Search results for: optimize controller
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2082

Search results for: optimize controller

1152 Phytochemical and Antioxidant Activity Test of Water Fraction Extract of Sisik Naga (Drymoglossum piloselloides) Leaves

Authors: Afifah Nur Aini, Elsa Mega Suryani, Betty Lukiaty

Abstract:

Drymoglossum piloselloides or more commonly known as sisik naga fern is a member of Polipodiaceae Family that is abundant and widely distributed in nature. That being said, there hasn’t been many studies reporting about the benefits of this fern. The aim of this study was to find out the active compounds and antioxidant activity of water fraction extract of sisik naga leaves. The study will be able to optimize the use of this fern in the future. In this study, phytochemical test was done qualitatively by using Mayer, Dragendorff and Wagner reagent for alkaloid test; FeCl3 for phenolic test; Shinoda test for flavonoid; Liebermann-Burchard test for triterprnoid and Forth test for saponin. Antioxidant activity test was done by using 20D spectronic spectrophotometer to determine the percentage of DPPH free radical inhibition. The results showed that water fraction extract of sisik naga leaves contain phenolic and IC50 = 5.44 μg/ml. This means that sisik naga leaves can be used as an antioxidant.

Keywords: antioxidant activity test, dpph, phytochemical test, drymoglossum piloselloides

Procedia PDF Downloads 911
1151 Design of a Vehicle Door Structure Based on Finite Element Method

Authors: Tawanda Mushiri, Charles Mbohwa

Abstract:

The performance of door assembly is very significant for the vehicle design. In the present paper, the finite element method is used in the development processes of the door assembly. The stiffness, strength, modal characteristic, and anti-extrusion of a newly developed passenger vehicle door assembly are calculated and evaluated by several finite element analysis commercial software. The structural problems discovered by FE analysis have been modified and finally achieved the expected door structure performance target of this new vehicle. The issue in focus is to predict the performance of the door assembly by powerful finite element analysis software, and optimize the structure to meet the design targets. It is observed that this method can be used to forecast the performance of vehicle door efficiently when it’s designed. In order to reduce lead time and cost in the product development of vehicles more development will be made virtually.

Keywords: vehicle door, structure, strength, stiffness, modal characteristic, anti-extrusion, Finite Element Method

Procedia PDF Downloads 430
1150 Multiobjective Optimization of Wastwater Treatment by Electrochemical Process

Authors: Malek Bendjaballah, Hacina Saidi, Sarra Hamidoud

Abstract:

The aim of this study is to model and optimize the performance of a new electrocoagulation (E.C) process for the treatment of wastewater as well as the energy consumption in order to extrapolate it to the industrial scale. Through judicious application of an experimental design (DOE), it has been possible to evaluate the individual effects and interactions that have a significant influence on both objective functions (maximizing efficiency and minimizing energy consumption) by using aluminum electrodes as sacrificial anode. Preliminary experiments have shown that the pH of the medium, the applied potential and the treatment time with E.C are the main parameters. A factorial design 33 has been adopted to model performance and energy consumption. Under optimal conditions, the pollution reduction efficiency is 93%, combined with a minimum energy consumption of 2.60.10-3 kWh / mg-COD. The potential or current applied and the processing time and their interaction were the most influential parameters in the mathematical models obtained. The results of the modeling were also correlated with the experimental ones. The results offer promising opportunities to develop a clean process and inexpensive technology to eliminate or reduce wastewater,

Keywords: electrocoagulation, green process, experimental design, optimization

Procedia PDF Downloads 97
1149 Numerical Modeling of Flow in USBR II Stilling Basin with End Adverse Slope

Authors: Hamidreza Babaali, Alireza Mojtahedi, Nasim Soori, Saba Soori

Abstract:

Hydraulic jump is one of the effective ways of energy dissipation in stilling basins that the ‎energy is highly dissipated by jumping. Adverse slope surface at the end stilling basin is ‎caused to increase energy dissipation and stability of the hydraulic jump. In this study, the adverse slope ‎has been added to end of United States Bureau of Reclamation (USBR) II stilling basin in hydraulic model of Nazloochay dam with scale 1:40, and flow simulated into stilling basin using Flow-3D ‎software. The numerical model is verified by experimental data of water depth in ‎stilling basin. Then, the parameters of water level profile, Froude Number, pressure, air ‎entrainment and turbulent dissipation investigated for discharging 300 m3/s using K-Ɛ and Re-Normalization Group (RNG) turbulence ‎models. The results showed a good agreement between numerical and experimental model‎ as ‎numerical model can be used to optimize of stilling basins.‎

Keywords: experimental and numerical modelling, end adverse slope, flow ‎parameters, USBR II stilling basin

