—such as water vapor feedback, cloud-radiation interactions, and surface albedo—play a critical role in modulating these patterns. Yet, limited research addresses these feedbacks in climate models specific to West Africa’s coastal zones, creating challenges for accurate climate projections and adaptive planning. This study aims to evaluate the influence of radiative feedbacks on the coastal climate of West Africa by quantifying the effects of water vapor, cloud cover, and sea surface temperature (SST) on the region’s radiative balance. The study uses a regional climate model (RCM) to simulate feedbacks over a 20-year period (2005-2025) with high-resolution data from CORDEX and satellite observations. Key mechanisms investigated include (1) Water Vapor Feedback—the amplifying effect of humidity on warming, (2) Cloud-Radiation Interactions—the impact of cloud cover on radiation balance, especially during the West African Monsoon, and (3) Surface Albedo and Land-Use Changes—effects of urbanization and vegetation on the radiation budget. Preliminary results indicate that radiative feedbacks strongly influence seasonal climate variability in coastal West Africa. Water vapor feedback amplifies dry-season warming, cloud-radiation interactions moderate surface temperatures during monsoon seasons, and SST variations in the Atlantic affect the frequency and intensity of extreme rainfall events. The findings suggest that incorporating these feedbacks into climate planning can strengthen resilience to climate impacts in West African coastal communities. Further research should refine regional models to capture anthropogenic influences like greenhouse gas emissions, guiding sustainable urban and resource planning to mitigate climate risks.

Keywords: west africa, radiative, climate, resilence, anthropogenic

Procedia PDF Downloads 8
171 Physical Planning Trajectories for Disaster Mitigation and Preparedness in Costal and Seismic Regions: Capital Region of Andhra Pradesh, Vijayawada in India

Authors: Timma Reddy, Srikonda Ramesh

Abstract:

India has been traditionally vulnerable to natural disasters such as Floods, droughts, cyclones, earthquakes and landslides. It has become a recurrent phenomenon as observed in last five decades. The survey indicates that about 60% of the landmass is prone to earthquakes of various intensities; over 40 million hectares is prone to floods; about 8% of the total area is prone to cyclones and 68% of the area is susceptible to drought. Climate change is likely to be perceived through experience of extreme weather events. There is growing societal concern about climate change, given the potential impacts of associated natural hazards such as cyclones, flooding, earthquakes, landslides etc, hence it is essential and crucial to strengthening our settlements to respond to such calamities. So, the research paper focus is to analyze the effective planning strategy/mechanism to integrate disaster mitigation measures in coastal regions in general and Capital Region of Andhra Pradesh in particular. The basic hypothesis is to govern the appropriate special planning considerations would facilitate to have organized way of protective life and properties from natural disasters. And further to integrate the infrastructure planning with conscious direction would provide an effective mitigations measures. It has been planned and analyzed to Vijayawada city with conscious land use planning with reference to space syntax trajectory in accordance to required social infrastructure such as health facilities, institution areas and recreational and other open spaces. It has been identified that the geographically ideal location with reference to the population densities based on GIS tools the properness strategies can be effectively integrated to protect the life and to save the properties by means of reducing the damage/impact of natural disasters in general earth quake/cyclones or floods in particularly.

Keywords: modular, trajectories, social infrastructure, evidence based syntax, drills and equipments, GIS, geographical micro zoning, high resolution satellite image

Procedia PDF Downloads 219
170 Leveraging Remote Sensing Information for Drought Disaster Risk Management

Authors: Israel Ropo Orimoloye, Johanes A. Belle, Olusola Adeyemi, Olusola O. Ololade

Abstract:

With more than 100,000 orbits during the past 20 years, Terra has significantly improved our knowledge of the Earth's climate and its implications on societies and ecosystems of human activity and natural disasters, including drought events. With Terra instrument's performance and the free distribution of its products, this study utilised Terra MOD13Q1 satellite data to assess drought disaster events and its spatiotemporal patterns over the Free State Province of South Africa between 2001 and 2019 for summer, autumn, winter, and spring seasons. The study also used high-resolution downscaled climate change projections under three representative concentration pathways (RCP). Three future periods comprising the short (the 2030s), medium (2040s), and long term (2050s) compared to the current period are analysed to understand the potential magnitude of projected climate change-related drought. The study revealed that the year 2001 and 2016 witnessed extreme drought conditions where the drought index is between 0 and 20% across the entire province during summer, while the year 2003, 2004, 2007, and 2015 observed severe drought conditions across the region with variation from one part to the another. The result shows that from -24.5 to -25.5 latitude, the area witnessed a decrease in precipitation (80 to 120mm) across the time slice and an increase in the latitude -26° to -28° S for summer seasons, which is more prominent in the year 2041 to 2050. This study emphasizes the strong spatio-environmental impacts within the province and highlights the associated factors that characterise high drought stress risk, especially on the environment and ecosystems. This study contributes to a disaster risk framework to identify areas for specific research and adaptation activities on drought disaster risk and for environmental planning in the study area, which is characterised by both rural and urban contexts, to address climate change-related drought impacts.

Keywords: remote sensing, drought disaster, climate scenario, assessment

Procedia PDF Downloads 187
169 Spatio-Temporal Analysis of Land Use Change and Green Cover Index

Authors: Poonam Sharma, Ankur Srivastav

Abstract:

Cities are complex and dynamic systems that constitute a significant challenge to urban planning. The increasing size of the built-up area owing to growing population pressure and economic growth have lead to massive Landuse/Landcover change resulted in the loss of natural habitat and thus reducing the green covers in urban areas. Urban environmental quality is influenced by several aspects, including its geographical configuration, the scale, and nature of human activities occurring and environmental impacts generated. Cities have transformed into complex and dynamic systems that constitute a significant challenge to urban planning. Cities and their sustainability are often discussed together as the cities stand confronted with numerous environmental concerns as the world becoming increasingly urbanized, and the cities are situated in the mesh of global networks in multiple senses. A rapid transformed urban setting plays a crucial role to change the green area of natural habitats. To examine the pattern of urban growth and to measure the Landuse/Landcover change in Gurgoan in Haryana, India through the integration of Geospatial technique is attempted in the research paper. Satellite images are used to measure the spatiotemporal changes that have occurred in the land use and land cover resulting into a new cityscape. It has been observed from the analysis that drastically evident changes in land use has occurred with the massive rise in built up areas and the decrease in green cover and therefore causing the sustainability of the city an important area of concern. The massive increase in built-up area has influenced the localised temperatures and heat concentration. To enhance the decision-making process in urban planning, a detailed and real world depiction of these urban spaces is the need of the hour. Monitoring indicators of key processes in land use and economic development are essential for evaluating policy measures.

