Search results for: handwheel angle
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1423

Search results for: handwheel angle

493 Preparation, Structure, and Properties of Hydroxyl Containing Acrylate Monomer Grafted Silk Fabrics by HRP-Catalyzed ATRP Method

Authors: Tieling Xing, Jinqiu Yang, Guoqiang Chen

Abstract:

It is environmentally friendly to use horseradish peroxidase (HRP) instead of the traditional transition metal catalyst for the catalyst of atom transfer radical polymerization (ATRP). Silk fabrics were successfully grafted with hydroxyl-containing acrylate monomer to improve its crease resistance by HRP-catalyzed ATRP method. Taking grafting yield as the evaluation index, single factor tests revealed that the optimum grafting reaction condition was as follow: monomer mass fraction 120-210%(o.w.f), HRP concentration 360-480U/mL, molar ratio of HRP to NaAsc 1:150, reaction temperature 50-60℃, reaction time 24h. Raman spectra showed hydroxyl-containing acrylate monomer were successfully grafted on silk fabrics. SEM figures indicated the surface of grafted silk became rougher, and graft copolymer was distributed evenly on the surface of silk fiber. The crease-resistant recovery property of grafted silk fabric was greatly improved, especially in wet crease recovery angle. The result showed hydroxyl-containing acrylate monomer can be successfully grafted onto silk fabric based on HRP-catalyzed ATRP method.

Keywords: atom transfer radical polymerization, catalysis, horseradish peroxidase, hydroxyl-containing acrylate monomer

Procedia PDF Downloads 151
492 Principle Components Updates via Matrix Perturbations

Authors: Aiman Elragig, Hanan Dreiwi, Dung Ly, Idriss Elmabrook

Abstract:

This paper highlights a new approach to look at online principle components analysis (OPCA). Given a data matrix X R,^m x n we characterise the online updates of its covariance as a matrix perturbation problem. Up to the principle components, it turns out that online updates of the batch PCA can be captured by symmetric matrix perturbation of the batch covariance matrix. We have shown that as n→ n0 >> 1, the batch covariance and its update become almost similar. Finally, utilize our new setup of online updates to find a bound on the angle distance of the principle components of X and its update.

Keywords: online data updates, covariance matrix, online principle component analysis, matrix perturbation

Procedia PDF Downloads 196
491 Effect of the Soil-Foundation Interface Condition in the Determination of the Resistance Domain of Rigid Shallow Foundations

Authors: Nivine Abbas, Sergio Lagomarsino, Serena Cattari

Abstract:

The resistance domain of a generally loaded rigid shallow foundation is normally represented as an interaction diagram limited by a failure surface in the three dimensional (3D) load space (N, V, M), where N is the vertical centric load component, V is the horizontal load component and M is the bending moment component. Usually, this resistance domain is constructed neglecting the foundation sliding mechanism that take place at the level of soil-foundation interface once the applied horizontal load exceeds the interface frictional resistance of the foundation. This issue is translated in the literature by the fact that the failure limit in the (2D) load space (N, V) is constructed as a parabola having an initial slope, at the center of the coordinate system, that depends, in some works, only of the soil friction angle, and in other works, has an empirical value. However, considering a given geometry of the foundation lying on a given soil type, the initial slope of the failure limit must change, for instance, when varying the roughness of the foundation surface at its interface with the soil. The present study discusses the effect of the soil-foundation interface condition on the construction of the resistance domain, and proposes a correction to be applied to the failure limit in order to overcome this effect.

Keywords: soil-foundation interface, sliding mechanism, soil shearing, resistance domain, rigid shallow foundation

Procedia PDF Downloads 460
490 Improvement of Mechanical Properties of Saline Soils by Fly Ash: Effect of Freeze-Thaw Cycles

Authors: Zhuo Cheng, Gaohang Cui, Yang Zheng, Zhiqiang-Pan

Abstract:

To explore the effect of freeze-thaw cycles on saline soil mechanical properties of fly ash, this study examined the influence of different numbers of freezing and thawing cycles, fly ash content, and moisture content of saline soil in unconfined compression tests and triaxial shear tests. With increased fly ash content, the internal friction angle, cohesion, unconfined compressive strength, and shear strength of the improved soil increased at first and then decreased. Using the Desk-Expert 8.0 software and based on significance analysis theory, the number of freeze-thaw cycles, fly ash content, water content, and the interactions between various factors on the mechanical properties of saline soil were studied. The results showed that the number of freeze-thaw cycles had a significant effect on the mechanical properties of saline soil, while the fly ash content had a weakly significant effect. At the same time, interaction between the number of freeze-thaw cycles and the water content had a significant effect on the unconfined compressive strength and the cohesion of saline soil, and the interaction between fly ash content and the number of freeze-thaw cycles only had a significant effect on the unconfined compressive strength.

Keywords: fly ash, saline soil, seasonally frozen area, significance analysis, qualitative analysis

Procedia PDF Downloads 149
489 Case-Wise Investigation of Body-Wave Propagation in a Cross-Anisotropic Soil Exhibiting Inhomogeneity along Depth

Authors: Sumit Kumar Vishawakarma, Tapas Ranjan Panihari

Abstract:

The article investigates the propagation behavior of SV-wave, SH-wave, and P-wave in a continuously inhomogeneous cross-anisotropic material, where the material properties such as Young's moduli, shear modulus, and density vary as an arbitrary continuous function of depth. In the considered model, Hook's law, strain-displacement relations along with equilibrium equations have been used to derive the governing equation. The mathematical formulation of this physical problem gives rise to an eigenvalue problem with displacement components as fundamental variables. This leads to achieving the closed-form expressions for quasi-wave velocities of SV-wave, SH-wave, and P-wave in the considered framework. These characteristics of wave propagation along with the above-stated variation have been scrutinized based on their numerical results. This parametric study reveals that wave velocity remarkably fluctuates as the magnitude of inhomogeneity parameters increases and decreases. The prominent effect has been shown depicting the dependence of wave velocity on the degree of material anisotropy. The influence of phase angle and depth of the medium has been remarkably established. The present study may facilitate the theoretical foundation and practical application in the field of earthquake source mechanisms.