Procedia PDF Downloads 180
1148 Sliding Mode Control of Variable Speed Wind Energy Conversion Systems

Authors: Zine Souhila Rached, Mazari Benyounes Bouzid, Mohamed Amine, Allaoui Tayeb

Abstract:

Wind energy has many advantages, it does not pollute and it is an inexhaustible source. However, its high cost is a major constraint, especially on the less windy sites. The purpose of wind energy systems is to maximize energy efficiency, and extract maximum power from the wind speed. In other words, having a power coefficient is maximum and therefore the maximum power point tracking. In this case, the MPPT control becomes important.To realize this control, strategy conventional proportional and integral (PI) controller is usually used. However, this strategy cannot achieve better performance. This paper proposes a robust control of a turbine which optimizes its production, that is improve the quality and energy efficiency, namely, a strategy of sliding mode control. The proposed sliding mode control strategy presents attractive features such as robustness to parametric uncertainties of the turbine; the proposed sliding mode control approach has been simulated on three-blade wind turbine. The simulation result under Matlab\Simulink has validated the performance of the proposed MPPT strategy.

Keywords: wind turbine, maximum power point tracking, sliding mode, energy conversion systems

Procedia PDF Downloads 611
1147 A Novel Meta-Heuristic Algorithm Based on Cloud Theory for Redundancy Allocation Problem under Realistic Condition

Authors: H. Mousavi, M. Sharifi, H. Pourvaziri

Abstract:

Redundancy Allocation Problem (RAP) is a well-known mathematical problem for modeling series-parallel systems. It is a combinatorial optimization problem which focuses on determining an optimal assignment of components in a system design. In this paper, to be more practical, we have considered the problem of redundancy allocation of series system with interval valued reliability of components. Therefore, during the search process, the reliabilities of the components are considered as a stochastic variable with a lower and upper bounds. In order to optimize the problem, we proposed a simulated annealing based on cloud theory (CBSAA). Also, the Monte Carlo simulation (MCS) is embedded to the CBSAA to handle the random variable components’ reliability. This novel approach has been investigated by numerical examples and the experimental results have shown that the CBSAA combining MCS is an efficient tool to solve the RAP of systems with interval-valued component reliabilities.

Keywords: redundancy allocation problem, simulated annealing, cloud theory, monte carlo simulation

Procedia PDF Downloads 413
1146 Physical Verification Flow on Multiple Foundries

Authors: Rohaya Abdul Wahab, Raja Mohd Fuad Tengku Aziz, Nazaliza Othman, Sharifah Saleh, Nabihah Razali, Muhammad Al Baqir Zinal Abidin, Md Hanif Md Nasir

Abstract:

This paper will discuss how we optimize our physical verification flow in our IC Design Department having various rule decks from multiple foundries. Our ultimate goal is to achieve faster time to tape-out and avoid schedule delay. Currently the physical verification runtimes and memory usage have drastically increased with the increasing number of design rules, design complexity and the size of the chips to be verified. To manage design violations, we use a number of solutions to reduce the amount of violations needed to be checked by physical verification engineers. The most important functions in physical verifications are DRC (design rule check), LVS (layout vs. schematic) and XRC (extraction). Since we have a multiple number of foundries for our design tape-outs, we need a flow that improve the overall turnaround time and ease of use of the physical verification process. The demand for fast turnaround time is even more critical since the physical design is the last stage before sending the layout to the foundries.

Keywords: physical verification, DRC, LVS, XRC, flow, foundry, runset

Procedia PDF Downloads 655
1145 Mutual Information Based Image Registration of Satellite Images Using PSO-GA Hybrid Algorithm

Authors: Dipti Patra, Guguloth Uma, Smita Pradhan

Abstract:

Registration is a fundamental task in image processing. It is used to transform different sets of data into one coordinate system, where data are acquired from different times, different viewing angles, and/or different sensors. The registration geometrically aligns two images (the reference and target images). Registration techniques are used in satellite images and it is important in order to be able to compare or integrate the data obtained from these different measurements. In this work, mutual information is considered as a similarity metric for registration of satellite images. The transformation is assumed to be a rigid transformation. An attempt has been made here to optimize the transformation function. The proposed image registration technique hybrid PSO-GA incorporates the notion of Particle Swarm Optimization and Genetic Algorithm and is used for finding the best optimum values of transformation parameters. The performance comparision obtained with the experiments on satellite images found that the proposed hybrid PSO-GA algorithm outperforms the other algorithms in terms of mutual information and registration accuracy.