Keywords: cityscape, geospatial techniques, green cover index, urban environmental quality, urban planning

Procedia PDF Downloads 277
168 The Role of Agroforestry Practices in Climate Change Mitigation in Western Kenya

Authors: Humphrey Agevi, Harrison Tsingalia, Richard Onwonga, Shem Kuyah

Abstract:

Most of the world ecosystems have been affected by the effects of climate change. Efforts have been made to mitigate against climate change effects. While most studies have been done in forest ecosystems and pure plant plantations, trees on farms including agroforestry have only received attention recently. Agroforestry systems and tree cover on agricultural lands make an important contribution to climate change mitigation but are not systematically accounted for in the global carbon budgets. This study sought to: (i) determine tree diversity in different agroforestry practices; (ii) determine tree biomass in different agroforestry practices. Study area was determined according to the Land degradation surveillance framework (LSDF). Two study sites were established. At each of the site, a 5km x 10km block was established on a map using Google maps and satellite images. Way points were then uploaded in a GPS helped locate the blocks on the ground. In each of the blocks, Nine (8) sentinel clusters measuring 1km x 1km were randomized. Randomization was done in a common spreadsheet program and later be downloaded to a Global Positioning System (GPS) so that during surveys the researchers were able to navigate to the sampling points. In each of the sentinel cluster, two farm boundaries were randomly identified for convenience and to avoid bias. This led to 16 farms in Kakamega South and 16 farms in Kakamega North totalling to 32 farms in Kakamega Site. Species diversity was determined using Shannon wiener index. Tree biomass was determined using allometric equation. Two agroforestry practices were found; homegarden and hedgerow. Species diversity ranged from 0.25-2.7 with a mean of 1.8 ± 0.10. Species diversity in homegarden ranged from 1-2.7 with a mean of 1.98± 0.14. Hedgerow species diversity ranged from 0.25-2.52 with a mean of 1.74± 0.11. Total Aboveground Biomass (AGB) determined was 13.96±0.37 Mgha-1. Homegarden with the highest abundance of trees had higher above ground biomass (AGB) compared to hedgerow agroforestry. This study is timely as carbon budgets in the agroforestry can be incorporated in the global carbon budgets and improve the accuracy of national reporting of greenhouse gases.

Keywords: agroforestry, allometric equations, biomass, climate change

Procedia PDF Downloads 363
167 Genotyping and Phylogeny of Phaeomoniella Genus Associated with Grapevine Trunk Diseases in Algeria

Authors: A. Berraf-Tebbal, Z. Bouznad, , A.J.L. Phillips

Abstract:

Phaeomoniella is a fungus genus in the mitosporic ascomycota which includes Phaeomoniella chlamydospora specie associated with two declining diseases on grapevine (Vitis vinifera) namely Petri disease and esca. Recent studies have shown that several Phaeomoniella species also cause disease on many other woody crops, such as forest trees and woody ornamentals. Two new species, Phaeomoniella zymoides and Phaeomoniella pinifoliorum H.B. Lee, J.Y. Park, R.C. Summerbell et H.S. Jung, were isolated from the needle surface of Pinus densiflora Sieb. et Zucc. in Korea. The identification of species in Phaeomoniella genus can be a difficult task if based solely on morphological and cultural characters. In this respect, the application of molecular methods, particularly PCR-based techniques, may provide an important contribution. MSP-PCR (microsatellite primed-PCR) fingerprinting has proven useful in the molecular typing of fungal strains. The high discriminatory potential of this method is particularly useful when dealing with closely related or cryptic species. In the present study, the application of PCR fingerprinting was performed using the micro satellite primer M13 for the purpose of species identification and strain typing of 84 Phaeomoniella -like isolates collected from grapevines with typical symptoms of dieback. The bands produced by MSP-PCR profiles divided the strains into 3 clusters and 5 singletons with a reproducibility level of 80%. Representative isolates from each group and, when possible, isolates from Eutypa dieback and esca symptoms were selected for sequencing of the ITS region. The ITS sequences for the 16 isolates selected from the MSP-PCR profiles were combined and aligned with sequences of 18 isolates retrieved from GenBank, representing a selection of all known Phaeomoniella species. DNA sequences were compared with those available in GenBank using Neighbor-joining (NJ) and Maximum-parsimony (MP) analyses. The phylogenetic trees of the ITS region revealed that the Phaeomoniella isolates clustered with Phaeomoniella chlamydospora reference sequences with a bootstrap support of 100 %. The complexity of the pathosystems vine-trunk diseases shows clearly the need to identify unambiguously the fungal component in order to allow a better understanding of the etiology of these diseases and justify the establishment of control strategies against these fungal agents.

Keywords: Genotyping, MSP-PCR, ITS, phylogeny, trunk diseases

Procedia PDF Downloads 478
166 Historical Development of Bagh-e Dasht in Herat, Afghanistan: A Comprehensive Field Survey of Physical and Social Aspects

Authors: Khojesta Kawish, Tetsuya Ando, Sayed Abdul Basir Samimi

Abstract:

Bagh-e Dasht area is situated in the northern part of Herat, an old city in western Afghanistan located on the Silk Road which has received a strong influence from Persian culture. Initially, the Bagh-e Dasht area was developed for gardens and palaces near Joy-e Injil canal during the Timurid Empire in the 15th century. It is assumed Bagh-e Dasht became a settlement in the 16th century during the Safavid Empire. The oldest area is the southern part around the canal bank which is characterized by Dalans, sun-dried brick arcades above which houses are often constructed. Traditional houses in this area are built with domical vault roofs constructed with sun-dried bricks. Bagh-e Dasht is one of the best-preserved settlements of traditional houses in Herat. This study examines the transformation of the Bagh-e Dasht area with a focus on Dalans, where traditional houses with domical vault roofs have been well-preserved until today. The aim of the study is to examine the extent of physical changes to the area as well as changes to houses and the community. This research paper contains original results which have previously not been published in architectural history. The roof types of houses in the area are investigated through examining high resolution satellite images. The boundary of each building and space is determined by both a field survey and aerial photographs of the study area. A comprehensive field survey was then conducted to examine each space and building in the area. In addition, a questionnaire was distributed to the residents of the Dalan houses and interviews were conducted with the Wakil (Chief) of the area, a local historian, residents and traditional builders. The study finds that the oldest part of Bagh-e Dasht area, the south, contains both Dalans and domical vault roof houses. The next oldest part, which is the north, only has domical vault roof houses. The rest of the area only has houses with modernized flat roofs. This observation provides an insight into the process of historical development in the Bagh-e Dasht area.