Keywords: cross-anisotropic, inhomogeneity, P-wave, SH-wave, SV-wave, shear modulus, Young’s modulus

Procedia PDF Downloads 120
488 Pufferfish Skin Collagens and Their Role in Inflation

Authors: Kirti, Samanta Sekhar Khora

Abstract:

Inflation serves different purposes in different organisms and adds beauty to their behavioral attributes. Pufferfishes are also known as blowfish, swellfish, and globefish due to their remarkable ability to puff themselves up like a balloon when threatened. This ability to inflate can be correlated with anatomical features that are unique to pufferfishes. Pufferfish skin provides a rigid framework to support the body contents and a flexible covering to allow whatever changes are necessary for remarkable inflation mechanism. Skin, the outer covering of animals is made up of collagen fibers arranged in more or less ordered arrays. The ventral skin of pufferfish stretches more than dorsal skin during inflation. So, this study is of much of the interest in comparing the structure and mechanical properties of these two skin regions. The collagen fibers were found to be arranged in different ordered arrays for ventral and dorsal skin and concentration of fibers were also found to be different for these two skin parts. Scanning electron microscopy studies of the ventral skin showed a unidirectional arrangement of the collagen fibers, which provide more stretching capacity. Dorsal skin, on the other hand, has an orthogonal arrangement of fibers. This provides more stiffness to the ventral skin at the time of inflation. In this study, the possible role of collagen fibers was determined which significantly contributed to the remarkable inflation mechanism of pufferfishes.

Keywords: collagen, histology, inflation, pufferfish, scanning electron microscopy, Small-Angle X-Ray Scattering (SAXS), transmission electron microscopy

Procedia PDF Downloads 319
487 Two-Stage Launch Vehicle Trajectory Modeling for Low Earth Orbit Applications

Authors: Assem M. F. Sallam, Ah. El-S. Makled

Abstract:

This paper presents a study on the trajectory of a two stage launch vehicle. The study includes dynamic responses of motion parameters as well as the variation of angles affecting the orientation of the launch vehicle (LV). LV dynamic characteristics including state vector variation with corresponding altitude and velocity for the different LV stages separation, as well as the angle of attack and flight path angles are also discussed. A flight trajectory study for the drop zone of first stage and the jettisoning of fairing are introduced in the mathematical modeling to study their effect. To increase the accuracy of the LV model, atmospheric model is used taking into consideration geographical location and the values of solar flux related to the date and time of launch, accurate atmospheric model leads to enhancement of the calculation of Mach number, which affects the drag force over the LV. The mathematical model is implemented on MATLAB based software (Simulink). The real available experimental data are compared with results obtained from the theoretical computation model. The comparison shows good agreement, which proves the validity of the developed simulation model; the maximum error noticed was generally less than 10%, which is a result that can lead to future works and enhancement to decrease this level of error.

Keywords: launch vehicle modeling, launch vehicle trajectory, mathematical modeling, Matlab- Simulink

Procedia PDF Downloads 277
486 Design and Evaluation of Oven Type Furnace Using Earth Materials for Roasting Foods

Authors: Jeffrey Cacho, Sherwin Reyes

Abstract:

The research targeted enhancing energy utilization and reducing waste in roasting processes, particularly in Camarines Norte, where Bounty Agro Ventures Incorporated dominates through brands such as Chooks-to-Go, Uling Roaster, and Reyal. Competitors like Andok’s and Baliwag Lechon Manok also share the market. A staggering 90% of these businesses use traditional glass-type roasting furnaces fueled by wood charcoal, leading to significant energy loss and inefficiency due to suboptimal heat conservation. Only a mere 10% employ electric ovens. Many available furnaces, typically constructed from industrial materials through welding and other metal joining techniques, are not energy-efficient. Cost-prohibitive commercial options compel some micro-enterprises to fabricate their furnaces. The study proposed developing an eco-friendly, cost-effective roasting furnace with excellent heat retention. The distinct design aimed to reduce cooks' heat exposure and overall fuel consumption. The furnace features an angle bar frame, a combustion chute for fuel burning, a heat-retaining clay-walled chamber, and a top cover, all contributing to improved energy savings and user safety.

Keywords: biomass roasting furnace, heat storage, combustion chute, start-up roasting business

Procedia PDF Downloads 53
485 Meteosat Second Generation Image Compression Based on the Radon Transform and Linear Predictive Coding: Comparison and Performance

Authors: Cherifi Mehdi, Lahdir Mourad, Ameur Soltane

Abstract:

Image compression is used to reduce the number of bits required to represent an image. The Meteosat Second Generation satellite (MSG) allows the acquisition of 12 image files every 15 minutes. Which results a large databases sizes. The transform selected in the images compression should contribute to reduce the data representing the images. The Radon transform retrieves the Radon points that represent the sum of the pixels in a given angle for each direction. Linear predictive coding (LPC) with filtering provides a good decorrelation of Radon points using a Predictor constitute by the Symmetric Nearest Neighbor filter (SNN) coefficients, which result losses during decompression. Finally, Run Length Coding (RLC) gives us a high and fixed compression ratio regardless of the input image. In this paper, a novel image compression method based on the Radon transform and linear predictive coding (LPC) for MSG images is proposed. MSG image compression based on the Radon transform and the LPC provides a good compromise between compression and quality of reconstruction. A comparison of our method with other whose two based on DCT and one on DWT bi-orthogonal filtering is evaluated to show the power of the Radon transform in its resistibility against the quantization noise and to evaluate the performance of our method. Evaluation criteria like PSNR and the compression ratio allows showing the efficiency of our method of compression.

