Search results for: friction stir joining
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 961

Search results for: friction stir joining

31 Continuous and Discontinuos Modeling of Wellbore Instability in Anisotropic Rocks

Authors: C. Deangeli, P. Obentaku Obenebot, O. Omwanghe

Abstract:

The study focuses on the analysis of wellbore instability in rock masses affected by weakness planes. The occurrence of failure in such a type of rocks can occur in the rock matrix and/ or along the weakness planes, in relation to the mud weight gradient. In this case the simple Kirsch solution coupled with a failure criterion cannot supply a suitable scenario for borehole instabilities. Two different numerical approaches have been used in order to investigate the onset of local failure at the wall of a borehole. For each type of approach the influence of the inclination of weakness planes has been investigates, by considering joint sets at 0°, 35° and 90° to the horizontal. The first set of models have been carried out with FLAC 2D (Fast Lagrangian Analysis of Continua) by considering the rock material as a continuous medium, with a Mohr Coulomb criterion for the rock matrix and using the ubiquitous joint model for accounting for the presence of the weakness planes. In this model yield may occur in either the solid or along the weak plane, or both, depending on the stress state, the orientation of the weak plane and the material properties of the solid and weak plane. The second set of models have been performed with PFC2D (Particle Flow code). This code is based on the Discrete Element Method and considers the rock material as an assembly of grains bonded by cement-like materials, and pore spaces. The presence of weakness planes is simulated by the degradation of the bonds between grains along given directions. In general the results of the two approaches are in agreement. However the discrete approach seems to capture more complex phenomena related to local failure in the form of grain detachment at wall of the borehole. In fact the presence of weakness planes in the discontinuous medium leads to local instability along the weak planes also in conditions not predicted from the continuous solution. In general slip failure locations and directions do not follow the conventional wellbore breakout direction but depend upon the internal friction angle and the orientation of the bedding planes. When weakness plane is at 0° and 90° the behaviour are similar to that of a continuous rock material, but borehole instability is more severe when weakness planes are inclined at an angle between 0° and 90° to the horizontal. In conclusion, the results of the numerical simulations show that the prediction of local failure at the wall of the wellbore cannot disregard the presence of weakness planes and consequently the higher mud weight required for stability for any specific inclination of the joints. Despite the discrete approach can simulate smaller areas because of the large number of particles required for the generation of the rock material, however it seems to investigate more correctly the occurrence of failure at the miscroscale and eventually the propagation of the failed zone to a large portion of rock around the wellbore.

Keywords: continuous- discontinuous, numerical modelling, weakness planes wellbore, FLAC 2D

Procedia PDF Downloads 497
30 Climate Change and Landslide Risk Assessment in Thailand

Authors: Shotiros Protong

Abstract:

The incidents of sudden landslides in Thailand during the past decade have occurred frequently and more severely. It is necessary to focus on the principal parameters used for analysis such as land cover land use, rainfall values, characteristic of soil and digital elevation model (DEM). The combination of intense rainfall and severe monsoons is increasing due to global climate change. Landslide occurrences rapidly increase during intense rainfall especially in the rainy season in Thailand which usually starts around mid-May and ends in the middle of October. The rain-triggered landslide hazard analysis is the focus of this research. The combination of geotechnical and hydrological data are used to determine permeability, conductivity, bedding orientation, overburden and presence of loose blocks. The regional landslide hazard mapping is developed using the Slope Stability Index SINMAP model supported on Arc GIS software version 10.1. Geological and land use data are used to define the probability of landslide occurrences in terms of geotechnical data. The geological data can indicate the shear strength and the angle of friction values for soils above given rock types, which leads to the general applicability of the approach for landslide hazard analysis. To address the research objectives, the methods are described in this study: setup and calibration of the SINMAP model, sensitivity of the SINMAP model, geotechnical laboratory, landslide assessment at present calibration and landslide assessment under future climate simulation scenario A2 and B2. In terms of hydrological data, the millimetres/twenty-four hours of average rainfall data are used to assess the rain triggered landslide hazard analysis in slope stability mapping. During 1954-2012 period, is used for the baseline of rainfall data at the present calibration. The climate change in Thailand, the future of climate scenarios are simulated by spatial and temporal scales. The precipitation impact is need to predict for the climate future, Statistical Downscaling Model (SDSM) version 4.2, is used to assess the simulation scenario of future change between latitude 16o 26’ and 18o 37’ north and between longitude 98o 52’ and 103o 05’ east by SDSM software. The research allows the mapping of risk parameters for landslide dynamics, and indicates the spatial and time trends of landslide occurrences. Thus, regional landslide hazard mapping under present-day climatic conditions from 1954 to 2012 and simulations of climate change based on GCM scenarios A2 and B2 from 2013 to 2099 related to the threshold rainfall values for the selected the study area in Uttaradit province in the northern part of Thailand. Finally, the landslide hazard mapping will be compared and shown by areas (km2 ) in both the present and the future under climate simulation scenarios A2 and B2 in Uttaradit province.

Keywords: landslide hazard, GIS, slope stability index (SINMAP), landslides, Thailand

Procedia PDF Downloads 563
29 Slope Stability Assessment in Metasedimentary Deposit of an Opencast Mine: The Case of the Dikuluwe-Mashamba (DIMA) Mine in the DR Congo

Authors: Dina Kon Mushid, Sage Ngoie, Tshimbalanga Madiba, Kabutakapua Kakanda

Abstract:

Slope stability assessment is still the biggest challenge in mining activities and civil engineering structures. The slope in an opencast mine frequently reaches multiple weak layers that lead to the instability of the pit. Faults and soft layers throughout the rock would increase weathering and erosion rates. Therefore, it is essential to investigate the stability of the complex strata to figure out how stable they are. In the Dikuluwe-Mashamba (DIMA) area, the lithology of the stratum is a set of metamorphic rocks whose parent rocks are sedimentary rocks with a low degree of metamorphism. Thus, due to the composition and metamorphism of the parent rock, the rock formation is different in hardness and softness, which means that when the content of dolomitic and siliceous is high, the rock is hard. It is softer when the content of argillaceous and sandy is high. Therefore, from the vertical direction, it appears as a weak and hard layer, and from the horizontal direction, it seems like a smooth and hard layer in the same rock layer. From the structural point of view, the main structures in the mining area are the Dikuluwe dipping syncline and the Mashamba dipping anticline, and the occurrence of rock formations varies greatly. During the folding process of the rock formation, the stress will concentrate on the soft layer, causing the weak layer to be broken. At the same time, the phenomenon of interlayer dislocation occurs. This article aimed to evaluate the stability of metasedimentary rocks of the Dikuluwe-Mashamba (DIMA) open-pit mine using limit equilibrium and stereographic methods Based on the presence of statistical structural planes, the stereographic projection was used to study the slope's stability and examine the discontinuity orientation data to identify failure zones along the mine. The results revealed that the slope angle is too steep, and it is easy to induce landslides. The numerical method's sensitivity analysis showed that the slope angle and groundwater significantly impact the slope safety factor. The increase in the groundwater level substantially reduces the stability of the slope. Among the factors affecting the variation in the rate of the safety factor, the bulk density of soil is greater than that of rock mass, the cohesion of soil mass is smaller than that of rock mass, and the friction angle in the rock mass is much larger than that in the soil mass. The analysis showed that the rock mass structure types are mostly scattered and fragmented; the stratum changes considerably, and the variation of rock and soil mechanics parameters is significant.

Keywords: slope stability, weak layer, safety factor, limit equilibrium method, stereography method

Procedia PDF Downloads 258
28 Virtual Experiments on Coarse-Grained Soil Using X-Ray CT and Finite Element Analysis

Authors: Mohamed Ali Abdennadher

Abstract:

Digital rock physics, an emerging field leveraging advanced imaging and numerical techniques, offers a promising approach to investigating the mechanical properties of granular materials without extensive physical experiments. This study focuses on using X-Ray Computed Tomography (CT) to capture the three-dimensional (3D) structure of coarse-grained soil at the particle level, combined with finite element analysis (FEA) to simulate the soil's behavior under compression. The primary goal is to establish a reliable virtual testing framework that can replicate laboratory results and offer deeper insights into soil mechanics. The methodology involves acquiring high-resolution CT scans of coarse-grained soil samples to visualize internal particle morphology. These CT images undergo processing through noise reduction, thresholding, and watershed segmentation techniques to isolate individual particles, preparing the data for subsequent analysis. A custom Python script is employed to extract particle shapes and conduct a statistical analysis of particle size distribution. The processed particle data then serves as the basis for creating a finite element model comprising approximately 500 particles subjected to one-dimensional compression. The FEA simulations explore the effects of mesh refinement and friction coefficient on stress distribution at grain contacts. A multi-layer meshing strategy is applied, featuring finer meshes at inter-particle contacts to accurately capture mechanical interactions and coarser meshes within particle interiors to optimize computational efficiency. Despite the known challenges in parallelizing FEA to high core counts, this study demonstrates that an appropriate domain-level parallelization strategy can achieve significant scalability, allowing simulations to extend to very high core counts. The results show a strong correlation between the finite element simulations and laboratory compression test data, validating the effectiveness of the virtual experiment approach. Detailed stress distribution patterns reveal that soil compression behavior is significantly influenced by frictional interactions, with frictional sliding, rotation, and rolling at inter-particle contacts being the primary deformation modes under low to intermediate confining pressures. These findings highlight that CT data analysis combined with numerical simulations offers a robust method for approximating soil behavior, potentially reducing the need for physical laboratory experiments.