Keywords: Afghanistan, Bagh-e Dasht, Dalan, domical vault, Herat, over path house, traditional house

Procedia PDF Downloads 133
165 Defining the Vibrancy of the Temple Square: A Case of Car Street Udupi, Karnataka

Authors: Nivedhitha Venkatakrishnan

Abstract:

Walking down busy temple streets in India is an experience in lifetime. Especially the temple streets are one of the most energetic places not only because of the divinity but also because of the streets itself which provides place for people to relax, meet, shop, linger, just walk around these activities create a set of experience which results in memories that lasts longer. Thinking of any temple street in India the image that comes to anyone’s mind are the elegantly sculpted Gopurams (Gateway) that depicts the craftsmanship and the history of the place, people taking a holy dip in the water, the aroma of the agarbathi’s, flowers with the divine Vedic chants and the sound of the temple bell flock of pigeons flying from the niches of the Gopuram with the sun in the backdrop. It gives a feeling of impulse energy that brings in life to these streets. Any temple street with even any one factor missing would look dead. This will be amiss in the essence in the scene of one’s experiences. These Temple Streets traditionally cater not only for religious purpose but to a wide range of activities. A vibrant street that facilitates such activities are preferred by the public any day. The research seeks to understand and find out the definition of Vibrancy in Indian Context. What is Vibrancy? What brings in the feeling of Vibrancy/Liveliness/Energy? Is it the Built structure and the city? Or is it the people? Or is it the Activity? Or is it Built structure – city – People – Activity put together brings the sense of Vibrancy to a place? How to define Vibrancy? Is it measurable? For which a case of Car Street Udupi, Karnataka is taken. The research is carried out in two stages. ‘Stage One’ makes use of ethnographic fieldwork as a basic method, complimented by structured field observations using a behavioral mapping procedure of the streets. Stage Two’ utilizes surveys that collected. This stage seeks to understand what design characteristics and furniture arrangements are associated with stationary, social and gathering activities of people by each cultural group and all groups collectively. The main conclusion from this research is that retail activities remain the main concern of people in cultural streets. Management and higher-level planning of retail activities on the streets could encourage and motivate possible Shops to enrich the trade variety of the street that provides a means for social and cultural diversity. In addition to business activities, spatial design characteristics are found to have an influence on people’s behavior and activity. The findings of this research suggest that retail and business activities, together with the design and skillful management of the public areas, could support a wider range of static and social activities among people of various ethnic backgrounds.

Keywords: activity, liveliness, temple street, vibrancy

Procedia PDF Downloads 158
164 Forecasting Residential Water Consumption in Hamilton, New Zealand

Authors: Farnaz Farhangi

Abstract:

Many people in New Zealand believe that the access to water is inexhaustible, and it comes from a history of virtually unrestricted access to it. For the region like Hamilton which is one of New Zealand’s fastest growing cities, it is crucial for policy makers to know about the future water consumption and implementation of rules and regulation such as universal water metering. Hamilton residents use water freely and they do not have any idea about how much water they use. Hence, one of proposed objectives of this research is focusing on forecasting water consumption using different methods. Residential water consumption time series exhibits seasonal and trend variations. Seasonality is the pattern caused by repeating events such as weather conditions in summer and winter, public holidays, etc. The problem with this seasonal fluctuation is that, it dominates other time series components and makes difficulties in determining other variations (such as educational campaign’s effect, regulation, etc.) in time series. Apart from seasonality, a stochastic trend is also combined with seasonality and makes different effects on results of forecasting. According to the forecasting literature, preprocessing (de-trending and de-seasonalization) is essential to have more performed forecasting results, while some other researchers mention that seasonally non-adjusted data should be used. Hence, I answer the question that is pre-processing essential? A wide range of forecasting methods exists with different pros and cons. In this research, I apply double seasonal ARIMA and Artificial Neural Network (ANN), considering diverse elements such as seasonality and calendar effects (public and school holidays) and combine their results to find the best predicted values. My hypothesis is the examination the results of combined method (hybrid model) and individual methods and comparing the accuracy and robustness. In order to use ARIMA, the data should be stationary. Also, ANN has successful forecasting applications in terms of forecasting seasonal and trend time series. Using a hybrid model is a way to improve the accuracy of the methods. Due to the fact that water demand is dominated by different seasonality, in order to find their sensitivity to weather conditions or calendar effects or other seasonal patterns, I combine different methods. The advantage of this combination is reduction of errors by averaging of each individual model. It is also useful when we are not sure about the accuracy of each forecasting model and it can ease the problem of model selection. Using daily residential water consumption data from January 2000 to July 2015 in Hamilton, I indicate how prediction by different methods varies. ANN has more accurate forecasting results than other method and preprocessing is essential when we use seasonal time series. Using hybrid model reduces forecasting average errors and increases the performance.

Keywords: artificial neural network (ANN), double seasonal ARIMA, forecasting, hybrid model

Procedia PDF Downloads 337
163 Red-Tide Detection and Prediction Using MODIS Data in the Arabian Gulf of Qatar

Authors: Yasir E. Mohieldeen

Abstract:

Qatar is one of the most water scarce countries in the World. In 2014, the average per capita rainfall was less than 29 m3/y/ca, while the global average is 6,000 m3/y/ca. However, the per capita water consumption in Qatar is among the highest in the World: more than 500 liters per person per day, whereas the global average is 160 liters per person per day. Since the early 2000s, Qatar has been relying heavily on desalinated water from the Arabian Gulf as the main source of fresh water. In 2009, about 99.9% of the total potable water produced was desalinated. Reliance on desalinated water makes Qatar very vulnerable to water related natural disasters, such as the red-tide phenomenon. Qatar’s strategic water reserve lasts for only 7 days. In case of red-tide outbreak, the country would not be able to desalinate water for days, let alone the months that this disaster would bring about (as it clogs the desalination equipment). The 2008-09 red-tide outbreak, for instance, lasted for more than eight months and forced the closure of desalination plants in the region for weeks. This study aims at identifying favorite conditions for red-tide outbreaks, using satellite data along with in-situ measurements. This identification would allow the prediction of these outbreaks and their hotspots. Prediction and monitoring of outbreaks are crucial to water security in the country, as different measures could be put in place in advance to prevent an outbreak and mitigate its impact if it happened. Red-tide outbreaks are detected using different algorithms for chlorophyll concentration in the Gulf waters. Vegetation indices, such as Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) were used along with Surface Algae Bloom Index (SABI) to detect known outbreaks. MODIS (or Moderate Resolution Imaging Spectroradiometer) bands are used to calculate these indices. A red-tide outbreaks atlas in the Arabian Gulf is being produced. Prediction of red-tide outbreaks ahead of their occurrences would give critical information on possible water-shortage in the country. Detecting known outbreaks in the past few decades and related parameters (e.g. water salinity, water surface temperature, nutrition, sandstorms, … etc) enables the identification of favorite conditions of red-tide outbreak that are key to the prediction of these outbreaks.