Keywords: image compression, radon transform, linear predictive coding (LPC), run lengthcoding (RLC), meteosat second generation (MSG)

Procedia PDF Downloads 422
484 Seismic Hazard Analysis for a Multi Layer Fault System: Antalya (SW Turkey) Example

Authors: Nihat Dipova, Bulent Cangir

Abstract:

This article presents the results of probabilistic seismic hazard analysis (PSHA) for Antalya (SW Turkey). South west of Turkey is characterized by large earthquakes resulting from the continental collision between the African, Arabian and Eurasian plates and crustal faults. Earthquakes around the study area are grouped into two; crustal earthquakes (D=0-50 km) and subduction zone earthquakes (50-140 km). Maximum observed magnitude of subduction earthquakes is Mw=6.0. Maximum magnitude of crustal earthquakes is Mw=6.6. Sources for crustal earthquakes are faults which are related with Isparta Angle and Cyprus Arc tectonic structures. A new earthquake catalogue for Antalya, with unified moment magnitude scale has been prepared and seismicity of the area around Antalya city has been evaluated by defining ‘a’ and ‘b’ parameters of the Gutenberg-Richter recurrence relationship. The Standard Cornell-McGuire method has been used for hazard computation utilizing CRISIS2007 software. Attenuation relationships proposed by Chiou and Youngs (2008) has been used for 0-50 km earthquakes and Youngs et. al (1997) for deep subduction earthquakes. Finally, Seismic hazard map for peak horizontal acceleration on a uniform site condition of firm rock (average shear wave velocity of about 1130 m/s) at a hazard level of 10% probability of exceedance in 50 years has been prepared.

Keywords: Antalya, peak ground acceleration, seismic hazard assessment, subduction

Procedia PDF Downloads 372
483 Investigation of Single Particle Breakage inside an Impact Mill

Authors: E. Ghasemi Ardi, K. J. Dong, A. B. Yu, R. Y. Yang

Abstract:

In current work, a numerical model based on the discrete element method (DEM) was developed which provided information about particle dynamic and impact event condition inside a laboratory scale impact mill (Fritsch). It showed that each particle mostly experiences three impacts inside the mill. While the first impact frequently happens at front surface of the rotor’s rib, the frequent location of the second impact is side surfaces of the rotor’s rib. It was also showed that while the first impact happens at small impact angle mostly varying around 35º, the second impact happens at around 70º which is close to normal impact condition. Also analyzing impact energy revealed that varying mill speed from 6000 to 14000 rpm, the ratio of first impact’s average impact energy and minimum required energy to break particle (Wₘᵢₙ) increased from 0.30 to 0.85. Moreover, it was seen that second impact poses intense impact energy on particle which can be considered as the main cause of particle splitting. Finally, obtained information from DEM simulation along with obtained data from conducted experiments was implemented in semi-empirical equations in order to find selection and breakage functions. Then, using a back-calculation approach, those parameters were used to predict the PSDs of ground particles under different impact energies. Results were compared with experiment results and showed reasonable accuracy and prediction ability.

Keywords: single particle breakage, particle dynamic, population balance model, particle size distribution, discrete element method

Procedia PDF Downloads 291
482 Study on the Non-Contact Sheet Resistance Measuring of Silver Nanowire Coated Film Using Terahertz Wave

Authors: Dong-Hyun Kim, Wan-Ho Chung, Hak-Sung Kim

Abstract:

In this work, non-destructive evaluation was conducted to measure the sheet resistance of silver nanowire coated film and find a damage of that film using terahertz (THz) wave. Pulse type THz instrument was used, and the measurement was performed under transmission and pitch-catch reflection modes with 30 degree of incidence angle. In the transmission mode, the intensity of the THz wave was gradually increased as the conductivity decreased. Meanwhile, the intensity of THz wave was decreased as the conductivity decreased in the pitch-catch reflection mode. To confirm the conductivity of the film, sheet resistance was measured by 4-point probe station. Interaction formula was drawn from a relation between the intensity and the sheet resistance. Through substituting sheet resistance to the formula and comparing the resultant value with measured maximum THz wave intensity, measurement of sheet resistance using THz wave was more suitable than that using 4-point probe station. In addition, the damage on the silver nanowire coated film was detected by applying the THz image system. Therefore, the reliability of the entire film can be also be ensured. In conclusion, real-time monitoring using the THz wave can be applied in the transparent electrodes with detecting the damaged area as well as measuring the sheet resistance.