Keywords: image registration, genetic algorithm, particle swarm optimization, hybrid PSO-GA algorithm and mutual information

Procedia PDF Downloads 409
1144 Power Transformer Risk-Based Maintenance by Optimization of Transformer Condition and Transformer Importance

Authors: Kitti Leangkrua

Abstract:

This paper presents a risk-based maintenance strategy of a power transformer in order to optimize operating and maintenance costs. The methodology involves the study and preparation of a database for the collection the technical data and test data of a power transformer. An evaluation of the overall condition of each transformer is performed by a program developed as a result of the measured results; in addition, the calculation of the main equipment separation to the overall condition of the transformer (% HI) and the criteria for evaluating the importance (% ImI) of each location where the transformer is installed. The condition assessment is performed by analysis test data such as electrical test, insulating oil test and visual inspection. The condition of the power transformer will be classified from very poor to very good condition. The importance is evaluated from load criticality, importance of load and failure consequence. The risk matrix is developed for evaluating the risk of each power transformer. The high risk power transformer will be focused firstly. The computerized program is developed for practical use, and the maintenance strategy of a power transformer can be effectively managed.

Keywords: asset management, risk-based maintenance, power transformer, health index

Procedia PDF Downloads 307
1143 Direct Organogenesis of Begonia Rex cv. DS-EYWA, An Unique Rare Cultivar, via Thin Cell Layering (TCL) Technique

Authors: Mahboubeh Davoudi Pahnekolayi

Abstract:

Begonia rex cv. DS-EYWA is a rare, unique cultivar of begonia rex with curly colorful leaves. Optimization of an in vitro efficient regeneration protocol by focusing on transverse Thin Cell Layer (tTCL) petiole explants for high-scale production of such a beautiful cultivar was considered as our main purpose in this experiment. Thus, various concentrations of Plant Growth Regulators (PGRs) including 6-Benzylaminopurine (BAP), Thidiazuron (TDY), and –Naphthaleneacetic Acid (NAA), were selected in a Completely Randomized Design (CRD) to establish and optimize the direct organogenesis efficiency of this cultivar. Cultivation of 1 mm tTCL petiole explants in noted treatments showed that 1.5 mgl-1 BAP + 0.5 mgl-1 NAA can induce the highest number of direct regenerated shoots and lower concentration of BAP (0.5 mgl-1) can be suggested for shoot elongation before rooting stage. Elongated shoots were successfully rooted in MS free basal medium and acclimatized in 1:1 peat moss: perlite sterilized pot mixture.

Keywords: begonia rare cultivar, direct organogenesis, explant type, regeneration, thin cell layering (TCL)

Procedia PDF Downloads 76
1142 Massively-Parallel Bit-Serial Neural Networks for Fast Epilepsy Diagnosis: A Feasibility Study

Authors: Si Mon Kueh, Tom J. Kazmierski

Abstract:

There are about 1% of the world population suffering from the hidden disability known as epilepsy and major developing countries are not fully equipped to counter this problem. In order to reduce the inconvenience and danger of epilepsy, different methods have been researched by using a artificial neural network (ANN) classification to distinguish epileptic waveforms from normal brain waveforms. This paper outlines the aim of achieving massive ANN parallelization through a dedicated hardware using bit-serial processing. The design of this bit-serial Neural Processing Element (NPE) is presented which implements the functionality of a complete neuron using variable accuracy. The proposed design has been tested taking into consideration non-idealities of a hardware ANN. The NPE consists of a bit-serial multiplier which uses only 16 logic elements on an Altera Cyclone IV FPGA and a bit-serial ALU as well as a look-up table. Arrays of NPEs can be driven by a single controller which executes the neural processing algorithm. In conclusion, the proposed compact NPE design allows the construction of complex hardware ANNs that can be implemented in a portable equipment that suits the needs of a single epileptic patient in his or her daily activities to predict the occurrences of impending tonic conic seizures.

Keywords: Artificial Neural Networks (ANN), bit-serial neural processor, FPGA, Neural Processing Element (NPE)

Procedia PDF Downloads 324
1141 Investigation of the Multiaxial Pedicle Screw Tulip Design Using Finite Element Analysis

Authors: S. Daqiqeh Rezaei, S. Mohajerzadeh, M. R. Sharifi

Abstract:

Pedicle screws are used to stabilize vertebrae and treat several types of spinal diseases and injuries. Multiaxial pedicle screws are a type of pedicle screw that increase surgical versatility, but they also increase design complexity. Failure of multiaxial pedicle screws caused by static loading, dynamic loading and fatigue can lead to irreparable damage to the patient. Inappropriate deformation of the multiaxial pedicle screw tulip can cause system failure. Investigation of deformation and stress in these tulips can be employed to optimize multiaxial pedicle screw design. The sensitivity of this matter necessitates precise analyzing and modeling of pedicle screws. In this work, three commercial multiaxial pedicle screw tulips and a newly designed tulip are investigated using finite element analysis. Employing video measuring machine (VMM), tulips are modeled. Afterwards, utilizing ANSYS, static analysis is performed on these models. In the end, stresses and displacements of the models are compared.