Keywords: Arabian Gulf, MODIS, red-tide detection, strategic water reserve, water desalination

Procedia PDF Downloads 107
162 Role of Geohydrology in Groundwater Management-Case Study of Pachod Village, Maharashtra, India

Authors: Ashok Tejankar, Rohan K. Pathrikar

Abstract:

Maharashtra is covered by heterogeneous flows of Deccan basaltic terrains of upper cretaceous to lower Eocene age. It consist mainly different types of basalt flow, having heterogeneous Geohydrological characters. The study area Aurangabad dist. lies in the central part of Maharashtra. The study area is typically covered by Deccan traps formation mainly basalt type of igneous volcanic rock. The area is located in the survey of India toposheet No. 47M and laying between 19° to 20° north latitudes and 74° to 76° east longitudes. Groundwater is the primary source for fresh water in the study area. There has been a growing demand for fresh water in domestic & agriculture sectors. Due to over exploitation and rainfall failure has been created an irrecoverable stress on groundwater in study area. In an effort to maintain the water table condition in balance, artificial recharge is being implemented. The selection of site for artificial recharge is a very important task in recharge basalt. The present study aims at sitting artificial recharge structure at village Pachod in basaltic terrain of the Godavari-Purna river basin in Aurangabad district of Maharashtra, India. where the average annual rainfall is 650mm. In this investigation, integrated remote sensing and GIS techniques were used and various parameters like lithology, structure, etc. aspect of drainage basins, landforms and other parameters were extracted from visual interpretation of IRS P6 Satellite data and Survey of India (SIO) topographical sheets, aided by field checks by carrying well inventory survey. The depth of weathered material, water table conditions, and rainfall data were been considered. All the thematic information layers were digitized and analyzed in Arc-GIS environment and the composite maps produced show suitable site, depth of bed rock flows for successful artificial recharge in village Pachod to increase groundwater potential of low laying area.

Keywords: hard rock, artificial recharge, remote sensing, GIS

Procedia PDF Downloads 292
161 Mapping and Characterizing the Jefoure Cultural Landscape Which Provides Multiple Ecosystem Services to the Gurage People in Ethiopia

Authors: M. Achemo, O. Saito

Abstract:

Jefoure land use system is one of the traditional landscape human settlement patterns, and it is a cultural design and peculiar art of the people of Gurage in Ethiopia via which houses and trees flank roads left and right. Assessment of the multiple benefits of the traditional road that benefit society and development could enhance the understanding of the land use planners and decision makers to pay attention while planning and managing the land use system. Recent trend shows that the Jefoure land use is on the threshold of change as a result of flourishing road networks, overgrazing, and agricultural expansion. This study aimed to evaluate the multiple ecosystem services provided by the Jefoure land use system after characterization of the socio-ecological landscape. Information was compiled from existing data sources such as ordnance survey maps, aerial photographs, recent high resolution satellite imageries, designated questionnaires and interviews, and local authority contacts. The result generated scientific data on the characteristics, ecosystem services provision, and drivers of changes. The cultural landscape has novel characteristics and providing multiple ecosystem services to the community for long period of time. It is serving as road for humans, livestock and vehicles, habitat for plant species, regulating local temperature, climate, runoff and infiltration, and place for meeting, conducting religious and spiritual activities, holding social events such as marriage and mourning, playing station for children and court for football and other traditional games. As a result of its aesthetic quality and scenic beauty, it is considered as recreational place for improving mental and physical health. The study draws relevant land use planning and management solution in the improvement of socio-ecological resilience in the Jefoure land use system. The study suggests the landscape needs to be registrar as heritage site for recognizing the wisdom of the community and enhancing the conservation mechanisms.

Keywords: cultural landscape, ecosystem services, Gurage, Jefoure

Procedia PDF Downloads 131
160 Material Use and Life Cycle GHG Emissions of Different Electrification Options for Long-Haul Trucks

Authors: Nafisa Mahbub, Hajo Ribberink

Abstract:

Electrification of long-haul trucks has been in discussion as a potential strategy to decarbonization. These trucks will require large batteries because of their weight and long daily driving distances. Around 245 million battery electric vehicles are predicted to be on the road by the year 2035. This huge increase in the number of electric vehicles (EVs) will require intensive mining operations for metals and other materials to manufacture millions of batteries for the EVs. These operations will add significant environmental burdens and there is a significant risk that the mining sector will not be able to meet the demand for battery materials, leading to higher prices. Since the battery is the most expensive component in the EVs, technologies that can enable electrification with smaller batteries sizes have substantial potential to reduce the material usage and associated environmental and cost burdens. One of these technologies is an ‘electrified road’ (eroad), where vehicles receive power while they are driving, for instance through an overhead catenary (OC) wire (like trolleybuses and electric trains), through wireless (inductive) chargers embedded in the road, or by connecting to an electrified rail in or on the road surface. This study assessed the total material use and associated life cycle GHG emissions of two types of eroads (overhead catenary and in-road wireless charging) for long-haul trucks in Canada and compared them to electrification using stationary plug-in fast charging. As different electrification technologies require different amounts of materials for charging infrastructure and for the truck batteries, the study included the contributions of both for the total material use. The study developed a bottom-up approach model comparing the three different charging scenarios – plug in fast chargers, overhead catenary and in-road wireless charging. The investigated materials for charging technology and batteries were copper (Cu), steel (Fe), aluminium (Al), and lithium (Li). For the plug-in fast charging technology, different charging scenarios ranging from overnight charging (350 kW) to megawatt (MW) charging (2 MW) were investigated. A 500 km of highway (1 lane of in-road charging per direction) was considered to estimate the material use for the overhead catenary and inductive charging technologies. The study considered trucks needing an 800 kWh battery under the plug-in charger scenario but only a 200 kWh battery for the OC and inductive charging scenarios. Results showed that overall the inductive charging scenario has the lowest material use followed by OC and plug-in charger scenarios respectively. The materials use for the OC and plug-in charger scenarios were 50-70% higher than for the inductive charging scenarios for the overall system including the charging infrastructure and battery. The life cycle GHG emissions from the construction and installation of the charging technology material were also investigated.

Keywords: charging technology, eroad, GHG emissions, material use, overhead catenary, plug in charger

Procedia PDF Downloads 51
159 Filtering Momentum Life Cycles, Price Acceleration Signals and Trend Reversals for Stocks, Credit Derivatives and Bonds

Authors: Periklis Brakatsoulas

Abstract:

Recent empirical research shows a growing interest in investment decision-making under market anomalies that contradict the rational paradigm. Momentum is undoubtedly one of the most robust anomalies in the empirical asset pricing research and remains surprisingly lucrative ever since first documented. Although predominantly phenomena identified across equities, momentum premia are now evident across various asset classes. Yet few many attempts are made so far to provide traders a diversified portfolio of strategies across different assets and markets. Moreover, literature focuses on patterns from past returns rather than mechanisms to signal future price directions prior to momentum runs. The aim of this paper is to develop a diversified portfolio approach to price distortion signals using daily position data on stocks, credit derivatives, and bonds. An algorithm allocates assets periodically, and new investment tactics take over upon price momentum signals and across different ranking groups. We focus on momentum life cycles, trend reversals, and price acceleration signals. The main effort here concentrates on the density, time span and maturity of momentum phenomena to identify consistent patterns over time and measure the predictive power of buy-sell signals generated by these anomalies. To tackle this, we propose a two-stage modelling process. First, we generate forecasts on core macroeconomic drivers. Secondly, satellite models generate market risk forecasts using the core driver projections generated at the first stage as input. Moreover, using a combination of the ARFIMA and FIGARCH models, we examine the dependence of consecutive observations across time and portfolio assets since long memory behavior in volatilities of one market appears to trigger persistent volatility patterns across other markets. We believe that this is the first work that employs evidence of volatility transmissions among derivatives, equities, and bonds to identify momentum life cycle patterns.