Keywords: X-Ray computed tomography, finite element analysis, soil compression behavior, particle morphology

Procedia PDF Downloads 28
27 Agent-Based Modeling Investigating Self-Organization in Open, Non-equilibrium Thermodynamic Systems

Authors: Georgi Y. Georgiev, Matthew Brouillet

Abstract:

This research applies the power of agent-based modeling to a pivotal question at the intersection of biology, computer science, physics, and complex systems theory about the self-organization processes in open, complex, non-equilibrium thermodynamic systems. Central to this investigation is the principle of Maximum Entropy Production (MEP). This principle suggests that such systems evolve toward states that optimize entropy production, leading to the formation of structured environments. It is hypothesized that guided by the least action principle, open thermodynamic systems identify and follow the shortest paths to transmit energy and matter, resulting in maximal entropy production, internal structure formation, and a decrease in internal entropy. Concurrently, it is predicted that there will be an increase in system information as more information is required to describe the developing structure. To test this, an agent-based model is developed simulating an ant colony's formation of a path between a food source and its nest. Utilizing the Netlogo software for modeling and Python for data analysis and visualization, self-organization is quantified by calculating the decrease in system entropy based on the potential states and distribution of the ants within the simulated environment. External entropy production is also evaluated for information increase and efficiency improvements in the system's action. Simulations demonstrated that the system begins at maximal entropy, which decreases as the ants form paths over time. A range of system behaviors contingent upon the number of ants are observed. Notably, no path formation occurred with fewer than five ants, whereas clear paths were established by 200 ants, and saturation of path formation and entropy state was reached at populations exceeding 1000 ants. This analytical approach identified the inflection point marking the transition from disorder to order and computed the slope at this point. Combined with extrapolation to the final path entropy, these parameters yield important insights into the eventual entropy state of the system and the timeframe for its establishment, enabling the estimation of the self-organization rate. This study provides a novel perspective on the exploration of self-organization in thermodynamic systems, establishing a correlation between internal entropy decrease rate and external entropy production rate. Moreover, it presents a flexible framework for assessing the impact of external factors like changes in world size, path obstacles, and friction. Overall, this research offers a robust, replicable model for studying self-organization processes in any open thermodynamic system. As such, it provides a foundation for further in-depth exploration of the complex behaviors of these systems and contributes to the development of more efficient self-organizing systems across various scientific fields.

Keywords: complexity, self-organization, agent based modelling, efficiency

Procedia PDF Downloads 67
26 Application of 2D Electrical Resistivity Tomographic Imaging Technique to Study Climate Induced Landslide and Slope Stability through the Analysis of Factor of Safety: A Case Study in Ooty Area, Tamil Nadu, India

Authors: S. Maniruzzaman, N. Ramanujam, Qazi Akhter Rasool, Swapan Kumar Biswas, P. Prasad, Chandrakanta Ojha

Abstract:

Landslide is one of the major natural disasters in South Asian countries. Applying 2D Electrical Resistivity Tomographic Imaging estimation of geometry, thickness, and depth of failure zone of the landslide can be made. Landslide is a pertinent problem in Nilgris plateau next to Himalaya. Nilgris range consists of hard Archean metamorphic rocks. Intense weathering prevailed during the Pre-Cambrian time had deformed the rocks up to 45m depth. The landslides are dominant in the southern and eastern part of plateau of is comparatively smaller than the northern drainage basins, as it has low density of drainage; coarse texture permitted the more of infiltration of rainwater, whereas in the northern part of the plateau entombed with high density of drainage pattern and fine texture with less infiltration than run off, and low to the susceptible to landslide. To get comprehensive information about the landslide zone 2D Electrical Resistivity Tomographic imaging study with CRM 500 Resistivity meter are used in Coonoor– Mettupalyam sector of Nilgiris plateau. To calculate Factor of Safety the infinite slope model of Brunsden and Prior is used. Factor of Safety can be expressed (FS) as the ratio of resisting forces to disturbing forces. If FS < 1 disturbing forces are larger than resisting forces and failure may occur. The geotechnical parameters of soil samples are calculated on the basis upon the apparent resistivity values for litho units of measured from 2D ERT image of the landslide zone. Relationship between friction angles for various soil properties is established by simple regression analysis from apparent resistivity data. Increase of water content in slide zone reduces the effectiveness of the shearing resistance and increase the sliding movement. Time-lapse resistivity changes to slope failure is determined through geophysical Factor of Safety which depends on resistivity and site topography. This ERT technique infers soil property at variable depths in wider areas. This approach to retrieve the soil property and overcomes the limit of the point of information provided by rain gauges and porous probes. Monitoring of slope stability without altering soil structure through the ERT technique is non-invasive with low cost. In landslide prone area an automated Electrical Resistivity Tomographic Imaging system should be installed permanently with electrode networks to monitor the hydraulic precursors to monitor landslide movement.

Keywords: 2D ERT, landslide, safety factor, slope stability

Procedia PDF Downloads 316
25 Influence of Recycled Concrete Aggregate Content on the Rebar/Concrete Bond Properties through Pull-Out Tests and Acoustic Emission Measurements

Authors: L. Chiriatti, H. Hafid, H. R. Mercado-Mendoza, K. L. Apedo, C. Fond, F. Feugeas

Abstract:

Substituting natural aggregate with recycled aggregate coming from concrete demolition represents a promising alternative to face the issues of both the depletion of natural resources and the congestion of waste storage facilities. However, the crushing process of concrete demolition waste, currently in use to produce recycled concrete aggregate, does not allow the complete separation of natural aggregate from a variable amount of adhered mortar. Given the physicochemical characteristics of the latter, the introduction of recycled concrete aggregate into a concrete mix modifies, to a certain extent, both fresh and hardened concrete properties. As a consequence, the behavior of recycled reinforced concrete members could likely be influenced by the specificities of recycled concrete aggregates. Beyond the mechanical properties of concrete, and as a result of the composite character of reinforced concrete, the bond characteristics at the rebar/concrete interface have to be taken into account in an attempt to describe accurately the mechanical response of recycled reinforced concrete members. Hence, a comparative experimental campaign, including 16 pull-out tests, was carried out. Four concrete mixes with different recycled concrete aggregate content were tested. The main mechanical properties (compressive strength, tensile strength, Young’s modulus) of each concrete mix were measured through standard procedures. A single 14-mm-diameter ribbed rebar, representative of the diameters commonly used in the domain of civil engineering, was embedded into a 200-mm-side concrete cube. The resulting concrete cover is intended to ensure a pull-out type failure (i.e. exceedance of the rebar/concrete interface shear strength). A pull-out test carried out on the 100% recycled concrete specimen was enriched with exploratory acoustic emission measurements. Acoustic event location was performed by means of eight piezoelectric transducers distributed over the whole surface of the specimen. The resulting map was compared to existing data related to natural aggregate concrete. Damage distribution around the reinforcement and main features of the characteristic bond stress/free-end slip curve appeared to be similar to previous results obtained through comparable studies carried out on natural aggregate concrete. This seems to show that the usual bond mechanism sequence (‘chemical adhesion’, mechanical interlocking and friction) remains unchanged despite the addition of recycled concrete aggregate. However, the results also suggest that bond efficiency seems somewhat improved through the use of recycled concrete aggregate. This observation appears to be counter-intuitive with regard to the diminution of the main concrete mechanical properties with the recycled concrete aggregate content. As a consequence, the impact of recycled concrete aggregate content on bond characteristics seemingly represents an important factor which should be taken into account and likely to be further explored in order to determine flexural parameters such as deflection or crack distribution.

Keywords: acoustic emission monitoring, high-bond steel rebar, pull-out test, recycled aggregate concrete

Procedia PDF Downloads 170
24 The Dynamics of a Droplet Spreading on a Steel Surface

Authors: Evgeniya Orlova, Dmitriy Feoktistov, Geniy Kuznetsov

Abstract:

Spreading of a droplet over a solid substrate is a key phenomenon observed in the following engineering applications: thin film coating, oil extraction, inkjet printing, and spray cooling of heated surfaces. Droplet cooling systems are known to be more effective than film or rivulet cooling systems. It is caused by the greater evaporation surface area of droplets compared with the film of the same mass and wetting surface. And the greater surface area of droplets is connected with the curvature of the interface. Location of the droplets on the cooling surface influences on the heat transfer conditions. The close distance between the droplets provides intensive heat removal, but there is a possibility of their coalescence in the liquid film. The long distance leads to overheating of the local areas of the cooling surface and the occurrence of thermal stresses. To control the location of droplets is possible by changing the roughness, structure and chemical composition of the surface. Thus, control of spreading can be implemented. The most important characteristic of spreading of droplets on solid surfaces is a dynamic contact angle, which is a function of the contact line speed or capillary number. However, there is currently no universal equation, which would describe the relationship between these parameters. This paper presents the results of the experimental studies of water droplet spreading on metal substrates with different surface roughness. The effect of the droplet growth rate and the surface roughness on spreading characteristics was studied at low capillary numbers. The shadow method using high speed video cameras recording up to 10,000 frames per seconds was implemented. A droplet profile was analyzed by Axisymmetric Drop Shape Analyses techniques. According to change of the dynamic contact angle and the contact line speed three sequential spreading stages were observed: rapid increase in the dynamic contact angle; monotonous decrease in the contact angle and the contact line speed; and form of the equilibrium contact angle at constant contact line. At low droplet growth rate, the dynamic contact angle of the droplet spreading on the surfaces with the maximum roughness is found to increase throughout the spreading time. It is due to the fact that the friction force on such surfaces is significantly greater than the inertia force; and the contact line is pinned on microasperities of a relief. At high droplet growth rate the contact angle decreases during the second stage even on the surfaces with the maximum roughness, as in this case, the liquid does not fill the microcavities, and the droplet moves over the “air cushion”, i.e. the interface is a liquid/gas/solid system. Also at such growth rates pulsation of liquid flow was detected; and the droplet oscillates during the spreading. Thus, obtained results allow to conclude that it is possible to control spreading by using the surface roughness and the growth rate of droplets on surfaces as varied factors. Also, the research findings may be used for analyzing heat transfer in rivulet and drop cooling systems of high energy equipment.