Keywords: pedicle screw, multiaxial pedicle screw, finite element analysis, static analysis

Procedia PDF Downloads 370
1140 The Public Law Studies: Relationship Between Accountability, Environmental Education and Smart Cities

Authors: Aline Alves Bandeira, Luís Pedro Lima, Maria Cecília de Paula Silva, Paulo Henrique de Viveiros Tavares

Abstract:

Nowadays, the study of public policies regarding management efficiency is essential. Public policies are about what governments do or do not do, being an area that has grown worldwide, contributing through the knowledge of technologies and methodologies that monitor and evaluate the performance of public administrators. The information published on official government websites needs to provide for transparency and responsiveness of managers. Thus, transparency is a primordial factor for the execution of Accountability, providing, in this way, services to the citizen with the expansion of transparent, efficient, democratic information and that value administrative eco-efficiency. The ecologically balanced management of a Smart City must optimize environmental education, building a fairer society, which brings about equality in the use of quality environmental resources. Smart Cities add value in the construction of public management, enabling interaction between people, enhancing environmental education and the practical applicability of administrative eco-efficiency, fostering economic development and improving the quality of life.

Keywords: accountability, environmental education, new public administration, smart cities

Procedia PDF Downloads 129
1139 Analysis of Reliability of Mining Shovel Using Weibull Model

Authors: Anurag Savarnya

Abstract:

The reliability of the various parts of electric mining shovel has been assessed through the application of Weibull Model. The study was initiated to find reliability of components of electric mining shovel. The paper aims to optimize the reliability of components and increase the life cycle of component. A multilevel decomposition of the electric mining shovel was done and maintenance records were used to evaluate the failure data and appropriate system characterization was done to model the system in terms of reasonable number of components. The approach used develops a mathematical model to assess the reliability of the electric mining shovel components. The model can be used to predict reliability of components of the hydraulic mining shovel and system performance. Reliability is an inherent attribute to a system. When the life-cycle costs of a system are being analyzed, reliability plays an important role as a major driver of these costs and has considerable influence on system performance. It is an iterative process that begins with specification of reliability goals consistent with cost and performance objectives. The data were collected from an Indian open cast coal mine and the reliability of various components of the electric mining shovel has been assessed by following a Weibull Model.

Keywords: reliability, Weibull model, electric mining shovel

Procedia PDF Downloads 515
1138 Reduce of the Consumption of Industrial Kilns a Pottery Kiln as Example, Recovery of Lost Energy Using a System of Heat Exchangers and Modeling of Heat Transfer Through the Walls of the Kiln

Authors: Maha Bakkari, Fatiha Lemmeni, Rachid Tadili

Abstract:

In this work, we present some characteristics of the furnace studied, its operating principle and the experimental measurements of the evolutions of the temperatures inside and outside the walls of the This work deals with the problem of energy consumption of pottery kilns whose energy consumption is relatively too high. In this work, we determined the sources of energy loss by studying the heat transfer of a pottery furnace, we proposed a recovery system to reduce energy consumption, and then we developed a numerical model modeling the transfers through the walls of the furnace and to optimize the insulation (reduce heat losses) by testing multiple insulators. The recovery and reuse of energy recovered by the recovery system will present a significant gain in energy consumption of the oven and cooking time. This research is one of the solutions that helps reduce the greenhouse effect of the planet earth, a problem that worries the world.

Keywords: recovery lost energy, energy efficiency, modeling, heat transfer

Procedia PDF Downloads 88
1137 Implementation of State-Space and Super-Element Techniques for the Modeling and Control of Smart Structures with Damping Characteristics

Authors: Nader Ghareeb, Rüdiger Schmidt

Abstract:

Minimizing the weight in flexible structures means reducing material and costs as well. However, these structures could become prone to vibrations. Attenuating these vibrations has become a pivotal engineering problem that shifted the focus of many research endeavors. One technique to do that is to design and implement an active control system. This system is mainly composed of a vibrating structure, a sensor to perceive the vibrations, an actuator to counteract the influence of disturbances, and finally a controller to generate the appropriate control signals. In this work, two different techniques are explored to create two different mathematical models of an active control system. The first model is a finite element model with a reduced number of nodes and it is called a super-element. The second model is in the form of state-space representation, i.e. a set of partial differential equations. The damping coefficients are calculated and incorporated into both models. The effectiveness of these models is demonstrated when the system is excited by its first natural frequency and an active control strategy is developed and implemented to attenuate the resulting vibrations. Results from both modeling techniques are presented and compared.