Keywords: forecasting, long memory, momentum, returns

Procedia PDF Downloads 102
158 Study and Simulation of a Sever Dust Storm over West and South West of Iran

Authors: Saeed Farhadypour, Majid Azadi, Habibolla Sayyari, Mahmood Mosavi, Shahram Irani, Aliakbar Bidokhti, Omid Alizadeh Choobari, Ziba Hamidi

Abstract:

In the recent decades, frequencies of dust events have increased significantly in west and south west of Iran. First, a survey on the dust events during the period (1990-2013) is investigated using historical dust data collected at 6 weather stations scattered over west and south-west of Iran. After statistical analysis of the observational data, one of the most severe dust storm event that occurred in the region from 3rd to 6th July 2009, is selected and analyzed. WRF-Chem model is used to simulate the amount of PM10 and how to transport it to the areas. The initial and lateral boundary conditions for model obtained from GFS data with 0.5°×0.5° spatial resolution. In the simulation, two aerosol schemas (GOCART and MADE/SORGAM) with 3 options (chem_opt=106,300 and 303) were evaluated. Results of the statistical analysis of the historical data showed that south west of Iran has high frequency of dust events, so that Bushehr station has the highest frequency between stations and Urmia station has the lowest frequency. Also in the period of 1990 to 2013, the years 2009 and 1998 with the amounts of 3221 and 100 respectively had the highest and lowest dust events and according to the monthly variation, June and July had the highest frequency of dust events and December had the lowest frequency. Besides, model results showed that the MADE / SORGAM scheme has predicted values and trends of PM10 better than the other schemes and has showed the better performance in comparison with the observations. Finally, distribution of PM10 and the wind surface maps obtained from numerical modeling showed that the formation of dust plums formed in Iraq and Syria and also transportation of them to the West and Southwest of Iran. In addition, comparing the MODIS satellite image acquired on 4th July 2009 with model output at the same time showed the good ability of WRF-Chem in simulating spatial distribution of dust.

Keywords: dust storm, MADE/SORGAM scheme, PM10, WRF-Chem

Procedia PDF Downloads 270
157 Spatial Patterns of Urban Expansion in Kuwait City between 1989 and 2001

Authors: Saad Algharib, Jay Lee

Abstract:

Urbanization is a complex phenomenon that occurs during the city’s development from one form to another. In other words, it is the process when the activities in the land use/land cover change from rural to urban. Since the oil exploration, Kuwait City has been growing rapidly due to its urbanization and population growth by both natural growth and inward immigration. The main objective of this study is to detect changes in urban land use/land cover and to examine the changing spatial patterns of urban growth in and around Kuwait City between 1989 and 2001. In addition, this study also evaluates the spatial patterns of the changes detected and how they can be related to the spatial configuration of the city. Recently, the use of remote sensing and geographic information systems became very useful and important tools in urban studies because of the integration of them can allow and provide the analysts and planners to detect, monitor and analyze the urban growth in a region effectively. Moreover, both planners and users can predict the trends of the growth in urban areas in the future with remotely sensed and GIS data because they can be effectively updated with required precision levels. In order to identify the new urban areas between 1989 and 2001, the study uses satellite images of the study area and remote sensing technology for classifying these images. Unsupervised classification method was applied to classify images to land use and land cover data layers. After finishing the unsupervised classification method, GIS overlay function was applied to the classified images for detecting the locations and patterns of the new urban areas that developed during the study period. GIS was also utilized to evaluate the distribution of the spatial patterns. For example, Moran’s index was applied for all data inputs to examine the urban growth distribution. Furthermore, this study assesses if the spatial patterns and process of these changes take place in a random fashion or with certain identifiable trends. During the study period, the result of this study indicates that the urban growth has occurred and expanded 10% from 32.4% in 1989 to 42.4% in 2001. Also, the results revealed that the largest increase of the urban area occurred between the major highways after the forth ring road from the center of Kuwait City. Moreover, the spatial distribution of urban growth occurred in cluster manners.

Keywords: geographic information systems, remote sensing, urbanization, urban growth

Procedia PDF Downloads 171
156 Automated Feature Extraction and Object-Based Detection from High-Resolution Aerial Photos Based on Machine Learning and Artificial Intelligence

Authors: Mohammed Al Sulaimani, Hamad Al Manhi

Abstract:

With the development of Remote Sensing technology, the resolution of optical Remote Sensing images has greatly improved, and images have become largely available. Numerous detectors have been developed for detecting different types of objects. In the past few years, Remote Sensing has benefited a lot from deep learning, particularly Deep Convolution Neural Networks (CNNs). Deep learning holds great promise to fulfill the challenging needs of Remote Sensing and solving various problems within different fields and applications. The use of Unmanned Aerial Systems in acquiring Aerial Photos has become highly used and preferred by most organizations to support their activities because of their high resolution and accuracy, which make the identification and detection of very small features much easier than Satellite Images. And this has opened an extreme era of Deep Learning in different applications not only in feature extraction and prediction but also in analysis. This work addresses the capacity of Machine Learning and Deep Learning in detecting and extracting Oil Leaks from Flowlines (Onshore) using High-Resolution Aerial Photos which have been acquired by UAS fixed with RGB Sensor to support early detection of these leaks and prevent the company from the leak’s losses and the most important thing environmental damage. Here, there are two different approaches and different methods of DL have been demonstrated. The first approach focuses on detecting the Oil Leaks from the RAW Aerial Photos (not processed) using a Deep Learning called Single Shoot Detector (SSD). The model draws bounding boxes around the leaks, and the results were extremely good. The second approach focuses on detecting the Oil Leaks from the Ortho-mosaiced Images (Georeferenced Images) by developing three Deep Learning Models using (MaskRCNN, U-Net and PSP-Net Classifier). Then, post-processing is performed to combine the results of these three Deep Learning Models to achieve a better detection result and improved accuracy. Although there is a relatively small amount of datasets available for training purposes, the Trained DL Models have shown good results in extracting the extent of the Oil Leaks and obtaining excellent and accurate detection.