Keywords: terahertz wave, sheet resistance, non-destructive evaluation, silver nanowire

Procedia PDF Downloads 491
481 Comparison of Double Unit Tunnel Form Building before and after Repair and Retrofit under in-Plane Cyclic Loading

Authors: S. A. Anuar, N. H. Hamid, M. H. Hashim, S. M. D. Salleh

Abstract:

This paper present the experimental work on the seismic performance of double unit tunnel form building (TFB) subjected to in-plane lateral cyclic loading. A one third scale of 3-storey double unit of TFB is tested at ±0.01%, ±0.1%, ±0.25%, ±0.5%, ±0.75% and ±1.0% drifts until the structure achieves its strength degradation. After that, the TFB is repaired and retrofitted using additional shear wall, steel angle and CFRP sheet. A similar testing approach is applied to the specimen after repair and retrofit. The crack patterns, lateral strength, stiffness, ductility and equivalent viscous damping (EVD) were analyzed and compared before and after repair and retrofit. The result indicates that the lateral strength increases by 22 in pushing direction and 27% in pulling direction. Moreover, the stiffness and ductility obtained before and after retrofit increase tremendously by 87.87% and 39.66%, respectively. Meanwhile, the energy absorption measured by equivalent viscous damping obtained after retrofit increase by 12.34% in pulling direction. It can be concluded that the proposed retrofit method is capable to increase the lateral strength capacity, stiffness and energy absorption of double unit TFB.

Keywords: tunnel form building, in-plane lateral cyclic loading, crack pattern, lateral strength, stiffness, ductility, equivalent viscous damping, repair and retrofit

Procedia PDF Downloads 354
480 Modular Harmonic Cancellation in a Multiplier High Voltage Direct Current Generator

Authors: Ahmad Zahran, Ahmed Herzallah, Ahmad Ahmad, Mahran Quraan

Abstract:

Generation of high DC voltages is necessary for testing the insulation material of high voltage AC transmission lines with long lengths. The harmonic and ripple contents of the output DC voltage supplied by high voltage DC circuits require the use of costly capacitors to smooth the output voltage after rectification. This paper proposes a new modular multiplier high voltage DC generator with embedded Cockcroft-Walton circuits that achieve a negligible harmonic and ripple contents of the output DC voltage without the need for costly filters to produce a nearly constant output voltage. In this new topology, Cockcroft-Walton modules are connected in series to produce a high DC output voltage. The modules are supplied by low input AC voltage sources that have the same magnitude and frequency and shifted from each other by a certain angle to eliminate the harmonics from the output voltage. The small ripple factor is provided by the smoothing column capacitors and the phase shifted input voltages of the cascaded modules. The constituent harmonics within each module are determined using Fourier analysis. The viability of the proposed DC generator for testing purposes and the effectiveness of the cascaded connection are confirmed by numerical simulations using MATLAB/Simulink.

Keywords: Cockcroft-Walton circuit, harmonics, ripple factor, HVDC generator

Procedia PDF Downloads 368
479 Virtual Test Model for Qualification of Knee Prosthesis

Authors: K. Zehouani, I. Oldal

Abstract:

Purpose: In the human knee joint, degenerative joint disease may happen with time. The standard treatment of this disease is the total knee replacement through prosthesis implanting. The reason lies in the fact that this phenomenon causes different material abrasion as compare to pure sliding or rolling alone. This study focuses on developing a knee prosthesis geometry, which fulfills the mechanical and kinematical requirements. Method: The MSC ADAMS program is used to describe the rotation of the human knee joint as a function of flexion, and to investigate how the flexion and rotation movement changes between the condyles of a multi-body model of the knee prosthesis as a function of flexion angle (in the functional arc of the knee (20-120º)). Moreover, the multi-body model with identical boundary conditions is constituted, and the numerical simulations are carried out using the MSC ADAMS program system. Results: It is concluded that the use of the multi-body model reduces time and cost since it does not need to manufacture the tibia and the femur as it requires for the knee prosthesis of the test machine. Moreover, without measuring or by dispensing with a test machine for the knee prosthesis geometry, approximation of the results of our model to a human knee is carried out directly. Conclusion: The pattern obtained by the multi-body model provides an insight for future experimental tests related to the rotation and flexion of the knee joint concerning the actual average and friction load.

Keywords: biomechanics, knee joint, rotation, flexion, kinematics, MSC ADAMS

Procedia PDF Downloads 144
478 Human Bone Marrow Stem Cell Behavior on 3D Printed Scaffolds as Trabecular Bone Grafts

Authors: Zeynep Busra Velioglu, Deniz Pulat, Beril Demirbakan, Burak Ozcan, Ece Bayrak, Cevat Erisken

Abstract:

Bone tissue has the ability to perform a wide array of functions including providing posture, load-bearing capacity, protection for the internal organs, initiating hematopoiesis, and maintaining the homeostasis of key electrolytes via calcium/phosphate ion storage. The most common cause for bone defects is extensive trauma and subsequent infection. Bone tissue has the self-healing capability without a scar tissue formation for the majority of the injuries. However, some may result with delayed union or fracture non-union. Such cases include reconstruction of large bone defects or cases of compromised regenerative process as a result of avascular necrosis and osteoporosis. Several surgical methods exist to treat bone defects, including Ilizarov method, Masquelete technique, growth factor stimulation, and bone replacement. Unfortunately, these are technically demanding and come with noteworthy disadvantages such as lengthy treatment duration, adverse effects on the patient’s psychology, repeated surgical procedures, and often long hospitalization times. These limitations associated with surgical techniques make bone substitutes an attractive alternative. Here, it was hypothesized that a 3D printed scaffold will mimic trabecular bone in terms of biomechanical properties and that such scaffolds will support cell attachment and survival. To test this hypothesis, this study aimed at fabricating poly(lactic acid), PLA, structures using 3D printing technology for trabecular bone defects, characterizing the scaffolds and comparing with bovine trabecular bone. Capacity of scaffolds on human bone marrow stem cell (hBMSC) attachment and survival was also evaluated. Cubes with a volume of 1 cm³ having pore sizes of 0.50, 1.00 and 1.25 mm were printed. The scaffolds/grafts were characterized in terms of porosity, contact angle, compressive mechanical properties as well cell response. Porosities of the 3D printed scaffolds were calculated based on apparent densities. For contact angles, 50 µl distilled water was dropped over the surface of scaffolds, and contact angles were measured using ‘Image J’ software. Mechanical characterization under compression was performed on scaffolds and native trabecular bone (bovine, 15 months) specimens using a universal testing machine at a rate of 0.5mm/min. hBMSCs were seeded onto the 3D printed scaffolds. After 3 days of incubation with fully supplemented Dulbecco’s modified Eagle’s medium, the cells were fixed using 2% formaldehyde and glutaraldehyde mixture. The specimens were then imaged under scanning electron microscopy. Cell proliferation was determined by using EZQuant dsDNA Quantitation kit. Fluorescence was measured using microplate reader Spectramax M2 at the excitation and emission wavelengths of 485nm and 535nm, respectively. Findings suggested that porosity of scaffolds with pore dimensions of 0.5mm, 1.0mm and 1.25mm were not affected by pore size, while contact angle and compressive modulus decreased with increasing pore size. Biomechanical characterization of trabecular bone yielded higher modulus values as compared to scaffolds with all pore sizes studied. Cells attached and survived in all surfaces, demonstrating higher proliferation on scaffolds with 1.25mm pores as compared with those of 1mm. Collectively, given lower mechanical properties of scaffolds as compared to native bone, and biocompatibility of the scaffolds, the 3D printed PLA scaffolds of this study appear as candidate substitutes for bone repair and regeneration.

Keywords: 3D printing, biomechanics, bone repair, stem cell

Procedia PDF Downloads 174
477 Self-Calibration of Fish-Eye Camera for Advanced Driver Assistance Systems

Authors: Atef Alaaeddine Sarraj, Brendan Jackman, Frank Walsh

Abstract:

Tomorrow’s car will be more automated and increasingly connected. Innovative and intuitive interfaces are essential to accompany this functional enrichment. For that, today the automotive companies are competing to offer an advanced driver assistance system (ADAS) which will be able to provide enhanced navigation, collision avoidance, intersection support and lane keeping. These vision-based functions require an accurately calibrated camera. To achieve such differentiation in ADAS requires sophisticated sensors and efficient algorithms. This paper explores the different calibration methods applicable to vehicle-mounted fish-eye cameras with arbitrary fields of view and defines the first steps towards a self-calibration method that adequately addresses ADAS requirements. In particular, we present a self-calibration method after comparing different camera calibration algorithms in the context of ADAS requirements. Our method gathers data from unknown scenes while the car is moving, estimates the camera intrinsic and extrinsic parameters and corrects the wide-angle distortion. Our solution enables continuous and real-time detection of objects, pedestrians, road markings and other cars. In contrast, other camera calibration algorithms for ADAS need pre-calibration, while the presented method calibrates the camera without prior knowledge of the scene and in real-time.

Keywords: advanced driver assistance system (ADAS), fish-eye, real-time, self-calibration

Procedia PDF Downloads 252
476 Aerodynamics and Aeroelastics Studies of Hanger Bridge with H-Beam Profile Using Wind Tunnel

Authors: Matza Gusto Andika, Malinda Sabrina, Syarie Fatunnisa

Abstract:

Aerodynamic and aeroelastics studies on the hanger bridge profile are important to analyze the aerodynamic phenomenon and Aeroelastics stability of hanger. Wind tunnel tests were conducted on a model of H-beam profile from hanger bridge. The purpose of this study is to investigate steady aerodynamic characteristics such as lift coefficient (Cl), drag coefficient (Cd), and moment coefficient (Cm) under the different angle of attack for preliminary prediction of aeroelastics stability problems. After investigation the steady aerodynamics characteristics from the model, dynamic testing is also conducted in wind tunnel to know the aeroelastics phenomenon which occurs at the H-beam hanger bridge profile. The studies show that the torsional vortex induced vibration occur when the wind speed is 7.32 m/s until 9.19 m/s with maximum amplitude occur when the wind speed is 8.41 m/s. The result of wind tunnel testing is matching to hanger vibration where occur in the field, so wind tunnel studies has successful to model the problem. In order that the H-beam profile is not good enough for the hanger bridge and need to be modified to minimize the Aeroelastics problem. The modification can be done with structure dynamics modification or aerodynamics modification.

Keywords: aerodynamics, aeroelastic, hanger bridge, h-beam profile, vortex induced vibration, wind tunnel

Procedia PDF Downloads 350
475 A CFD Study of the Performance Characteristics of Vented Cylinders as Vortex Generators

Authors: R. Kishan, R. M. Sumant, S. Suhas, Arun Mahalingam

Abstract:

This paper mainly researched on influence of vortex generator on lift coefficient and drag coefficient, when vortex generator is mounted on a flat plate. Vented cylinders were used as vortex generators which intensify vortex shedding in the wake of the vented cylinder as compared to base line circular cylinder which ensures more attached flow and increases lift force of the system. Firstly vented cylinders were analyzed in commercial CFD software which is compared with baseline cylinders for different angles of attack and further variation of lift and drag forces were studied by varying Reynolds number to account for influence of turbulence and boundary layer in the flow. Later vented cylinders were mounted on a flat plate and variation of lift and drag coefficients was studied by varying angles of attack and studying the dependence of Reynolds number and dimensions of vortex generator on the coefficients. Mesh grid sensitivity is studied to check the convergence of the results obtained It was found that usage of vented cylinders as vortex generators increased lift forces with small variation in drag forces by varying angle of attack.