Keywords: damping coefficients, finite element analysis, super-element, state-space model

Procedia PDF Downloads 321
1136 The Fabrication of Scintillator Column by Hydraulic Pressure Injection Method

Authors: Chien Chon Chen, Chun Mei Chu, Chuan Ju Wang, Chih Yuan Chen, Ker Jer Huang

Abstract:

Cesiumiodide with Na doping (CsI(Na)) solution or melt is easily forming three- dimension dendrites on the free surface. The defects or bobbles form inside the CsI(Na) during the solution or melt solidification. The defects or bobbles can further effect the x-ray path in the CsI(Na) crystal and decrease the scintillation characteristics of CsI(Na). In order to enhance the CsI(Na) scintillated property we made single crystal of CsI(Na) column in the anodic aluminum oxide (AAO) template by hydraulic pressure injection method. It is interesting that when CsI(Na) melt is confined in the small AAO channels, the column grow as stable single column without any dendrites. The high aspect ratio (100~10000) of AAO and nano to sub-micron channel structure which is a suitable template for single of crystal CsI(Na) formation. In this work, a new low-cost approach to fabricate scintillator crystals using anodic aluminum oxide (AAO) rather than Si is reported, which can produce scintillator crystals with a wide range of controllable size to optimize their performance in X-ray detection.

Keywords: cesiumiodide, AAO, scintillator, crystal, X-ray

Procedia PDF Downloads 463
1135 Optimization of Pretreatment Process of Napier Grass for Improved Sugar Yield

Authors: Shashikant Kumar, Chandraraj K.

Abstract:

Perennial grasses have presented interesting choices in the current demand for renewable and sustainable energy sources to alleviate the load of the global energy problem. The perennial grass Napier grass (Pennisetum purpureum Schumach) is a promising feedstock for the production of cellulosic ethanol. The conversion of biomass into glucose and xylose is a crucial stage in the production of bioethanol, and it necessitates optimal pretreatment. Alkali treatment, among the several pretreatments available, effectively reduces lignin concentration and crystallinity of cellulose. Response surface methodology was used to optimize the alkali pretreatment of Napier grass for maximal reducing sugar production. The combined effects of three independent variables, viz. sodium hydroxide concentration, temperature, and reaction time, were studied. A second-order polynomial equation was used to fit the observed data. Maximum reducing sugar (590.54 mg/g) was obtained under the following conditions: 1.6 % sodium hydroxide, a reaction period of 30 min., and 120˚C. The results showed that Napier grass is a desirable feedstock for bioethanol production.

Keywords: Napier grass, optimization, pretreatment, sodium hydroxide

Procedia PDF Downloads 507
1134 Design Modification in CNC Milling Machine to Reduce the Weight of Structure

Authors: Harshkumar K. Desai, Anuj K. Desai, Jay P. Patel, Snehal V. Trivedi, Yogendrasinh Parmar

Abstract:

The need of continuous improvement in a product or process in this era of global competition leads to apply value engineering for functional and aesthetic improvement in consideration with economic aspect too. Solar industries located at G.I.D.C., Makarpura, Vadodara, Gujarat, India; a manufacturer of variety of CNC Machines had a challenge to analyze the structural design of column, base, carriage and table of CNC Milling Machine in the account of reduction of overall weight of a machine without affecting the rigidity and accuracy at the time of operation. The identified task is the first attempt to validate and optimize the proposed design of ribbed structure statically using advanced modeling and analysis tools in a systematic way. Results of stress and deformation obtained using analysis software are validated with theoretical analysis and found quite satisfactory. Such optimized results offer a weight reduction of the final assembly which is desired by manufacturers in favor of reduction of material cost, processing cost and handling cost finally.

Keywords: CNC milling machine, optimization, finite element analysis (FEA), weight reduction

Procedia PDF Downloads 277
1133 Coupling Time-Domain Analysis for Dynamic Positioning during S-Lay Installation

Authors: Sun Li-Ping, Zhu Jian-Xun, Liu Sheng-Nan

Abstract:

In order to study the performance of dynamic positioning system during S-lay operations, dynamic positioning system is simulated with the hull-stinger-pipe coupling effect. The roller of stinger is simulated by the generalized elastic contact theory. The stinger is composed of Morrison members. Force on pipe is calculated by lumped mass method. Time domain of fully coupled barge model is analyzed combining with PID controller, Kalman filter and allocation of thrust using Sequential Quadratic Programming method. It is also analyzed that the effect of hull wave frequency motion on pipe-stinger coupling force and dynamic positioning system. Besides, it is studied that how S-lay operations affect the dynamic positioning accuracy. The simulation results are proved to be available by checking pipe stress with API criterion. The effect of heave and yaw motion cannot be ignored on hull-stinger-pipe coupling force and dynamic positioning system. It is important to decrease the barge’s pitch motion and lay pipe in head sea in order to improve safety of the S-lay installation and dynamic positioning.