Keywords: GIS, remote sensing, oil leak detection, machine learning, aerial photos, unmanned aerial systems

Procedia PDF Downloads 32
155 Reconstruction Paleogeomorphological Map of the Nile River in Upper Egypt by Using Some Geomorphological and Geoarchaeological Indicators

Authors: Magdy Torab

Abstract:

Ancient Egyptians built their temples purposefully close to the River Nile to use it for transporting construction stones from far away quarries to building sites in river-boats. Most temples, therefore, have river-harbors associated with their geometric designs. The paleoriver channel remapped by using this idea, besides other geomorphological and geoarchaeological indicators/evidence located between Aswan and Luxor cities. In this sense, this paper defines the characteristics of this ancient course and its associated landforms using paleochannel morphology, paleomeandering, and ancient river dynamics during historic and prehistoric times. Both geomorphological and geoarchaeological approaches used to reconstruct the paleomorphology of the river course. It helps to investigate the ancient river morphology by using the following techniques: comparison and interpretation of multi dates satellite images and historical maps between 1943 and 2004. The results illustrated on maps using GIS (ARC GIS V.10 software) and the field data collected from the western bank of The Nile River at Luxor area and Karnak, Edfu, Esna and Kom Ombo temples. Created both current and paleogeomorphological maps depending upon the results of geoarchaeological surveying and soil analysis and dating, for surface and subsurface soil sampling by handle auger, laser diffraction analysis for 7 soil samples collected from some mounds and Malkata channel in the western bank of The Nile River near Luxor. Paleo-current directions were determined by using standard Brunton compass to use it as an indicator is evidence for the direction of flow of The Nile River during deposition of some accumulated mounds on the western part of the floodplain near Luxor city. C-14 dating was used for two samples collected from these mounds as well as geographical information system (GIS) technique for mapping. The geomorphological and geoarchaeological evidence shows that the Nile River course in Luxor area was around 4.5 km wide and contained many islands and sandbars which separated inside the river channel, now appearing as scattered mounds inside the floodplain. Upper Egypt has migrated during the historic times to the east up to five kilometers and become far away from the ancient temples, quarries, and harbors. It has also become as well as become more meandering and narrower than before.

Keywords: Nile River, ancient harbours, Luxor, paleogeomorphology, geoarchaeology

Procedia PDF Downloads 153
154 A Study of Kinematical Parameters I9N Instep Kicking in Soccer

Authors: Abdolrasoul Daneshjoo

Abstract:

Introduction: Soccer is a game which draws more attention in different countries especially in Brazil. Kicking among different skills in soccer and soccer players is an excellent role for the success and preference of a team. The way of point gaining in this game is passing the ball over the goal lines which are gained by shoot skill in attack time and or during the penalty kicks.Regarding the above assumption, identifying the effective factors in instep kicking in different distances shoot with maximum force and high accuracy or pass and penalty kick, may assist the coaches and players in raising qualitative level of performing the skill. Purpose: The aim of the present study was to study of a few kinematical parameters in instep kicking from 3 and 5 meter distance among the male and female elite soccer players. Methods: 24 right dominant lower limb subjects (12 males and 12 females) among Tehran elite soccer players with average and the standard deviation (22.5 ± 1.5) & (22.08± 1.31) years, height of (179.5 ± 5.81) & (164.3 ± 4.09) cm, weight of (69.66 ± 4.09) & (53.16 ± 3.51) kg, %BMI (21.06 ± .731) & (19.67 ± .709), having playing history of (4 ± .73) & (3.08 ± .66) years respectively participated in this study. They had at least two years of continuous playing experience in Tehran soccer league.For sampling player's kick; Kinemetrix Motion analysis with three cameras with 500 Hz was used. Five reflective markers were placed laterally on the kicking leg over anatomical points (the iliac crest, major trochanter, lateral epicondyle of femur, lateral malleolus, and lateral aspect of distal head of the fifth metatarsus). Instep kick was filmed, with one step approach and 30 to 45 degrees angle from stationary ball. Three kicks were filmed, one kick selected for further analyses. Using Kinemetrix 3D motion analysis software, the position of the markers was analyzed. Descriptive statistics were used to describe the mean and standard deviation, while the analysis of variance, and independent t-test (P < 0.05) were used to compare the kinematic parameters between two genders. Results and Discussion: Among the evaluated parameters, the knee acceleration, the thigh angular velocity, the angle of knee proportionately showed significant relationship with consequence of kick. While company performance on 5m in 2 genders, significant differences were observed in internal – external displacement of toe, ankle, hip and the velocity of toe, ankle and the acceleration of toe and the angular velocity of pelvic, thigh and before time contact. Significant differences showed the internal – external displacement of toe, the ankle, the knee and the hip, the iliac crest and the velocity of toe, the ankle and acceleration of ankle and angular velocity of the pelvic and the knee.

Keywords: biomechanics, kinematics, soccer, instep kick, male, female

Procedia PDF Downloads 415
153 Method for Improving ICESAT-2 ATL13 Altimetry Data Utility on Rivers

Authors: Yun Chen, Qihang Liu, Catherine Ticehurst, Chandrama Sarker, Fazlul Karim, Dave Penton, Ashmita Sengupta

Abstract:

The application of ICESAT-2 altimetry data in river hydrology critically depends on the accuracy of the mean water surface elevation (WSE) at a virtual station (VS) where satellite observations intersect with water. The ICESAT-2 track generates multiple VSs as it crosses the different water bodies. The difficulties are particularly pronounced in large river basins where there are many tributaries and meanders often adjacent to each other. One challenge is to split photon segments along a beam to accurately partition them to extract only the true representative water height for individual elements. As far as we can establish, there is no automated procedure to make this distinction. Earlier studies have relied on human intervention or river masks. Both approaches are unsatisfactory solutions where the number of intersections is large, and river width/extent changes over time. We describe here an automated approach called “auto-segmentation”. The accuracy of our method was assessed by comparison with river water level observations at 10 different stations on 37 different dates along the Lower Murray River, Australia. The congruence is very high and without detectable bias. In addition, we compared different outlier removal methods on the mean WSE calculation at VSs post the auto-segmentation process. All four outlier removal methods perform almost equally well with the same R2 value (0.998) and only subtle variations in RMSE (0.181–0.189m) and MAE (0.130–0.142m). Overall, the auto-segmentation method developed here is an effective and efficient approach to deriving accurate mean WSE at river VSs. It provides a much better way of facilitating the application of ICESAT-2 ATL13 altimetry to rivers compared to previously reported studies. Therefore, the findings of our study will make a significant contribution towards the retrieval of hydraulic parameters, such as water surface slope along the river, water depth at cross sections, and river channel bathymetry for calculating flow velocity and discharge from remotely sensed imagery at large spatial scales.