Keywords: CFD analysis, drag coefficient, FVM, lift coefficient, modeling, Reynolds number, simulation, vortex generators, vortex shedding

Procedia PDF Downloads 432
474 Investigation on a Wave-Powered Electrical Generator Consisted of a Geared Motor-Generator Housed by a Double-Cone Rolling on Concentric Circular Rails

Authors: Barenten Suciu

Abstract:

An electrical generator able to harness energy from the water waves and designed as a double-cone geared motor-generator (DCGMG), is proposed and theoretically investigated. Similar to a differential gear mechanism, used in the transmission system of the auto vehicle wheels, an angular speed differential is created between the cones rolling on two concentric circular rails. Water wave acting on the floating DCGMG produces and a gear-box amplifies the speed differential to gain sufficient torque for power generation. A model that allows computation of the speed differential, torque, and power of the DCGMG is suggested. Influence of various parameters, regarding the construction of the DCGMG, as well as the contact between the double-cone and rails, on the electro-mechanical output, is emphasized. Results obtained indicate that the generated electrical power can be increased by augmenting the mass of the double-cone, the span of the rails, the apex angle of the cones, the friction between cones and rails, the amplification factor of the gear-box, and the efficiency of the motor-generator. Such findings are useful to formulate a design methodology for the proposed wave-powered generator.

Keywords: amplification of angular speed differential, circular concentric rails, double-cone, wave-powered electrical generator

Procedia PDF Downloads 156
473 The Malfatti’s Problem in Reuleaux Triangle

Authors: Ching-Shoei Chiang

Abstract:

The Malfatti’s Problem is to ask for fitting 3 circles into a right triangle such that they are tangent to each other, and each circle is also tangent to a pair of the triangle’s side. This problem has been extended to any triangle (called general Malfatti’s Problem). Furthermore, the problem has been extended to have 1+2+…+n circles, we call it extended general Malfatti’s problem, these circles whose tangency graph, using the center of circles as vertices and the edge connect two circles center if these two circles tangent to each other, has the structure as Pascal’s triangle, and the exterior circles of these circles tangent to three sides of the triangle. In the extended general Malfatti’s problem, there are closed-form solutions for n=1, 2, and the problem becomes complex when n is greater than 2. In solving extended general Malfatti’s problem (n>2), we initially give values to the radii of all circles. From the tangency graph and current radii, we can compute angle value between two vectors. These vectors are from the center of the circle to the tangency points with surrounding elements, and these surrounding elements can be the boundary of the triangle or other circles. For each circle C, there are vectors from its center c to its tangency point with its neighbors (count clockwise) pi, i=0, 1,2,..,n. We add all angles between cpi to cp(i+1) mod (n+1), i=0,1,..,n, call it sumangle(C) for circle C. Using sumangle(C), we can reduce/enlarge the radii for all circles in next iteration, until sumangle(C) is equal to 2πfor all circles. With a similar idea, this paper proposed an algorithm to find the radii of circles whose tangency has the structure of Pascal’s triangle, and the exterior circles of these circles are tangent to the unit Realeaux Triangle.

Keywords: Malfatti’s problem, geometric constraint solver, computer-aided geometric design, circle packing, data visualization

Procedia PDF Downloads 133
472 Correlation between Dynamic Knee Valgus with Isometric Hip Abductors Strength during Single-Leg Landing

Authors: Ahmed Fawzy, Khaled Ayad, Gh. M. Koura, W. Reda

Abstract:

The knee joint complex is one of the most commonly injured areas of the body in athletes. Excessive frontal plane knee excursion is considered a risk factor for multiple knee pathologies such as anterior cruciate ligament and patellofemoral joint injuries, however, little is known about the biomechanical factors that contribute to this loading pattern. Objectives: The purpose of this study was to investigate if there is a relationship between hip abductors isometric strength and the value of FPPA during single leg landing tasks in normal male subjects. Methods: One hundred (male) subjects free from lower extremity injuries for at least six months ago participated in this study. Their mean age was (23.25 ± 2.88) years, mean weight was (74.76 ± 13.54) (Kg), mean height was (174.23 ± 6.56) (Cm). The knee frontal plane projection angle was measured by digital video camera using single leg landing task. Hip abductors isometric strength were assessed by portable hand-held dynamometer. Muscle strength had been normalized to the body weight to obtain more accurate measurements. Results: The results demonstrated that there was no significant relationship between hip abductors isometric strength and the value of FPPA during single leg landing tasks in normal male subjects. Conclusion: It can be concluded that there is no relationship between hip abductors isometric strength and the value of FPPA during functional activities in normal male subjects.

Keywords: 2-dimensional motion analysis, hip strength, kinematics, knee injuries

Procedia PDF Downloads 248
471 Regression of Hand Kinematics from Surface Electromyography Data Using an Long Short-Term Memory-Transformer Model

Authors: Anita Sadat Sadati Rostami, Reza Almasi Ghaleh

Abstract:

Surface electromyography (sEMG) offers important insights into muscle activation and has applications in fields including rehabilitation and human-computer interaction. The purpose of this work is to predict the degree of activation of two joints in the index finger using an LSTM-Transformer architecture trained on sEMG data from the Ninapro DB8 dataset. We apply advanced preprocessing techniques, such as multi-band filtering and customizable rectification methods, to enhance the encoding of sEMG data into features that are beneficial for regression tasks. The processed data is converted into spike patterns and simulated using Leaky Integrate-and-Fire (LIF) neuron models, allowing for neuromorphic-inspired processing. Our findings demonstrate that adjusting filtering parameters and neuron dynamics and employing the LSTM-Transformer model improves joint angle prediction performance. This study contributes to the ongoing development of deep learning frameworks for sEMG analysis, which could lead to improvements in motor control systems.