Keywords: contact line speed, droplet growth rate, dynamic contact angle, shadow system, spreading

Procedia PDF Downloads 328
23 Effects of Radiation on Mixed Convection in Power Law Fluids along Vertical Wedge Embedded in a Saturated Porous Medium under Prescribed Surface Heat Flux Condition

Authors: Qaisar Ali, Waqar A. Khan, Shafiq R. Qureshi

Abstract:

Heat transfer in Power Law Fluids across cylindrical surfaces has copious engineering applications. These applications comprises of areas such as underwater pollution, bio medical engineering, filtration systems, chemical, petroleum, polymer, food processing, recovery of geothermal energy, crude oil extraction, pharmaceutical and thermal energy storage. The quantum of research work with diversified conditions to study the effects of combined heat transfer and fluid flow across porous media has increased considerably over last few decades. The most non-Newtonian fluids of practical interest are highly viscous and therefore are often processed in the laminar flow regime. Several studies have been performed to investigate the effects of free and mixed convection in Newtonian fluids along vertical and horizontal cylinder embedded in a saturated porous medium, whereas very few analysis have been performed on Power law fluids along wedge. In this study, boundary layer analysis under the effects of radiation-mixed convection in power law fluids along vertical wedge in porous medium have been investigated using an implicit finite difference method (Keller box method). Steady, 2-D laminar flow has been considered under prescribed surface heat flux condition. Darcy, Boussinesq and Roseland approximations are assumed to be valid. Neglecting viscous dissipation effects and the radiate heat flux in the flow direction, the boundary layer equations governing mixed convection flow over a vertical wedge are transformed into dimensionless form. The single mathematical model represents the case for vertical wedge, cone and plate by introducing the geometry parameter. Both similar and Non- similar solutions have been obtained and results for Non similar case have been presented/ plotted. Effects of radiation parameter, variable heat flux parameter, wedge angle parameter ‘m’ and mixed convection parameter have been studied for both Newtonian and Non-Newtonian fluids. The results are also compared with the available data for the analysis of heat transfer in the prescribed range of parameters and found in good agreement. Results for the details of dimensionless local Nusselt number, temperature and velocity fields have also been presented for both Newtonian and Non-Newtonian fluids. Analysis of data revealed that as the radiation parameter or wedge angle is increased, the Nusselt number decreases whereas it increases with increase in the value of heat flux parameter at a given value of mixed convection parameter. Also, it is observed that as viscosity increases, the skin friction co-efficient increases which tends to reduce the velocity. Moreover, pseudo plastic fluids are more heat conductive than Newtonian and dilatant fluids respectively. All fluids behave identically in pure forced convection domain.

Keywords: porous medium, power law fluids, surface heat flux, vertical wedge

Procedia PDF Downloads 311
22 Influence of Mandrel’s Surface on the Properties of Joints Produced by Magnetic Pulse Welding

Authors: Ines Oliveira, Ana Reis

Abstract:

Magnetic Pulse Welding (MPW) is a cold solid-state welding process, accomplished by the electromagnetically driven, high-speed and low-angle impact between two metallic surfaces. It has the same working principle of Explosive Welding (EXW), i.e. is based on the collision of two parts at high impact speed, in this case, propelled by electromagnetic force. Under proper conditions, i.e., flyer velocity and collision point angle, a permanent metallurgical bond can be achieved between widely dissimilar metals. MPW has been considered a promising alternative to the conventional welding processes and advantageous when compared to other impact processes. Nevertheless, MPW current applications are mostly academic. Despite the existing knowledge, the lack of consensus regarding several aspects of the process calls for further investigation. As a result, the mechanical resistance, morphology and structure of the weld interface in MPW of Al/Cu dissimilar pair were investigated. The effect of process parameters, namely gap, standoff distance and energy, were studied. It was shown that welding only takes place if the process parameters are within an optimal range. Additionally, the formation of intermetallic phases cannot be completely avoided in the weld of Al/Cu dissimilar pair by MPW. Depending on the process parameters, the intermetallic compounds can appear as continuous layer or small pockets. The thickness and the composition of the intermetallic layer depend on the processing parameters. Different intermetallic phases can be identified, meaning that different temperature-time regimes can occur during the process. It is also found that lower pulse energies are preferred. The relationship between energy increase and melting is possibly related to multiple sources of heating. Higher values of pulse energy are associated with higher induced currents in the part, meaning that more Joule heating will be generated. In addition, more energy means higher flyer velocity, the air existing in the gap between the parts to be welded is expelled, and this aerodynamic drag (fluid friction) is proportional to the square of the velocity, further contributing to the generation of heat. As the kinetic energy also increases with the square of velocity, the dissipation of this energy through plastic work and jet generation will also contribute to an increase in temperature. To reduce intermetallic phases, porosity, and melt pockets, pulse energy should be minimized. The bond formation is affected not only by the gap, standoff distance, and energy but also by the mandrel’s surface conditions. No correlation was clearly identified between surface roughness/scratch orientation and joint strength. Nevertheless, the aspect of the interface (thickness of the intermetallic layer, porosity, presence of macro/microcracks) is clearly affected by the surface topology. Welding was not established on oil contaminated surfaces, meaning that the jet action is not enough to completely clean the surface.

Keywords: bonding mechanisms, impact welding, intermetallic compounds, magnetic pulse welding, wave formation

Procedia PDF Downloads 209
21 Higher Education Benefits and Undocumented Students: An Explanatory Model of Policy Adoption

Authors: Jeremy Ritchey

Abstract:

Undocumented immigrants in the U.S. face many challenges when looking to progress in society, especially when pursuing post-secondary education. The majority of research done on state-level policy adoption pertaining to undocumented higher-education pursuits, specifically in-state resident tuition and financial aid eligibility policies, have framed the discussion on the potential and actual impacts which implementation can and has achieved. What is missing is a model to view the social, political and demographic landscapes upon which such policies (in their various forms) find a route to legislative enactment. This research looks to address this gap in the field by investigating the correlations and significant state-level variables which can be operationalized to construct a framework for adoption of these specific policies. In the process, analysis will show that past unexamined conceptualizations of how such policies come to fruition may be limited or contradictory when compared to available data. Circling on the principles of Policy Innovation and Policy Diffusion theory, this study looks to use variables collected via Michigan State University’s Correlates of State Policy Project, a collectively and ongoing compiled database project centered around annual variables (1900-2016) collected from all 50 states relevant to policy research. Using established variable groupings (demographic, political, social capital measurements, and educational system measurements) from the time period of 2000 to 2014 (2001 being when such policies began), one can see how this data correlates with the adoption of policies related to undocumented students and in-state college tuition. After regression analysis, the results will illuminate which variables appears significant and to what effect, as to help formulate a model upon which to explain when adoption appears to occur and when it does not. Early results have shown that traditionally held conceptions on conservative and liberal identities of the state, as they relate to the likelihood of such policies being adopted, did not fall in line with the collected data. Democratic and liberally identified states were, overall, less likely to adopt pro-undocumented higher education policies than Republican and conservatively identified states and vis versa. While further analysis is needed as to improve the model’s explanatory power, preliminary findings are showing promise in widening our understanding of policy adoption factors in this realm of policies compared to the gap of such knowledge in the publications of the field as it currently exists. The model also looks to serve as an important tool for policymakers in framing such potential policies in a way that is congruent with the relevant state-level determining factors while being sensitive to the most apparent sources of potential friction. While additional variable groups and individual variables will ultimately need to be added and controlled for, this research has already begun to demonstrate how shallow or unexamined reasoning behind policy adoption in the realm of this topic needs to be addressed or else the risk is erroneous conceptions leaking into the foundation of this growing and ever important field.