Keywords: lidar sensor, virtual station, cross section, mean water surface elevation, beam/track segmentation

Procedia PDF Downloads 62
152 Yield Loss Estimation Using Multiple Drought Severity Indices

Authors: Sara Tokhi Arab, Rozo Noguchi, Tofeal Ahamed

Abstract:

Drought is a natural disaster that occurs in a region due to a lack of precipitation and high temperatures over a continuous period or in a single season as a consequence of climate change. Precipitation deficits and prolonged high temperatures mostly affect the agricultural sector, water resources, socioeconomics, and the environment. Consequently, it causes agricultural product loss, food shortage, famines, migration, and natural resources degradation in a region. Agriculture is the first sector affected by drought. Therefore, it is important to develop an agricultural drought risk and loss assessment to mitigate the drought impact in the agriculture sector. In this context, the main purpose of this study was to assess yield loss using composite drought indices in the drought-affected vineyards. In this study, the CDI was developed for the years 2016 to 2020 by comprising five indices: the vegetation condition index (VCI), temperature condition index (TCI), deviation of NDVI from the long-term mean (NDVI DEV), normalized difference moisture index (NDMI) and precipitation condition index (PCI). Moreover, the quantitative principal component analysis (PCA) approach was used to assign a weight for each input parameter, and then the weights of all the indices were combined into one composite drought index. Finally, Bayesian regularized artificial neural networks (BRANNs) were used to evaluate the yield variation in each affected vineyard. The composite drought index result indicated the moderate to severe droughts were observed across the Kabul Province during 2016 and 2018. Moreover, the results showed that there was no vineyard in extreme drought conditions. Therefore, we only considered the severe and moderated condition. According to the BRANNs results R=0.87 and R=0.94 in severe drought conditions for the years of 2016 and 2018 and the R= 0.85 and R=0.91 in moderate drought conditions for the years of 2016 and 2018, respectively. In the Kabul Province within the two years drought periods, there was a significate deficit in the vineyards. According to the findings, 2018 had the highest rate of loss almost -7 ton/ha. However, in 2016 the loss rates were about – 1.2 ton/ha. This research will support stakeholders to identify drought affect vineyards and support farmers during severe drought.

Keywords: grapes, composite drought index, yield loss, satellite remote sensing

Procedia PDF Downloads 157
151 Monitoring Large-Coverage Forest Canopy Height by Integrating LiDAR and Sentinel-2 Images

Authors: Xiaobo Liu, Rakesh Mishra, Yun Zhang

Abstract:

Continuous monitoring of forest canopy height with large coverage is essential for obtaining forest carbon stocks and emissions, quantifying biomass estimation, analyzing vegetation coverage, and determining biodiversity. LiDAR can be used to collect accurate woody vegetation structure such as canopy height. However, LiDAR’s coverage is usually limited because of its high cost and limited maneuverability, which constrains its use for dynamic and large area forest canopy monitoring. On the other hand, optical satellite images, like Sentinel-2, have the ability to cover large forest areas with a high repeat rate, but they do not have height information. Hence, exploring the solution of integrating LiDAR data and Sentinel-2 images to enlarge the coverage of forest canopy height prediction and increase the prediction repeat rate has been an active research topic in the environmental remote sensing community. In this study, we explore the potential of training a Random Forest Regression (RFR) model and a Convolutional Neural Network (CNN) model, respectively, to develop two predictive models for predicting and validating the forest canopy height of the Acadia Forest in New Brunswick, Canada, with a 10m ground sampling distance (GSD), for the year 2018 and 2021. Two 10m airborne LiDAR-derived canopy height models, one for 2018 and one for 2021, are used as ground truth to train and validate the RFR and CNN predictive models. To evaluate the prediction performance of the trained RFR and CNN models, two new predicted canopy height maps (CHMs), one for 2018 and one for 2021, are generated using the trained RFR and CNN models and 10m Sentinel-2 images of 2018 and 2021, respectively. The two 10m predicted CHMs from Sentinel-2 images are then compared with the two 10m airborne LiDAR-derived canopy height models for accuracy assessment. The validation results show that the mean absolute error (MAE) for year 2018 of the RFR model is 2.93m, CNN model is 1.71m; while the MAE for year 2021 of the RFR model is 3.35m, and the CNN model is 3.78m. These demonstrate the feasibility of using the RFR and CNN models developed in this research for predicting large-coverage forest canopy height at 10m spatial resolution and a high revisit rate.

Keywords: remote sensing, forest canopy height, LiDAR, Sentinel-2, artificial intelligence, random forest regression, convolutional neural network

Procedia PDF Downloads 92
150 Isolation of Clitorin and Manghaslin from Carica papaya L. Leaves by CPC and Its Quantitative Analysis by QNMR

Authors: Norazlan Mohmad Misnan, Maizatul Hasyima Omar, Mohd Isa Wasiman

Abstract:

Papaya (Carica papaya L., Caricaceae) is a tree which mainly cultivated for its fruits in many tropical regions including Australia, Brazil, China, Hawaii, and Malaysia. Beside of fruits, its leaves, seeds, and latex have also been traditionally used for treating diseases, which also reported to possess anti-cancer and anti- malaria properties. Its leaves have been reported to consist of various chemical compounds such as alkaloids, flavonoids and phenolics. Clitorin and manghaslin are among major flavonoids presence. Thus, the aim of this study is to quantify the purity of these isolated compounds (clitorin and manghsalin) by using quantitative Nuclear Magnetic Resonance (qNMR) analysis. Only fresh C. papaya leaves were used for juice extraction procedure and subsequently was freeze-dried to obtain a dark green powdered form of the extract prior to Centrifugal Partition Chromatography (CPC) separation. The CPC experiments were performed using a two-phase solvent system comprising ethyl acetate/butanol/water (1:4:5, v/v/v/v) solvent. The upper organic phase was used as the stationary phase, and the lower aqueous phase was employed as the mobile phase. Ten fractions were obtained after an hour runtime analysis. Fraction 6 and fraction 8 has been identified as clitorin (m/z 739.21 [M-H]-) and manghaslin (m/z 755.21 [M-H]-), respectively, based on LCMS data and full analysis of NMR (1H NMR, 13C NMR, HMBC, and HSQC). The 1H-qNMR measurements were carried out using a 400 MHz NMR spectrometer (JEOL ECS 400MHz, Japan) and deuterated methanol was used as a solvent. Quantification was performed using the AQARI method (Accurate Quantitative NMR) with deuterated 1,4-Bis(trimethylsilyl)benzene (BTMSB) as an internal reference substances. This AQARI protocol includes not only NMR measurement but also sample preparation that provide highest precision and accuracy than other qNMR methods. The 90° pulse length and the T1 relaxation times for compounds and BTMSB were determined prior to the quantification to give the best signal-to-noise ratio. Regions containing the two downfield signals from aromatic part (6.00–6.89 ppm), and the singlet signal, (18H) arising from BTMSB (0.63-1.05ppm) were selected for integration. The purity of clitorin and manghaslin were calculated to be 52.22% and 43.36%, respectively. Further purification is needed in order to increase its purity. This finding has demonstrated the use of qNMR for quality control and standardization of various plant extracts and which can be applied for NMR fingerprinting of other plant-based products with good reproducibility and in the case where commercial standards is not readily available.