Keywords: surface electromyography, LSTM-transformer, spiking neural networks, hand kinematics, leaky integrate-and-fire neuron, band-pass filtering, muscle activity decoding

Procedia PDF Downloads 18
470 Storage Durations Affect the Physico-Chemical Characteristics of Physalis Minima L.

Authors: Norhanizan U., S. H. Ahmad, N. A. P. Abdullah, G. B. Saleh

Abstract:

Physalis minima from the family of Solanaceae is one of the promising fruits which contains the high amount of vitamin C and other antioxidants as well. However, it is a perishable fruit where the deterioration process will commence if the fruits are not stored in proper conditions. There is not much work has been carried out to study the effects of storage durations on Physalis fruit. Therefore, this study was conducted to determine the effects of 0, 3, 6, and 9 days of storage on postharvest quality of Physalis minima fruits. Total of 120g of uniform sizes of fruits (2.3 to 2.5g) were used for each replication and the experiment was repeated thrice. The fruits were divided equally into four groups with each group labeled according to the days of storage. The fruits were then stored in the cool room for nine days with temperature maintain at 12 ° C. The fruits were analyzed for weight loss, firmness, color (L*, C* and hue angle), titratable acidity (TA), soluble solids concentrations (SSC), pH and ascorbic acids. Data were analyzed using analysis of variance and means was separated using least significant difference (LSD). The storage durations affect the quality characteristics of the fruits. On the day 9, the average of fruit weight loss and fruit firmness decreased about 21 and 24% respectively. The level of ascorbic acids and titrable acidity were also decreased while the soluble solids concentration increased during storage. Thus, in order to retain the quality of the fruits, it is recommended that the Physalis fruit can be stored only up to 6 days at 12 ° C.

Keywords: fruit quality, Physalis minima, Solanaceae, storage durations

Procedia PDF Downloads 286
469 Design and Fabrication of a Parabolic trough Collector and Experimental Investigation of Direct Steam Production in Tehran

Authors: M. Bidi, H. Akhbari, S. Eslami, A. Bakhtiari

Abstract:

Due to the high potential of solar energy utilization in Iran, development of related technologies is of great necessity. Linear parabolic collectors are among the most common and most efficient means to harness the solar energy. The main goal of this paper is design and construction of a parabolic trough collector to produce hot water and steam in Tehran. To provide precise and practical plans, 3D models of the collector under consideration were developed using Solidworks software. This collector was designed in a way that the tilt angle can be adjusted manually. To increase concentraion ratio, a small diameter absorber tube is selected and to enhance solar absorbtion, a shape of U-tube is used. One of the outstanding properties of this collector is its simple design and use of low cost metal and plastic materials in its manufacturing procedure. The collector under consideration was installed in Shahid Beheshti University of Tehran and the values of solar irradiation, ambient temperature, wind speed and collector steam production rate were measured in different days and hours of July. Results revealed that a 1×2 m parabolic trough collector located in Tehran is able to produce steam by the rate of 300ml/s under the condition of atmospheric pressure and without using a vacuum cover over the absorber tube.

Keywords: desalination, parabolic trough collector, direct steam production, solar water heater, design and construction

Procedia PDF Downloads 312
468 Surface Modified Polyvinylidene Fluoride Membranes for Potential Use in Membrane Distillation

Authors: Lebea Nthunya, Arne Verliefde, Bhekie Mamba, Sabelo Mhlanga

Abstract:

A study aimed at developing membrane distillation (MD) processes that can be used for brackish/saline water purification will be presented. MD is a membrane-based technology that presents a possibility to counteract challenges associated with pressure driven membranes at high separation efficiencies. Membrane distillation membranes (MDM) are affected by wettability and fouling. Wetting inside the pores of the membrane is elevated by the hydrophilic characteristic of the membrane, while fouling is mostly induced by the hydrophobic-hydrophobic interaction of pollutants and the surface of the hydrophobic membranes, hence block the pores of the membranes. These properties are not desirable. As such, a carefully designed polyvinylidene fluoride (PVDF) MDM composed of a super-hydrophobic modified backbone and a super-hydrophilic thin layer has been developed to concurrently overcome these challenges. The membranes were characterized using contact angle measurements to confirm their hydrophobicity/hydrophilicity. SEM and SAXS were used to study the morphology and pore distribution on the surface of the membrane. The contact angles of the active surface ≤ 30º and that of the backbone ≥ 140º has thus revealed that the active surface was highly hydrophilic while the backbone was highly hydrophobic. The SEM and the SAXS results have also confirmed that the membranes are highly porous. These materials demonstrated a potential to remove salts from water at high efficiencies.