Keywords: policy adoption, in-state tuition, higher education, undocumented immigrants

Procedia PDF Downloads 112
20 Online Monitoring and Control of Continuous Mechanosynthesis by UV-Vis Spectrophotometry

Authors: Darren A. Whitaker, Dan Palmer, Jens Wesholowski, James Flaherty, John Mack, Ahmad B. Albadarin, Gavin Walker

Abstract:

Traditional mechanosynthesis has been performed by either ball milling or manual grinding. However, neither of these techniques allow the easy application of process control. The temperature may change unpredictably due to friction in the process. Hence the amount of energy transferred to the reactants is intrinsically non-uniform. Recently, it has been shown that the use of Twin-Screw extrusion (TSE) can overcome these limitations. Additionally, TSE enables a platform for continuous synthesis or manufacturing as it is an open-ended process, with feedstocks at one end and product at the other. Several materials including metal-organic frameworks (MOFs), co-crystals and small organic molecules have been produced mechanochemically using TSE. The described advantages of TSE are offset by drawbacks such as increased process complexity (a large number of process parameters) and variation in feedstock flow impacting on product quality. To handle the above-mentioned drawbacks, this study utilizes UV-Vis spectrophotometry (InSpectroX, ColVisTec) as an online tool to gain real-time information about the quality of the product. Additionally, this is combined with real-time process information in an Advanced Process Control system (PharmaMV, Perceptive Engineering) allowing full supervision and control of the TSE process. Further, by characterizing the dynamic behavior of the TSE, a model predictive controller (MPC) can be employed to ensure the process remains under control when perturbed by external disturbances. Two reactions were studied; a Knoevenagel condensation reaction of barbituric acid and vanillin and, the direct amidation of hydroquinone by ammonium acetate to form N-Acetyl-para-aminophenol (APAP) commonly known as paracetamol. Both reactions could be carried out continuously using TSE, nuclear magnetic resonance (NMR) spectroscopy was used to confirm the percentage conversion of starting materials to product. This information was used to construct partial least squares (PLS) calibration models within the PharmaMV development system, which relates the percent conversion to product to the acquired UV-Vis spectrum. Once this was complete, the model was deployed within the PharmaMV Real-Time System to carry out automated optimization experiments to maximize the percentage conversion based on a set of process parameters in a design of experiments (DoE) style methodology. With the optimum set of process parameters established, a series of PRBS process response tests (i.e. Pseudo-Random Binary Sequences) around the optimum were conducted. The resultant dataset was used to build a statistical model and associated MPC. The controller maximizes product quality whilst ensuring the process remains at the optimum even as disturbances such as raw material variability are introduced into the system. To summarize, a combination of online spectral monitoring and advanced process control was used to develop a robust system for optimization and control of two TSE based mechanosynthetic processes.

Keywords: continuous synthesis, pharmaceutical, spectroscopy, advanced process control

Procedia PDF Downloads 175
19 Analysis of Flow Dynamics of Heated and Cooled Pylon Upstream to the Cavity past Supersonic Flow with Wall Heating and Cooling

Authors: Vishnu Asokan, Zaid M. Paloba

Abstract:

Flow over cavities is an important area of research due to the significant change in flow physics caused by cavity aspect ratio, free stream Mach number and the nature of upstream boundary layer approaching the cavity leading edge. Cavity flow finds application in aircraft wheel well, weapons bay, combustion chamber of scramjet engines, etc. These flows are highly unsteady, compressible and turbulent and it involves mass entrainment coupled with acoustics phenomenon. Variation of flow dynamics in an angled cavity with a heated and cooled pylon upstream to the cavity with spatial combinations of heat flux addition and removal to the wall studied numerically. The goal of study is to investigate the effect of energy addition, removal to the cavity walls and pylon cavity flow dynamics. Preliminary steady state numerical simulations on inclined cavities with heat addition have shown that wall pressure profiles, as well as the recirculation, are influenced by heat transfer to the compressible fluid medium. Such a hybrid control of cavity flow dynamics in the form of heat transfer and pylon geometry can open out greater opportunities in enhancement of mixing and flame holding requirements of supersonic combustors. Addition of pylon upstream to the cavity reduces the acoustic oscillations emanating from the geometry. A numerical unsteady analysis of supersonic flow past cavities exposed to cavity wall heating and cooling with heated and cooled pylon helps to get a clear idea about the oscillation suppression in the cavity. A Cavity of L/D 4 and aft wall angle 22 degree with an upstream pylon of h/D=1.5 mm with a wall angle 29 degree exposed to supersonic flow of Mach number 2 and heat flux of 40 W/cm² and -40 W/cm² modeled for the above study. In the preliminary study, the domain is modeled and validated numerically with a turbulence model of SST k-ω using an HLLC implicit scheme. Both qualitative and quantitative flow data extracted and analyzed using advanced CFD tools. Flow visualization is done using numerical Schlieren method as the fluid medium gives the density variation. The heat flux addition to the wall increases the secondary vortex size of the cavity and removal of energy leads to the reduction in vortex size. The flow field turbulence seems to be increasing at higher heat flux. The shear layer thickness increases as heat flux increases. The steady state analysis of wall pressure shows that there is variation on wall pressure as heat flux increases. Shift in frequency of unsteady wall pressure analysis is an interesting observation for the above study. The time averaged skin friction seems to be reducing at higher heat flux due to the variation in viscosity of fluid inside the cavity.

Keywords: energy addition, frequency shift, Numerical Schlieren, shear layer, vortex evolution

Procedia PDF Downloads 142
18 Landslide Hazard Assessment Using Physically Based Mathematical Models in Agricultural Terraces at Douro Valley in North of Portugal

Authors: C. Bateira, J. Fernandes, A. Costa

Abstract:

The Douro Demarked Region (DDR) is a production Porto wine region. On the NE of Portugal, the strong incision of the Douro valley developed very steep slopes, organized with agriculture terraces, have experienced an intense and deep transformation in order to implement the mechanization of the work. The old terrace system, based on stone vertical wall support structure, replaced by terraces with earth embankments experienced a huge terrace instability. This terrace instability has important economic and financial consequences on the agriculture enterprises. This paper presents and develops cartographic tools to access the embankment instability and identify the area prone to instability. The priority on this evaluation is related to the use of physically based mathematical models and develop a validation process based on an inventory of the past embankment instability. We used the shallow landslide stability model (SHALSTAB) based on physical parameters such us cohesion (c’), friction angle(ф), hydraulic conductivity, soil depth, soil specific weight (ϱ), slope angle (α) and contributing areas by Multiple Flow Direction Method (MFD). A terraced area can be analysed by this models unless we have very detailed information representative of the terrain morphology. The slope angle and the contributing areas depend on that. We can achieve that propose using digital elevation models (DEM) with great resolution (pixel with 40cm side), resulting from a set of photographs taken by a flight at 100m high with pixel resolution of 12cm. The slope angle results from this DEM. In the other hand, the MFD contributing area models the internal flow and is an important element to define the spatial variation of the soil saturation. That internal flow is based on the DEM. That is supported by the statement that the interflow, although not coincident with the superficial flow, have important similitude with it. Electrical resistivity monitoring values which related with the MFD contributing areas build from a DEM of 1m resolution and revealed a consistent correlation. That analysis, performed on the area, showed a good correlation with R2 of 0,72 and 0,76 at 1,5m and 2m depth, respectively. Considering that, a DEM with 1m resolution was the base to model the real internal flow. Thus, we assumed that the contributing area of 1m resolution modelled by MFD is representative of the internal flow of the area. In order to solve this problem we used a set of generalized DEMs to build the contributing areas used in the SHALSTAB. Those DEMs, with several resolutions (1m and 5m), were built from a set of photographs with 50cm resolution taken by a flight with 5km high. Using this maps combination, we modelled several final maps of terrace instability and performed a validation process with the contingency matrix. The best final instability map resembles the slope map from a DEM of 40cm resolution and a MFD map from a DEM of 1m resolution with a True Positive Rate (TPR) of 0,97, a False Positive Rate of 0,47, Accuracy (ACC) of 0,53, Precision (PVC) of 0,0004 and a TPR/FPR ratio of 2,06.

Keywords: agricultural terraces, cartography, landslides, SHALSTAB, vineyards

Procedia PDF Downloads 176
17 A Mathematical Model for Studying Landing Dynamics of a Typical Lunar Soft Lander

Authors: Johns Paul, Santhosh J. Nalluveettil, P. Purushothaman, M. Premdas

Abstract:

Lunar landing is one of the most critical phases of lunar mission. The lander is provided with a soft landing system to prevent structural damage of lunar module by absorbing the landing shock and also assure stability during landing. Presently available software are not capable to simulate the rigid body dynamics coupled with contact simulation and elastic/plastic deformation analysis. Hence a separate mathematical model has been generated for studying the dynamics of a typical lunar soft lander. Parameters used in the analysis includes lunar surface slope, coefficient of friction, initial touchdown velocity (vertical and horizontal), mass and moment of inertia of lander, crushing force due to energy absorbing material in the legs, number of legs and geometry of lander. The mathematical model is capable to simulate plastic and elastic deformation of honey comb, frictional force between landing leg and lunar soil, surface contact simulation, lunar gravitational force, rigid body dynamics and linkage dynamics of inverted tripod landing gear. The non linear differential equations generated for studying the dynamics of lunar lander is solved by numerical method. Matlab programme has been used as a computer tool for solving the numerical equations. The position of each kinematic joint is defined by mathematical equations for the generation of equation of motion. All hinged locations are defined by position vectors with respect to body fixed coordinate. The vehicle rigid body rotations and motions about body coordinate are only due to the external forces and moments arise from footpad reaction force due to impact, footpad frictional force and weight of vehicle. All these force are mathematically simulated for the generation of equation of motion. The validation of mathematical model is done by two different phases. First phase is the validation of plastic deformation of crushable elements by employing conservation of energy principle. The second phase is the validation of rigid body dynamics of model by simulating a lander model in ADAMS software after replacing the crushable elements to elastic spring element. Simulation of plastic deformation along with rigid body dynamics and contact force cannot be modeled in ADAMS. Hence plastic element of primary strut is replaced with a spring element and analysis is carried out in ADAMS software. The same analysis is also carried out using the mathematical model where the simulation of honeycomb crushing is replaced by elastic spring deformation and compared the results with ADAMS analysis. The rotational motion of linkages and 6 degree of freedom motion of lunar Lander about its CG can be validated by ADAMS software by replacing crushing element to spring element. The model is also validated by the drop test results of 4 leg lunar lander. This paper presents the details of mathematical model generated and its validation.