Keywords: Carica papaya, clitorin, manghaslin, quantitative Nuclear Magnetic Resonance, Centrifugal Partition Chromatography

Procedia PDF Downloads 496
149 Classification of Coughing and Breathing Activities Using Wearable and a Light-Weight DL Model

Authors: Subham Ghosh, Arnab Nandi

Abstract:

Background: The proliferation of Wireless Body Area Networks (WBAN) and Internet of Things (IoT) applications demonstrates the potential for continuous monitoring of physical changes in the body. These technologies are vital for health monitoring tasks, such as identifying coughing and breathing activities, which are necessary for disease diagnosis and management. Monitoring activities such as coughing and deep breathing can provide valuable insights into a variety of medical issues. Wearable radio-based antenna sensors, which are lightweight and easy to incorporate into clothing or portable goods, provide continuous monitoring. This mobility gives it a substantial advantage over stationary environmental sensors like as cameras and radar, which are constrained to certain places. Furthermore, using compressive techniques provides benefits such as reduced data transmission speeds and memory needs. These wearable sensors offer more advanced and diverse health monitoring capabilities. Methodology: This study analyzes the feasibility of using a semi-flexible antenna operating at 2.4 GHz (ISM band) and positioned around the neck and near the mouth to identify three activities: coughing, deep breathing, and idleness. Vector network analyzer (VNA) is used to collect time-varying complex reflection coefficient data from perturbed antenna nearfield. The reflection coefficient (S11) conveys nuanced information caused by simultaneous variations in the nearfield radiation of three activities across time. The signatures are sparsely represented with gaussian windowed Gabor spectrograms. The Gabor spectrogram is used as a sparse representation approach, which reassigns the ridges of the spectrogram images to improve their resolution and focus on essential components. The antenna is biocompatible in terms of specific absorption rate (SAR). The sparsely represented Gabor spectrogram pictures are fed into a lightweight deep learning (DL) model for feature extraction and classification. Two antenna locations are investigated in order to determine the most effective localization for three different activities. Findings: Cross-validation techniques were used on data from both locations. Due to the complex form of the recorded S11, separate analyzes and assessments were performed on the magnitude, phase, and their combination. The combination of magnitude and phase fared better than the separate analyses. Various sliding window sizes, ranging from 1 to 5 seconds, were tested to find the best window for activity classification. It was discovered that a neck-mounted design was effective at detecting the three unique behaviors.

Keywords: activity recognition, antenna, deep-learning, time-frequency

Procedia PDF Downloads 8
148 Numerical Modelling of Wind Dispersal Seeds of Bromeliad Tillandsia recurvata L. (L.) Attached to Electric Power Lines

Authors: Bruna P. De Souza, Ricardo C. De Almeida

Abstract:

In some cities in the State of Parana – Brazil and in other countries atmospheric bromeliads (Tillandsia spp - Bromeliaceae) are considered weeds in trees, electric power lines, satellite dishes and other artificial supports. In this study, a numerical model was developed to simulate the seed dispersal of the Tillandsia recurvata species by wind with the objective of evaluating seeds displacement in the city of Ponta Grossa – PR, Brazil, since it is considered that the region is already infested. The model simulates the dispersal of each individual seed integrating parameters from the atmospheric boundary layer (ABL) and the local wind, simulated by the Weather Research Forecasting (WRF) mesoscale atmospheric model for the 2012 to 2015 period. The dispersal model also incorporates the approximate number of bromeliads and source height data collected from most infested electric power lines. The seeds terminal velocity, which is an important input data but was not available in the literature, was measured by an experiment with fifty-one seeds of Tillandsia recurvata. Wind is the main dispersal agent acting on plumed seeds whereas atmospheric turbulence is a determinant factor to transport the seeds to distances beyond 200 meters as well as to introduce random variability in the seed dispersal process. Such variability was added to the model through the application of an Inverse Fast Fourier Transform to wind velocity components energy spectra based on boundary-layer meteorology theory and estimated from micrometeorological parameters produced by the WRF model. Seasonal and annual wind means were obtained from the surface wind data simulated by WRF for Ponta Grossa. The mean wind direction is assumed to be the most probable direction of bromeliad seed trajectory. Moreover, the atmospheric turbulence effect and dispersal distances were analyzed in order to identify likely regions of infestation around Ponta Grossa urban area. It is important to mention that this model could be applied to any species and local as long as seed’s biological data and meteorological data for the region of interest are available.

Keywords: atmospheric turbulence, bromeliad, numerical model, seed dispersal, terminal velocity, wind

Procedia PDF Downloads 141
147 Air–Water Two-Phase Flow Patterns in PEMFC Microchannels

Authors: Ibrahim Rassoul, A. Serir, E-K. Si Ahmed, J. Legrand

Abstract:

The acronym PEM refers to Proton Exchange Membrane or alternatively Polymer Electrolyte Membrane. Due to its high efficiency, low operating temperature (30–80 °C), and rapid evolution over the past decade, PEMFCs are increasingly emerging as a viable alternative clean power source for automobile and stationary applications. Before PEMFCs can be employed to power automobiles and homes, several key technical challenges must be properly addressed. One technical challenge is elucidating the mechanisms underlying water transport in and removal from PEMFCs. On one hand, sufficient water is needed in the polymer electrolyte membrane or PEM to maintain sufficiently high proton conductivity. On the other hand, too much liquid water present in the cathode can cause “flooding” (that is, pore space is filled with excessive liquid water) and hinder the transport of the oxygen reactant from the gas flow channel (GFC) to the three-phase reaction sites. The experimental transparent fuel cell used in this work was designed to represent actual full scale of fuel cell geometry. According to the operating conditions, a number of flow regimes may appear in the microchannel: droplet flow, blockage water liquid bridge /plug (concave and convex forms), slug/plug flow and film flow. Some of flow patterns are new, while others have been already observed in PEMFC microchannels. An algorithm in MATLAB was developed to automatically determine the flow structure (e.g. slug, droplet, plug, and film) of detected liquid water in the test microchannels and yield information pertaining to the distribution of water among the different flow structures. A video processing algorithm was developed to automatically detect dynamic and static liquid water present in the gas channels and generate relevant quantitative information. The potential benefit of this software allows the user to obtain a more precise and systematic way to obtain measurements from images of small objects. The void fractions are also determined based on images analysis. The aim of this work is to provide a comprehensive characterization of two-phase flow in an operating fuel cell which can be used towards the optimization of water management and informs design guidelines for gas delivery microchannels for fuel cells and its essential in the design and control of diverse applications. The approach will combine numerical modeling with experimental visualization and measurements.

Keywords: polymer electrolyte fuel cell, air-water two phase flow, gas diffusion layer, microchannels, advancing contact angle, receding contact angle, void fraction, surface tension, image processing

Procedia PDF Downloads 312