Keywords: membrane distillation, modification, energy efficiency, desalination

Procedia PDF Downloads 257
467 Coalescence Cascade of Vertically-aligned Water Drops on a Super-hydrophobic Surface in Silicone Oil

Authors: M. Brik, S. Harmand, I. Zaaroura

Abstract:

This report, an experimental investigation, concerns the sessile daughter drop remaining during the coalescence of water drops in a liquid-liquid (LL) system. The two drops are initially vertically aligned where the sessile drop is deposited on a chemically treated super-hydrophobic surface of a cube fill of silicone oil. In order to analyze the coalescence dynamics, a series of experiments have been performed using a generation droplets system (KRUSS) that measures contact angles as well coupled with a high-speed camera (Keyence VW-9000E) to record the process at a frame rate of 15000s-1. It’s depicted that in such configuration, the head drop volume has a primordial impact on the dynamics of the coalescence process, especially at the last stage. It’s found that for a sessile drop deposited on a super-hydrophobic surface, where the contact angle is about θ ≈ 145°, the coalescence process is remarked to be complete without any recoiling of the coalesced drop or a generation of a sessile daughter drop at the super-hydrophobic surface when the head drop volume is small enough (Vₐᵦ< Vₛ up to Vₐᵦ = 3Vₛ). On the other side, the coalescence process starts to be followed by jumping off the resulted drop as well as a remaining of a small sessile daughter drop on the bottom surface of the cube from a head drop volume Vₐᵦ of about 4 times than that of the sessile drop Vₛ.

Keywords: drops coalescence, dispersed multiphase flow, drops dynamics, liquid-liquid system

Procedia PDF Downloads 145
466 Seismic Performance Evaluation of Diagrid Components

Authors: Taejin Kim, Heonwoo Lee, Jong-Ho Kim, Dongchul Lee

Abstract:

Recently, there have been various high-rise building projects which reflect unique inspiration from architects to their feature. And it is frequently found that some of these buildings have diagrid structural system. Diagrid system provides engineers many options for structural plan, since it has triangular module so it can form a number of complex shapes. Unlike braced frame systems, diagonal members in diagrid system resist gravity and horizontal loads simultaneously. Correspondingly, diagrid members take roles of both beams and columns, and it is expected that their ductile capacity may depend on the amount of gravity loads. However, not enough studies have been made for this issue so far, which means that there is demand of examination on the seismic behavior of diagrid members under large gravity loads. Therefore, in this study, the ductile capacity of diagrid members was evaluated through analytical and experimental method. Several cases that have different vertical load condition were set up for both approaches to consider the effect of initial compression force due to gravity load. Regarding the result, it was found that buckling in a diagonal member occurs at smaller drift angle when larger gravity load acts on the specimen, which also reduces the amount of energy dissipation. It means that axial stress in a diagonal member reaches critical buckling force early due to the combined axial force from not only horizontal load but also gravity load.

Keywords: buckling, diagrid, ductility, seismic performance

Procedia PDF Downloads 405
465 Variation of Airfoil Pressure Profile Due to Confined Air Streams: Application in Gas-Oil Separators

Authors: Amir Hossein Haji, Nabeel Al-Rawahi, Gholamreza Vakili-Nezhaad

Abstract:

An innovative design has been examined for a gas-oil separator based on pressure reduction over an airfoil surface. The primary motivations are to shorten the release trajectory of the bubbles by minimizing the thickness of the oil layer as well as improving uniform pressure reduction zones. Restricted airflow over an airfoil is investigated for its effect on the pressure drop enhancement and the maximum attainable attack angle prior to the stall condition. Aerodynamic separation is delayed based on numerical simulation of Wortmann FX 63137 Airfoil in a confined domain using FLUENT 6.3.26. The proposed set up results in higher pressure drop compared with the free stream case. With the aim of optimum power consumption we have pursued further restriction to an air jet case over the airfoil. Then, a curved strip model is suggested for the air jet which can be applied as an analysis/design tool for the best performance conditions. Pressure reduction is shown to be inversely proportional to the curvature of the upper airfoil profile. This reduction occurs within the tracking zones where the air jet is effectively attached to the airfoil surface. The zero slope condition is suggested to estimate the onset of these zones after which the minimum curvature should be searched. The corresponding zero slope curvature is applied for estimation of the maximum pressure drop which shows satisfactory agreement with the simulation results.

Keywords: airfoil, air jet, curved fluid flow, gas-oil separator

Procedia PDF Downloads 474
464 Domain Switching Characteristics of Lead Zirconate Titanate Piezoelectric Ceramic

Authors: Mitsuhiro Okayasu

Abstract:

To better understand the lattice characteristics of lead zirconate titanate (PZT) ceramics, the lattice orientations and domain-switching characteristics have been directly examined during loading and unloading using various experimental techniques. Upon loading, the PZT ceramics are fractured linear and nonlinearly during the compressive loading process. The strain characteristics of the PZT ceramic were directly affected by both the lattice and domain switching strain. Due to the piezoelectric ceramic, electrical activity of lightning-like behavior occurs in the PZT ceramics, which attributed to the severe domain-switching leading to weak piezoelectric property. The characteristics of domain-switching and reverse switching are detected during the loading and unloading processes. The amount of domain-switching depends on the grain, due to different stress levels. In addition, two patterns of 90˚ domain-switching systems are characterized, namely (i) 90˚ turn about the tetragonal c-axis and (ii) 90˚ rotation of the tetragonal a-axis. In this case, PZT ceramic was loaded by the thermal stress at 80°C. Extent of domain switching is related to the direction of c-axis of the tetragonal structure, e.g., that axis, orientated close to the loading direction, makes severe domain switching. It is considered that there is 90˚ domain switching, but in actual, the angle of domain switching is less than 90˚, e.g., 85.4° ~ 90.0°. In situ TEM observation of the domain switching characteristics of PZT ceramic has been conducted with increasing the sample temperature from 25°C to 300°C, and the domain switching like behavior is directly observed from the lattice image, where the severe domain switching occurs less than 100°C.

Keywords: PZT, lead zirconate titanate, piezoelectric ceramic, domain switching, material property

Procedia PDF Downloads 203