Keywords: honeycomb, landing leg tripod, lunar lander, primary link, secondary link

Procedia PDF Downloads 350
16 Study of Biomechanical Model for Smart Sensor Based Prosthetic Socket Design System

Authors: Wei Xu, Abdo S. Haidar, Jianxin Gao

Abstract:

Prosthetic socket is a component that connects the residual limb of an amputee with an artificial prosthesis. It is widely recognized as the most critical component that determines the comfort of a patient when wearing the prosthesis in his/her daily activities. Through the socket, the body weight and its associated dynamic load are distributed and transmitted to the prosthesis during walking, running or climbing. In order to achieve a good-fit socket for an individual amputee, it is essential to obtain the biomechanical properties of the residual limb. In current clinical practices, this is achieved by a touch-and-feel approach which is highly subjective. Although there have been significant advancements in prosthetic technologies such as microprocessor controlled knee and ankle joints in the last decade, the progress in designing a comfortable socket has been rather limited. This means that the current process of socket design is still very time-consuming, and highly dependent on the expertise of the prosthetist. Supported by the state-of-the-art sensor technologies and numerical simulations, a new socket design system is being developed to help prosthetists achieve rapid design of comfortable sockets for above knee amputees. This paper reports the research work related to establishing biomechanical models for socket design. Through numerical simulation using finite element method, comprehensive relationships between pressure on residual limb and socket geometry were established. This allowed local topological adjustment for the socket so as to optimize the pressure distributions across the residual limb. When the full body weight of a patient is exerted on the residual limb, high pressures and shear forces between the residual limb and the socket occur. During numerical simulations, various hyperplastic models, namely Ogden, Yeoh and Mooney-Rivlin, were used, and their effectiveness in representing the biomechanical properties of soft tissues of the residual limb was evaluated. This also involved reverse engineering, which resulted in an optimal representative model under compression test. To validate the simulation results, a range of silicone models were fabricated. They were tested by an indentation device which yielded the force-displacement relationships. Comparisons of results obtained from FEA simulations and experimental tests showed that the Ogden model did not fit well the soft tissue material indentation data, while the Yeoh model gave the best representation of the soft tissue mechanical behavior under indentation. Compared with hyperplastic model, the result showed that elastic model also had significant errors. In addition, normal and shear stress distributions on the surface of the soft tissue model were obtained. The effect of friction in compression testing and the influence of soft tissue stiffness and testing boundary conditions were also analyzed. All these have contributed to the overall goal of designing a good-fit socket for individual above knee amputees.

Keywords: above knee amputee, finite element simulation, hyperplastic model, prosthetic socket

Procedia PDF Downloads 203
15 Research on the Effect of Coal Ash Slag Structure Evolution on Its Flow Behavior During Co-gasification of Coal and Indirect Coal Liquefaction Residue

Authors: Linmin Zhang

Abstract:

Entrained-flow gasification technology is considered the most promising gasification technology because of its clean and efficient utilization characteristics. The stable fluidity of slag at high temperatures is the key to affecting the long-period operation of the gasifier. The diversity and differences of coal ash-slag systems make it difficult to meet the requirements for stable slagging in entrained-flow gasifiers. Therefore, coal blending or adding fluxes has been used in industry for a long time to improve the flow behavior of coal ash. As a by-product of the indirect coal liquefaction process, indirect coal liquefaction residue (ICLR) is a kind of industrial solid waste that is usually disposed of by stacking or landfilling. However, this disposal method will not only occupy land resources but also cause serious pollution to soil and water bodies by leachate containing toxic and harmful metals. As a carbon-containing matrix, ICLR is not only a kind of waste but also a kind of energy substance. Utilizing existing industrial gasifiers to blend combustion ICLR can not only transform industrial solid waste into fuel but also save coal resources. Moreover, the ICLR usually contains a unique ash chemical composition different from coal, which will affect the slagging performance of the gasifier. Therefore, exploring the effect of the ash addition in ICLR on the coal ash flow behavior can not only improve the slagging performance and gasification efficiency of entrained-flow gasifier by using the unique ash chemical composition of ICLR but also provide some theoretical support for the large-scale consumption of industrial solid waste. Combining molecular dynamics simulation with Raman spectroscopy experiment, the effect of ICLR addition on slag structure and fluidity was explained, and the relationship between the evolution law of slag short/medium range microstructure and macroscopic flow behavior was discussed. The research found that the high silicon and aluminum content in coal ash led to the formation of complex [SiO₄]⁴- tetrahedron and [AlO₄]⁵- tetrahedron structures at high temperature, and the [SiO₄]⁴- tetrahedron and [AlO₄]⁵- tetrahedron were connected by oxygen atoms to form a multi-membered ring structure with high polymerization degree. Due to the action of the multi-membered ring structure, the internal friction in the slag increased, and the viscosity value was higher on the macro-level. As a network-modified ion, Fe2+ could replace Si4+ and Al3+ in the multi-membered ring structure and combine with O2-, which will destroy the bridge oxygen (BO) structure and transform more complex tri cluster oxygen (TO) and bridge oxygen (BO) into simple non-bridge oxygen (NBO) structure. As a result, a large number of multi-membered rings with high polymerization degrees were depolymerized into low-membered rings with low polymerization degrees. The evolution of oxygen types and ring structures in slag reduced the structure complexity and polymerization degree of coal ash slag, resulting in a decrease in the viscosity of coal ash slag.

Keywords: ash slag, coal gasification, fluidity, industrial solid waste, slag structure

Procedia PDF Downloads 29
14 Investigation of Software Integration for Simulations of Buoyancy-Driven Heat Transfer in a Vehicle Underhood during Thermal Soak

Authors: R. Yuan, S. Sivasankaran, N. Dutta, K. Ebrahimi

Abstract:

This paper investigates the software capability and computer-aided engineering (CAE) method of modelling transient heat transfer process occurred in the vehicle underhood region during vehicle thermal soak phase. The heat retention from the soak period will be beneficial to the cold start with reduced friction loss for the second 14°C worldwide harmonized light-duty vehicle test procedure (WLTP) cycle, therefore provides benefits on both CO₂ emission reduction and fuel economy. When vehicle undergoes soak stage, the airflow and the associated convective heat transfer around and inside the engine bay is driven by the buoyancy effect. This effect along with thermal radiation and conduction are the key factors to the thermal simulation of the engine bay to obtain the accurate fluids and metal temperature cool-down trajectories and to predict the temperatures at the end of the soak period. Method development has been investigated in this study on a light-duty passenger vehicle using coupled aerodynamic-heat transfer thermal transient modelling method for the full vehicle under 9 hours of thermal soak. The 3D underhood flow dynamics were solved inherently transient by the Lattice-Boltzmann Method (LBM) method using the PowerFlow software. This was further coupled with heat transfer modelling using the PowerTHERM software provided by Exa Corporation. The particle-based LBM method was capable of accurately handling extremely complicated transient flow behavior on complex surface geometries. The detailed thermal modelling, including heat conduction, radiation, and buoyancy-driven heat convection, were integrated solved by PowerTHERM. The 9 hours cool-down period was simulated and compared with the vehicle testing data of the key fluid (coolant, oil) and metal temperatures. The developed CAE method was able to predict the cool-down behaviour of the key fluids and components in agreement with the experimental data and also visualised the air leakage paths and thermal retention around the engine bay. The cool-down trajectories of the key components obtained for the 9 hours thermal soak period provide vital information and a basis for the further development of reduced-order modelling studies in future work. This allows a fast-running model to be developed and be further imbedded with the holistic study of vehicle energy modelling and thermal management. It is also found that the buoyancy effect plays an important part at the first stage of the 9 hours soak and the flow development during this stage is vital to accurately predict the heat transfer coefficients for the heat retention modelling. The developed method has demonstrated the software integration for simulating buoyancy-driven heat transfer in a vehicle underhood region during thermal soak with satisfying accuracy and efficient computing time. The CAE method developed will allow integration of the design of engine encapsulations for improving fuel consumption and reducing CO₂ emissions in a timely and robust manner, aiding the development of low-carbon transport technologies.

Keywords: ATCT/WLTC driving cycle, buoyancy-driven heat transfer, CAE method, heat retention, underhood modeling, vehicle thermal soak

Procedia PDF Downloads 152
13 Optimization of Metal Pile Foundations for Solar Power Stations Using Cone Penetration Test Data

Authors: Adrian Priceputu, Elena Mihaela Stan

Abstract:

Our research addresses a critical challenge in renewable energy: improving efficiency and reducing the costs associated with the installation of ground-mounted photovoltaic (PV) panels. The most commonly used foundation solution is metal piles - with various sections adapted to soil conditions and the structural model of the panels. However, direct foundation systems are also sometimes used, especially in brownfield sites. Although metal micropiles are generally the first design option, understanding and predicting their bearing capacity, particularly under varied soil conditions, remains an open research topic. CPT Method and Current Challenges: Metal piles are favored for PV panel foundations due to their adaptability, but existing design methods rely heavily on costly and time-consuming in situ tests. The Cone Penetration Test (CPT) offers a more efficient alternative by providing valuable data on soil strength, stratification, and other key characteristics with reduced resources. During the test, a cone-shaped probe is pushed into the ground at a constant rate. Sensors within the probe measure the resistance of the soil to penetration, divided into cone penetration resistance and shaft friction resistance. Despite some existing CPT-based design approaches for metal piles, these methods are often cumbersome and difficult to apply. They vary significantly due to soil type and foundation method, and traditional approaches like the LCPC method involve complex calculations and extensive empirical data. The method was developed by testing 197 piles on a wide range of ground conditions, but the tested piles were very different from the ones used for PV pile foundations, making the method less accurate and practical for steel micropiles. Project Objectives and Methodology: Our research aims to develop a calculation method for metal micropile foundations using CPT data, simplifying the complex relationships involved. The goal is to estimate the pullout bearing capacity of piles without additional laboratory tests, streamlining the design process. To achieve this, a case study was selected which will serve for the development of an 80ha solar power station. Four testing locations were chosen spread throughout the site. At each location, two types of steel profiles (H160 and C100) were embedded into the ground at various depths (1.5m and 2.0m). The piles were tested for pullout capacity under natural and inundated soil conditions. CPT tests conducted nearby served as calibration points. The results served for the development of a preliminary equation for estimating pullout capacity. Future Work: The next phase involves validating and refining the proposed equation on additional sites by comparing CPT-based forecasts with in situ pullout tests. This validation will enhance the accuracy and reliability of the method, potentially transforming the foundation design process for PV panels.