Keywords: S-lay operation, dynamic positioning, coupling motion, time domain, allocation of thrust

Procedia PDF Downloads 466
1132 Comprehensive Machine Learning-Based Glucose Sensing from Near-Infrared Spectra

Authors: Bitewulign Mekonnen

Abstract:

Context: This scientific paper focuses on the use of near-infrared (NIR) spectroscopy to determine glucose concentration in aqueous solutions accurately and rapidly. The study compares six different machine learning methods for predicting glucose concentration and also explores the development of a deep learning model for classifying NIR spectra. The objective is to optimize the detection model and improve the accuracy of glucose prediction. This research is important because it provides a comprehensive analysis of various machine-learning techniques for estimating aqueous glucose concentrations. Research Aim: The aim of this study is to compare and evaluate different machine-learning methods for predicting glucose concentration from NIR spectra. Additionally, the study aims to develop and assess a deep-learning model for classifying NIR spectra. Methodology: The research methodology involves the use of machine learning and deep learning techniques. Six machine learning regression models, including support vector machine regression, partial least squares regression, extra tree regression, random forest regression, extreme gradient boosting, and principal component analysis-neural network, are employed to predict glucose concentration. The NIR spectra data is randomly divided into train and test sets, and the process is repeated ten times to increase generalization ability. In addition, a convolutional neural network is developed for classifying NIR spectra. Findings: The study reveals that the SVMR, ETR, and PCA-NN models exhibit excellent performance in predicting glucose concentration, with correlation coefficients (R) > 0.99 and determination coefficients (R²)> 0.985. The deep learning model achieves high macro-averaging scores for precision, recall, and F1-measure. These findings demonstrate the effectiveness of machine learning and deep learning methods in optimizing the detection model and improving glucose prediction accuracy. Theoretical Importance: This research contributes to the field by providing a comprehensive analysis of various machine-learning techniques for estimating glucose concentrations from NIR spectra. It also explores the use of deep learning for the classification of indistinguishable NIR spectra. The findings highlight the potential of machine learning and deep learning in enhancing the prediction accuracy of glucose-relevant features. Data Collection and Analysis Procedures: The NIR spectra and corresponding references for glucose concentration are measured in increments of 20 mg/dl. The data is randomly divided into train and test sets, and the models are evaluated using regression analysis and classification metrics. The performance of each model is assessed based on correlation coefficients, determination coefficients, precision, recall, and F1-measure. Question Addressed: The study addresses the question of whether machine learning and deep learning methods can optimize the detection model and improve the accuracy of glucose prediction from NIR spectra. Conclusion: The research demonstrates that machine learning and deep learning methods can effectively predict glucose concentration from NIR spectra. The SVMR, ETR, and PCA-NN models exhibit superior performance, while the deep learning model achieves high classification scores. These findings suggest that machine learning and deep learning techniques can be used to improve the prediction accuracy of glucose-relevant features. Further research is needed to explore their clinical utility in analyzing complex matrices, such as blood glucose levels.

Keywords: machine learning, signal processing, near-infrared spectroscopy, support vector machine, neural network

Procedia PDF Downloads 95
1131 Wear Performance of Stellite 21 Cladded Overlay on Aisi 304L

Authors: Sandeep Singh Sandhua, Karanvir Singh Ghuman, Arun Kumar

Abstract:

Stellite 21 is cobalt based super alloy used in improving the wear performance of stainless steel engineering components subjected to harsh environmental conditions. This piece of research focuses on the wear analysis of satellite 21 cladded on AISI 304 L substrate using SMAW process. Bead on plate experiments were carried out by varying current and electrode manipulation techniques to optimize the dilution and microhardness. 80 Amp current and weaving technique was found to be optimum set of parameters for overlaying which were further used for multipass multilayer cladding of AISI 304 L substrate. The wear performance was examined on pin on dics wear testing machine under room temperature conditions. The results from this study show that Stellite 21 overlays show a significant improvement in the frictional wear resistance after TIG remelting. It is also established that low dilution procedures are important in controlling the metallurgical composition of these overlays which has a consequent effect in enhancing hardness and wear resistance of these overlays.

Keywords: surfacing, stellite 21, dilution, SMAW, frictional wear, micro-hardness

Procedia PDF Downloads 251
1130 Robust Fractional Order Controllers for Minimum and Non-Minimum Phase Systems – Studies on Design and Development

Authors: Anand Kishore Kola, G. Uday Bhaskar Babu, Kotturi Ajay Kumar

Abstract:

The modern dynamic systems used in industries are complex in nature and hence the fractional order controllers have been contemplated as a fresh approach to control system design that takes the complexity into account. Traditional integer order controllers use integer derivatives and integrals to control systems, whereas fractional order controllers use fractional derivatives and integrals to regulate memory and non-local behavior. This study provides a method based on the maximumsensitivity (Ms) methodology to discover all resilient fractional filter Internal Model Control - proportional integral derivative (IMC-PID) controllers that stabilize the closed-loop system and deliver the highest performance for a time delay system with a Smith predictor configuration. Additionally, it helps to enhance the range of PID controllers that are used to stabilize the system. This study also evaluates the effectiveness of the suggested controller approach for minimum phase system in comparison to those currently in use which are based on Integral of Absolute Error (IAE) and Total Variation (TV).

Keywords: modern dynamic systems, fractional order controllers, maximum-sensitivity, IMC-PID controllers, Smith predictor, IAE and TV

Procedia PDF Downloads 66
1129 Parametric Optimization of Wire Electric Discharge Machining (WEDM) for Aluminium Metal Matrix Composites

Authors: G. Rajyalakhmi, C. Karthik, Gerson Desouza, Rimmie Duraisamy

Abstract:

In this present work, metal matrix composites with combination of aluminium with (Sic/Al2O3) were fabricated using stir casting technique. The objective of the present work is to optimize the process parameters of Wire Electric Discharge Machining (WEDM) composites. Pulse ON Time, Pulse OFF Time, wire feed and sensitivity are considered as input process parameters with responses Material Removal Rate (MRR), Surface Roughness (SR) for optimization of WEDM process. Taguchi L18 Orthogonal Array (OA) is used for experimentation. Grey Relational Analysis (GRA) is coupled with Taguchi technique for multiple process parameters optimization. ANOVA (Analysis of Variance) is used for finding the impact of process parameters individually. Finally confirmation experiments were carried out to validate the predicted results.

Keywords: parametric optimization, particulate reinforced metal matrix composites, Taguchi-grey relational analysis, WEDM

Procedia PDF Downloads 582
1128 The Bernstein Expansion for Exponentials in Taylor Functions: Approximation of Fixed Points

Authors: Tareq Hamadneh, Jochen Merker, Hassan Al-Zoubi

Abstract:

Bernstein's expansion for exponentials in Taylor functions provides lower and upper optimization values for the range of its original function. these values converge to the original functions if the degree is elevated or the domain subdivided. Taylor polynomial can be applied so that the exponential is a polynomial of finite degree over a given domain. Bernstein's basis has two main properties: its sum equals 1, and positive for all x 2 (0; 1). In this work, we prove the existence of fixed points for exponential functions in a given domain using the optimization values of Bernstein. The Bernstein basis of finite degree T over a domain D is defined non-negatively. Any polynomial p of degree t can be expanded into the Bernstein form of maximum degree t ≤ T, where we only need to compute the coefficients of Bernstein in order to optimize the original polynomial. The main property is that p(x) is approximated by the minimum and maximum Bernstein coefficients (Bernstein bound). If the bound is contained in the given domain, then we say that p(x) has fixed points in the same domain.

Keywords: Bernstein polynomials, Stability of control functions, numerical optimization, Taylor function

Procedia PDF Downloads 135
1127 Modeling and Optimization of Performance of Four Stroke Spark Ignition Injector Engine

Authors: A. A. Okafor, C. H. Achebe, J. L. Chukwuneke, C. G. Ozoegwu

Abstract:

The performance of an engine whose basic design parameters are known can be predicted with the assistance of simulation programs into the less time, cost and near value of actual. This paper presents a comprehensive mathematical model of the performance parameters of four stroke spark ignition engine. The essence of this research work is to develop a mathematical model for the analysis of engine performance parameters of four stroke spark ignition engine before embarking on full scale construction, this will ensure that only optimal parameters are in the design and development of an engine and also allow to check and develop the design of the engine and it’s operation alternatives in an inexpensive way and less time, instead of using experimental method which requires costly research test beds. To achieve this, equations were derived which describe the performance parameters (sfc, thermal efficiency, mep and A/F). The equations were used to simulate and optimize the engine performance of the model for various engine speeds. The optimal values obtained for the developed bivariate mathematical models are: sfc is 0.2833kg/kwh, efficiency is 28.77% and a/f is 20.75.