Keywords: cone penetration test, foundation optimization, solar power stations, steel pile foundations

Procedia PDF Downloads 53
12 Backward-Facing Step Measurements at Different Reynolds Numbers Using Acoustic Doppler Velocimetry

Authors: Maria Amelia V. C. Araujo, Billy J. Araujo, Brian Greenwood

Abstract:

The flow over a backward-facing step is characterized by the presence of flow separation, recirculation and reattachment, for a simple geometry. This type of fluid behaviour takes place in many practical engineering applications, hence the reason for being investigated. Historically, fluid flows over a backward-facing step have been examined in many experiments using a variety of measuring techniques such as laser Doppler velocimetry (LDV), hot-wire anemometry, particle image velocimetry or hot-film sensors. However, some of these techniques cannot conveniently be used in separated flows or are too complicated and expensive. In this work, the applicability of the acoustic Doppler velocimetry (ADV) technique is investigated to such type of flows, at various Reynolds numbers corresponding to different flow regimes. The use of this measuring technique in separated flows is very difficult to find in literature. Besides, most of the situations where the Reynolds number effect is evaluated in separated flows are in numerical modelling. The ADV technique has the advantage in providing nearly non-invasive measurements, which is important in resolving turbulence. The ADV Nortek Vectrino+ was used to characterize the flow, in a recirculating laboratory flume, at various Reynolds Numbers (Reh = 3738, 5452, 7908 and 17388) based on the step height (h), in order to capture different flow regimes, and the results compared to those obtained using other measuring techniques. To compare results with other researchers, the step height, expansion ratio and the positions upstream and downstream the step were reproduced. The post-processing of the AVD records was performed using a customized numerical code, which implements several filtering techniques. Subsequently, the Vectrino noise level was evaluated by computing the power spectral density for the stream-wise horizontal velocity component. The normalized mean stream-wise velocity profiles, skin-friction coefficients and reattachment lengths were obtained for each Reh. Turbulent kinetic energy, Reynolds shear stresses and normal Reynolds stresses were determined for Reh = 7908. An uncertainty analysis was carried out, for the measured variables, using the moving block bootstrap technique. Low noise levels were obtained after implementing the post-processing techniques, showing their effectiveness. Besides, the errors obtained in the uncertainty analysis were relatively low, in general. For Reh = 7908, the normalized mean stream-wise velocity and turbulence profiles were compared directly with those acquired by other researchers using the LDV technique and a good agreement was found. The ADV technique proved to be able to characterize the flow properly over a backward-facing step, although additional caution should be taken for measurements very close to the bottom. The ADV measurements showed reliable results regarding: a) the stream-wise velocity profiles; b) the turbulent shear stress; c) the reattachment length; d) the identification of the transition from transitional to turbulent flows. Despite being a relatively inexpensive technique, acoustic Doppler velocimetry can be used with confidence in separated flows and thus very useful for numerical model validation. However, it is very important to perform adequate post-processing of the acquired data, to obtain low noise levels, thus decreasing the uncertainty.

Keywords: ADV, experimental data, multiple Reynolds number, post-processing

Procedia PDF Downloads 146
11 Best Practices and Recommendations for CFD Simulation of Hydraulic Spool Valves

Authors: Jérémy Philippe, Lucien Baldas, Batoul Attar, Jean-Charles Mare

Abstract:

The proposed communication deals with the research and development of a rotary direct-drive servo valve for aerospace applications. A key challenge of the project is to downsize the electromagnetic torque motor by reducing the torque required to drive the rotary spool. It is intended to optimize the spool and the sleeve geometries by combining a Computational Fluid Dynamics (CFD) approach with commercial optimization software. The present communication addresses an important phase of the project, which consists firstly of gaining confidence in the simulation results. It is well known that the force needed to pilot a sliding spool valve comes from several physical effects: hydraulic forces, friction and inertia/mass of the moving assembly. Among them, the flow force is usually a major contributor to the steady-state (or Root Mean Square) driving torque. In recent decades, CFD has gradually become a standard simulation tool for studying fluid-structure interactions. However, in the particular case of high-pressure valve design, the authors have experienced that the calculated overall hydraulic force depends on the parameterization and options used to build and run the CFD model. To solve this issue, the authors have selected the standard case of the linear spool valve, which is addressed in detail in numerous scientific references (analytical models, experiments, CFD simulations). The first CFD simulations run by the authors have shown that the evolution of the equivalent discharge coefficient vs. Reynolds number at the metering orifice corresponds well to the values that can be predicted by the classical analytical models. Oppositely, the simulated flow force was found to be quite different from the value calculated analytically. This drove the authors to investigate minutely the influence of the studied domain and the setting of the CFD simulation. It was firstly shown that the flow recirculates in the inlet and outlet channels if their length is not sufficient regarding their hydraulic diameter. The dead volume on the uncontrolled orifice side also plays a significant role. These examples highlight the influence of the geometry of the fluid domain considered. The second action was to investigate the influence of the type of mesh, the turbulence models and near-wall approaches, and the numerical solver and discretization scheme order. Two approaches were used to determine the overall hydraulic force acting on the moving spool. First, the force was deduced from the momentum balance on a control domain delimited by the valve inlet and outlet and the spool walls. Second, the overall hydraulic force was calculated from the integral of pressure and shear forces acting at the boundaries of the fluid domain. This underlined the significant contribution of the viscous forces acting on the spool between the inlet and outlet orifices, which are generally not considered in the literature. This also emphasized the influence of the choices made for the implementation of CFD calculation and results analysis. With the step-by-step process adopted to increase confidence in the CFD simulations, the authors propose a set of best practices and recommendations for the efficient use of CFD to design high-pressure spool valves.

Keywords: computational fluid dynamics, hydraulic forces, servovalve, rotary servovalve

Procedia PDF Downloads 42
10 Thermal Characterisation of Multi-Coated Lightweight Brake Rotors for Passenger Cars

Authors: Ankit Khurana

Abstract:

The sufficient heat storage capacity or ability to dissipate heat is the most decisive parameter to have an effective and efficient functioning of Friction-based Brake Disc systems. The primary aim of the research was to analyse the effect of multiple coatings on lightweight disk rotors surface which not only alleviates the mass of vehicle & also, augments heat transfer. This research is projected to aid the automobile fraternity with an enunciated view over the thermal aspects in a braking system. The results of the project indicate that with the advent of modern coating technologies a brake system’s thermal curtailments can be removed and together with forced convection, heat transfer processes can see a drastic improvement leading to increased lifetime of the brake rotor. Other advantages of modifying the surface of a lightweight rotor substrate will be to reduce the overall weight of the vehicle, decrease the risk of thermal brake failure (brake fade and fluid vaporization), longer component life, as well as lower noise and vibration characteristics. A mathematical model was constructed in MATLAB which encompassing the various thermal characteristics of the proposed coatings and substrate materials required to approximate the heat flux values in a free and forced convection environment; resembling to a real-time braking phenomenon which could easily be modelled into a full cum scaled version of the alloy brake rotor part in ABAQUS. The finite element of a brake rotor was modelled in a constrained environment such that the nodal temperature between the contact surfaces of the coatings and substrate (Wrought Aluminum alloy) resemble an amalgamated solid brake rotor element. The initial results obtained were for a Plasma Electrolytic Oxidized (PEO) substrate wherein the Aluminum alloy gets a hard ceramic oxide layer grown on its transitional phase. The rotor was modelled and then evaluated in real-time for a constant ‘g’ braking event (based upon the mathematical heat flux input and convective surroundings), which reflected the necessity to deposit a conducting coat (sacrificial) above the PEO layer in order to inhibit thermal degradation of the barrier coating prematurely. Taguchi study was then used to bring out certain critical factors which may influence the maximum operating temperature of a multi-coated brake disc by simulating brake tests: a) an Alpine descent lasting 50 seconds; b) an Autobahn stop lasting 3.53 seconds; c) a Six–high speed repeated stop in accordance to FMVSS 135 lasting 46.25 seconds. Thermal Barrier coating thickness and Vane heat transfer coefficient were the two most influential factors and owing to their design and manufacturing constraints a final optimized model was obtained which survived the 6-high speed stop test as per the FMVSS -135 specifications. The simulation data highlighted the merits for preferring Wrought Aluminum alloy 7068 over Grey Cast Iron and Aluminum Metal Matrix Composite in coherence with the multiple coating depositions.