Keywords: bivariate models, engine performance, injector engine, optimization, performance parameters, simulation, spark ignition

Procedia PDF Downloads 327
1126 Health Monitoring and Failure Detection of Electronic and Structural Components in Small Unmanned Aerial Vehicles

Authors: Gopi Kandaswamy, P. Balamuralidhar

Abstract:

Fully autonomous small Unmanned Aerial Vehicles (UAVs) are increasingly being used in many commercial applications. Although a lot of research has been done to develop safe, reliable and durable UAVs, accidents due to electronic and structural failures are not uncommon and pose a huge safety risk to the UAV operators and the public. Hence there is a strong need for an automated health monitoring system for UAVs with a view to minimizing mission failures thereby increasing safety. This paper describes our approach to monitoring the electronic and structural components in a small UAV without the need for additional sensors to do the monitoring. Our system monitors data from four sources; sensors, navigation algorithms, control inputs from the operator and flight controller outputs. It then does statistical analysis on the data and applies a rule based engine to detect failures. This information can then be fed back into the UAV and a decision to continue or abort the mission can be taken automatically by the UAV and independent of the operator. Our system has been verified using data obtained from real flights over the past year from UAVs of various sizes that have been designed and deployed by us for various applications.

Keywords: fault detection, health monitoring, unmanned aerial vehicles, vibration analysis

Procedia PDF Downloads 263
1125 Numerical Analysis of Fire Performance of Timber Structures

Authors: Van Diem Thi, Mourad Khelifa, Mohammed El Ganaoui, Yann Rogaume

Abstract:

An efficient numerical method has been developed to incorporate the effects of heat transfer in timber panels on partition walls exposed to real building fires. The procedure has been added to the software package Abaqus/Standard as a user-defined subroutine (UMATHT) and has been verified using both time-and spatially dependent heat fluxes in two- and three-dimensional problems. The aim is to contribute to the development of simulation tools needed to assist structural engineers and fire testing laboratories in technical assessment exercises. The presented method can also be used under the developmental stages of building components to optimize performance in real fire conditions. The accuracy of the used thermal properties and the finite element models was validated by comparing the predicted results with three different available fire tests in literature. It was found that the model calibrated to results from standard fire conditions provided reasonable predictions of temperatures within assemblies exposed to real building fire.

Keywords: Timber panels, heat transfer, thermal properties, standard fire tests

Procedia PDF Downloads 342
1124 Simulation of Photocatalytic Degradation of Rhodamine B in Annular Photocatalytic Reactor

Authors: Jatinder Kumar, Ajay Bansal

Abstract:

Simulation of a photocatalytic reactor helps in understanding the complex behavior of the photocatalytic degradation. Simulation also aids the designing and optimization of the photocatalytic reactor. Lack of simulation strategies is a huge hindrance in the commercialization of the photocatalytic technology. With the increased performance of computational resources, and development of simulation software, computational fluid dynamics (CFD) is becoming an affordable engineering tool to simulate and optimize reactor designs. In the present paper, a CFD (Computational fluid dynamics) model for simulating the performance of an immobilized-titanium dioxide based annular photocatalytic reactor was developed. The computational model integrates hydrodynamics, species mass transport, and chemical reaction kinetics using a commercial CFD code Fluent 6.3.26. The CFD model was based on the intrinsic kinetic parameters determined experimentally in a perfectly mixed batch reactor. Rhodamine B, a complex organic compound, was selected as a test pollutant for photocatalytic degradation. It was observed that CFD could become a valuable tool to understand and improve the photocatalytic systems.

Keywords: simulation, computational fluid dynamics (CFD), annular photocatalytic reactor, titanium dioxide

Procedia PDF Downloads 586
1123 Optimization of Production Scheduling through the Lean and Simulation Integration in Automotive Company

Authors: Guilherme Gorgulho, Carlos Roberto Camello Lima

Abstract:

Due to the competitive market in which companies are currently engaged, the constant changes require companies to react quickly regarding the variability of demand and process. The changes are caused by customers, or by demand fluctuations or variations of products, or the need to serve customers within agreed delivery taking into account the continuous search for quality and competitive prices in products. These changes end up influencing directly or indirectly the activities of the Planning and Production Control (PPC), which does business in strategic, tactical and operational levels of production systems. One area of concern for organizations is in the short term (operational level), because this planning stage any error or divergence will cause waste and impact on the delivery of products on time to customers. Thus, this study aims to optimize the efficiency of production scheduling, using different sequencing strategies in an automotive company. Seeking to aim the proposed objective, we used the computer simulation in conjunction with lean manufacturing to build and validate the current model, and subsequently the creation of future scenarios.

Keywords: computational simulation, lean manufacturing, production scheduling, sequencing strategies

Procedia PDF Downloads 273