Keywords: lightweight brakes, surface modification, simulated braking, PEO, aluminum

Procedia PDF Downloads 407
9 Impact of Marangoni Stress and Mobile Surface Charge on Electrokinetics of Ionic Liquids Over Hydrophobic Surfaces

Authors: Somnath Bhattacharyya

Abstract:

The mobile adsorbed surface charge on hydrophobic surfaces can modify the velocity slip condition as well as create a Marangoni stress at the interface. The functionalized hydrophobic walls of micro/nanopores, e.g., graphene nanochannels, may possess physio-sorbed ions. The lateral mobility of the physisorbed absorbed ions creates a friction force as well as an electric force, leading to a modification in the velocity slip condition at the hydrophobic surface. In addition, the non-uniform distribution of these surface ions creates a surface tension gradient, leading to a Marangoni stress. The impact of the mobile surface charge on streaming potential and electrochemical energy conversion efficiency in a pressure-driven flow of ionized liquid through the nanopore is addressed. Also, enhanced electro-osmotic flow through the hydrophobic nanochannel is also analyzed. The mean-filed electrokinetic model is modified to take into account the short-range non-electrostatic steric interactions and the long-range Coulomb correlations. The steric interaction is modeled by considering the ions as charged hard spheres of finite radius suspended in the electrolyte medium. The electrochemical potential is modified by including the volume exclusion effect, which is modeled based on the BMCSL equation of state. The electrostatic correlation is accounted for in the ionic self-energy. The extremal of the self-energy leads to a fourth-order Poisson equation for the electric field. The ion transport is governed by the modified Nernst-Planck equation, which includes the ion steric interactions; born force arises due to the spatial variation of the dielectric permittivity and the dielectrophoretic force on the hydrated ions. This ion transport equation is coupled with the Navier-Stokes equation describing the flow of the ionized fluid and the 3fourth-order Poisson equation for the electric field. We numerically solve the coupled set of nonlinear governing equations along with the prescribed boundary conditions by adopting a control volume approach over a staggered grid arrangement. In the staggered grid arrangements, velocity components are stored on the midpoint of the cell faces to which they are normal, whereas the remaining scalar variables are stored at the center of each cell. The convection and electromigration terms are discretized at each interface of the control volumes using the total variation diminishing (TVD) approach to capture the strong convection resulting from the highly enhanced fluid flow due to the modified model. In order to link pressure to the continuity equation, we adopt a pressure correction-based iterative SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) algorithm, in which the discretized continuity equation is converted to a Poisson equation involving pressure correction terms. Our results show that the physisorbed ions on a hydrophobic surface create an enhanced slip velocity when streaming potential, which enhances the convection current. However, the electroosmotic flow attenuates due to the mobile surface ions.

Keywords: microfluidics, electroosmosis, streaming potential, electrostatic correlation, finite sized ions

Procedia PDF Downloads 70
8 How the Writer Tells the Story Should Be the Primary Concern rather than Who Can Write about Whom: The Limits of Cultural Appropriation Vis-à-Vis The Ethics of Narrative Empathy

Authors: Alexandra Cheira

Abstract:

Cultural appropriation has been theorised as a form of colonialism in which members of a dominant culture reduce cultural elements that are deeply meaningful to a minority culture to the category of the “exotic other” since they do not experience the oppression and discriminations faced by members of the minority culture. Yet, in the particular case of literature, writers such as Lionel Shriver and Bernardine Evaristo have argued that authors from a cultural majority have a right to write in the voice of someone from a cultural minority, hence attacking the idea that this is a form of cultural appropriation. By definition, Shriver and Evaristo claim, writers are supposed to write beyond their own culture, gender, class, and/ or race. In this light, this paper discusses the limits of cultural appropriation vis-à-vis the ethics of narrative empathy by addressing the mixed critical reception of Kathryn Stockett’s The Help (2009) and Jeanine Cummins’s American Dirt (2020). In fact, both novels were acclaimed as global eye-openers regarding the struggles of respectively South American migrants and African American maids. At the same time, both novelists have been accused of cultural appropriation by telling a story that is not theirs to tell, given the fact that they are white women telling these stories in what critics have argued is really an American voice telling a story to American readers.These claims will be investigated within the framework of Edward Said’s foundational examination of Orientalism in the field of postcolonial studies as a Western style for authoritatively restructuring the Orient. This means that Orientalist stereotypes regarding Eastern cultures have implicitly validated colonial and imperial pursuits, in the specific context of literary representations of African American and Mexican cultures by white writers. At the same time, the conflicted reception of American Dirt and The Help will be examined within the critical framework of narrative empathy as theorised by Suzanne Keen. Hence, there will be a particular focus on the way a reader’s heated perception that the author’s perspective is purely dishonest can result from a friction between an author’s intention and a reader’s experience of narrative empathy, while a shared sense of empathy between authors and readers can be a rousing momentum to move beyond literary response to social action.Finally, in order to assess that “the key question should not be who can write about whom, but how the writer tells the story”, the recent controversy surrounding Dutch author Marieke Lucas Rijneveld’s decision to resign the translation of American poet Amanda Gorman’s work into Dutch will be duly investigated. In fact, Rijneveld stepped out after journalist and activist Janice Deul criticised Dutch publisher Meulenhoff for choosing a translator who was not also Black, despite the fact that 22-year-old Gorman had selected the 29-year-old Rijneveld herself, as a fellow young writer who had likewise come to fame early on in life. In this light, the critical argument that the controversial reception of The Help reveals as much about US race relations in the early twenty-first century as about the complex literary transactions between individual readers and the novel itself will also be discussed in the extended context of American Dirt and white author Marieke Rijneveld’s withdrawal from the projected translation of Black poet Amanda Gorman.

Keywords: cultural appropriation, cultural stereotypes, narrative empathy, race relations

Procedia PDF Downloads 68
7 The Ductile Fracture of Armor Steel Targets Subjected to Ballistic Impact and Perforation: Calibration of Four Damage Criteria

Authors: Imen Asma Mbarek, Alexis Rusinek, Etienne Petit, Guy Sutter, Gautier List

Abstract:

Over the past two decades, the automotive, aerospace and army industries have been paying an increasing attention to Finite Elements (FE) numerical simulations of the fracture process of their structures. Thanks to the numerical simulations, it is nowadays possible to analyze several problems involving costly and dangerous extreme loadings safely and at a reduced cost such as blast or ballistic impact problems. The present paper is concerned with ballistic impact and perforation problems involving ductile fracture of thin armor steel targets. The target fracture process depends usually on various parameters: the projectile nose shape, the target thickness and its mechanical properties as well as the impact conditions (friction, oblique/normal impact...). In this work, the investigations are concerned with the normal impact of a conical head-shaped projectile on thin armor steel targets. The main aim is to establish a comparative study of four fracture criteria that are commonly used in the fracture process simulations of structures subjected to extreme loadings such as ballistic impact and perforation. Usually, the damage initiation results from a complex physical process that occurs at the micromechanical scale. On a macro scale and according to the following fracture models, the variables on which the fracture depends are mainly the stress triaxiality ƞ, the strain rate, temperature T, and eventually the Lode angle parameter Ɵ. The four failure criteria are: the critical strain to failure model, the Johnson-Cook model, the Wierzbicki model and the Modified Hosford-Coulomb model MHC. Using the SEM, the observations of the fracture facies of tension specimen and of armor steel targets impacted at low and high incident velocities show that the fracture of the specimens is a ductile fracture. The failure mode of the targets is petalling with crack propagation and the fracture facies are covered with micro-cavities. The parameters of each ductile fracture model have been identified for three armor steels and the applicability of each criterion was evaluated using experimental investigations coupled to numerical simulations. Two loading paths were investigated in this study, under a wide range of strain rates. Namely, quasi-static and intermediate uniaxial tension and quasi-static and dynamic double shear testing allow covering various values of stress triaxiality ƞ and of the Lode angle parameter Ɵ. All experiments were conducted on three different armor steel specimen under quasi-static strain rates ranging from 10-4 to 10-1 1/s and at three different temperatures ranging from 297K to 500K, allowing drawing the influence of temperature on the fracture process. Intermediate tension testing was coupled to dynamic double shear experiments conducted on the Hopkinson tube device, allowing to spot the effect of high strain rate on the damage evolution and the crack propagation. The aforementioned fracture criteria are implemented into the FE code ABAQUS via VUMAT subroutine and they were coupled to suitable constitutive relations allow having reliable results of ballistic impact problems simulation. The calibration of the four damage criteria as well as a concise evaluation of the applicability of each criterion are detailed in this work.

Keywords: armor steels, ballistic impact, damage criteria, ductile fracture, SEM

Procedia PDF Downloads 312
6 Laboratory and Numerical Hydraulic Modelling of Annular Pipe Electrocoagulation Reactors

Authors: Alejandra Martin-Dominguez, Javier Canto-Rios, Velitchko Tzatchkov

Abstract:

Electrocoagulation is a water treatment technology that consists of generating coagulant species in situ by electrolytic oxidation of sacrificial anode materials triggered by electric current. It removes suspended solids, heavy metals, emulsified oils, bacteria, colloidal solids and particles, soluble inorganic pollutants and other contaminants from water, offering an alternative to the use of metal salts or polymers and polyelectrolyte addition for breaking stable emulsions and suspensions. The method essentially consists of passing the water being treated through pairs of consumable conductive metal plates in parallel, which act as monopolar electrodes, commonly known as ‘sacrificial electrodes’. Physicochemical, electrochemical and hydraulic processes are involved in the efficiency of this type of treatment. While the physicochemical and electrochemical aspects of the technology have been extensively studied, little is known about the influence of the hydraulics. However, the hydraulic process is fundamental for the reactions that take place at the electrode boundary layers and for the coagulant mixing. Electrocoagulation reactors can be open (with free water surface) and closed (pressurized). Independently of the type of rector, hydraulic head loss is an important factor for its design. The present work focuses on the study of the total hydraulic head loss and flow velocity and pressure distribution in electrocoagulation reactors with single or multiple concentric annular cross sections. An analysis of the head loss produced by hydraulic wall shear friction and accessories (minor head losses) is presented, and compared to the head loss measured on a semi-pilot scale laboratory model for different flow rates through the reactor. The tests included laminar, transitional and turbulent flow. The observed head loss was compared also to the head loss predicted by several known conceptual theoretical and empirical equations, specific for flow in concentric annular pipes. Four single concentric annular cross section and one multiple concentric annular cross section reactor configuration were studied. The theoretical head loss resulted higher than the observed in the laboratory model in some of the tests, and lower in others of them, depending also on the assumed value for the wall roughness. Most of the theoretical models assume that the fluid elements in all annular sections have the same velocity, and that flow is steady, uniform and one-dimensional, with the same pressure and velocity profiles in all reactor sections. To check the validity of such assumptions, a computational fluid dynamics (CFD) model of the concentric annular pipe reactor was implemented using the ANSYS Fluent software, demonstrating that pressure and flow velocity distribution inside the reactor actually is not uniform. Based on the analysis, the equations that predict better the head loss in single and multiple annular sections were obtained. Other factors that may impact the head loss, such as the generation of coagulants and gases during the electrochemical reaction, the accumulation of hydroxides inside the reactor, and the change of the electrode material with time, are also discussed. The results can be used as tools for design and scale-up of electrocoagulation reactors, to be integrated into new or existing water treatment plants.

Keywords: electrocoagulation reactors, hydraulic head loss, concentric annular pipes, computational fluid dynamics model

Procedia PDF Downloads 217
5 Nonlinear Homogenized Continuum Approach for Determining Peak Horizontal Floor Acceleration of Old Masonry Buildings

Authors: Andreas Rudisch, Ralf Lampert, Andreas Kolbitsch

Abstract:

It is a well-known fact among the engineering community that earthquakes with comparatively low magnitudes can cause serious damage to nonstructural components (NSCs) of buildings, even when the supporting structure performs relatively well. Past research works focused mainly on NSCs of nuclear power plants and industrial plants. Particular attention should also be given to architectural façade elements of old masonry buildings (e.g. ornamental figures, balustrades, vases), which are very vulnerable under seismic excitation. Large numbers of these historical nonstructural components (HiNSCs) can be found in highly frequented historical city centers and in the event of failure, they pose a significant danger to persons. In order to estimate the vulnerability of acceleration sensitive HiNSCs, the peak horizontal floor acceleration (PHFA) is used. The PHFA depends on the dynamic characteristics of the building, the ground excitation, and induced nonlinearities. Consequently, the PHFA can not be generalized as a simple function of height. In the present research work, an extensive case study was conducted to investigate the influence of induced nonlinearity on the PHFA for old masonry buildings. Probabilistic nonlinear FE time-history analyses considering three different hazard levels were performed. A set of eighteen synthetically generated ground motions was used as input to the structure models. An elastoplastic macro-model (multiPlas) for nonlinear homogenized continuum FE-calculation was calibrated to multiple scales and applied, taking specific failure mechanisms of masonry into account. The macro-model was calibrated according to the results of specific laboratory and cyclic in situ shear tests. The nonlinear macro-model is based on the concept of multi-surface rate-independent plasticity. Material damage or crack formation are detected by reducing the initial strength after failure due to shear or tensile stress. As a result, shear forces can only be transmitted to a limited extent by friction when the cracking begins. The tensile strength is reduced to zero. The first goal of the calibration was the consistency of the load-displacement curves between experiment and simulation. The calibrated macro-model matches well with regard to the initial stiffness and the maximum horizontal load. Another goal was the correct reproduction of the observed crack image and the plastic strain activities. Again the macro-model proved to work well in this case and shows very good correlation. The results of the case study show that there is significant scatter in the absolute distribution of the PHFA between the applied ground excitations. An absolute distribution along the normalized building height was determined in the framework of probability theory. It can be observed that the extent of nonlinear behavior varies for the three hazard levels. Due to the detailed scope of the present research work, a robust comparison with code-recommendations and simplified PHFA distributions are possible. The chosen methodology offers a chance to determine the distribution of PHFA along the building height of old masonry structures. This permits a proper hazard assessment of HiNSCs under seismic loads.

Keywords: nonlinear macro-model, nonstructural components, time-history analysis, unreinforced masonry

Procedia PDF Downloads 167
4 The Use of the TRIGRS Model and Geophysics Methodologies to Identify Landslides Susceptible Areas: Case Study of Campos do Jordao-SP, Brazil

Authors: Tehrrie Konig, Cassiano Bortolozo, Daniel Metodiev, Rodolfo Mendes, Marcio Andrade, Marcio Moraes

Abstract:

Gravitational mass movements are recurrent events in Brazil, usually triggered by intense rainfall. When these events occur in urban areas, they end up becoming disasters due to the economic damage, social impact, and loss of human life. To identify the landslide-susceptible areas, it is important to know the geotechnical parameters of the soil, such as cohesion, internal friction angle, unit weight, hydraulic conductivity, and hydraulic diffusivity. The measurement of these parameters is made by collecting soil samples to analyze in the laboratory and by using geophysical methodologies, such as Vertical Electrical Survey (VES). The geophysical surveys analyze the soil properties with minimal impact in its initial structure. Statistical analysis and mathematical models of physical basis are used to model and calculate the Factor of Safety for steep slope areas. In general, such mathematical models work from the combination of slope stability models and hydrological models. One example is the mathematical model TRIGRS (Transient Rainfall Infiltration and Grid-based Regional Slope- Stability Model) which calculates the variation of the Factor of Safety of a determined study area. The model relies on changes in pore-pressure and soil moisture during a rainfall event. TRIGRS was written in the Fortran programming language and associates the hydrological model, which is based on the Richards Equation, with the stability model based on the principle of equilibrium limit. Therefore, the aims of this work are modeling the slope stability of Campos do Jordão with TRIGRS, using geotechnical and geophysical methodologies to acquire the soil properties. The study area is located at southern-east of Sao Paulo State in the Mantiqueira Mountains and has a historic landslide register. During the fieldwork, soil samples were collected, and the VES method applied. These procedures provide the soil properties, which were used as input data in the TRIGRS model. The hydrological data (infiltration rate and initial water table height) and rainfall duration and intensity, were acquired from the eight rain gauges installed by Cemaden in the study area. A very high spatial resolution digital terrain model was used to identify the slopes declivity. The analyzed period is from March 6th to March 8th of 2017. As results, the TRIGRS model calculates the variation of the Factor of Safety within a 72-hour period in which two heavy rainfall events stroke the area and six landslides were registered. After each rainfall, the Factor of Safety declined, as expected. The landslides happened in areas identified by the model with low values of Factor of Safety, proving its efficiency on the identification of landslides susceptible areas. This study presents a critical threshold for landslides, in which an accumulated rainfall higher than 80mm/m² in 72 hours might trigger landslides in urban and natural slopes. The geotechnical and geophysics methods are shown to be very useful to identify the soil properties and provide the geological characteristics of the area. Therefore, the combine geotechnical and geophysical methods for soil characterization and the modeling of landslides susceptible areas with TRIGRS are useful for urban planning. Furthermore, early warning systems can be developed by combining the TRIGRS model and weather forecast, to prevent disasters in urban slopes.

Keywords: landslides, susceptibility, TRIGRS, vertical electrical survey

Procedia PDF Downloads 171
3 ARGO: An Open Designed Unmanned Surface Vehicle Mapping Autonomous Platform

Authors: Papakonstantinou Apostolos, Argyrios Moustakas, Panagiotis Zervos, Dimitrios Stefanakis, Manolis Tsapakis, Nektarios Spyridakis, Mary Paspaliari, Christos Kontos, Antonis Legakis, Sarantis Houzouris, Konstantinos Topouzelis

Abstract:

For years unmanned and remotely operated robots have been used as tools in industry research and education. The rapid development and miniaturization of sensors that can be attached to remotely operated vehicles in recent years allowed industry leaders and researchers to utilize them as an affordable means for data acquisition in air, land, and sea. Despite the recent developments in the ground and unmanned airborne vehicles, a small number of Unmanned Surface Vehicle (USV) platforms are targeted for mapping and monitoring environmental parameters for research and industry purposes. The ARGO project is developed an open-design USV equipped with multi-level control hardware architecture and state-of-the-art sensors and payloads for the autonomous monitoring of environmental parameters in large sea areas. The proposed USV is a catamaran-type USV controlled over a wireless radio link (5G) for long-range mapping capabilities and control for a ground-based control station. The ARGO USV has a propulsion control using 2x fully redundant electric trolling motors with active vector thrust for omnidirectional movement, navigation with opensource autopilot system with high accuracy GNSS device, and communication with the 2.4Ghz digital link able to provide 20km of Line of Sight (Los) range distance. The 3-meter dual hull design and composite structure offer well above 80kg of usable payload capacity. Furthermore, sun and friction energy harvesting methods provide clean energy to the propulsion system. The design is highly modular, where each component or payload can be replaced or modified according to the desired task (industrial or research). The system can be equipped with Multiparameter Sonde, measuring up to 20 water parameters simultaneously, such as conductivity, salinity, turbidity, dissolved oxygen, etc. Furthermore, a high-end multibeam echo sounder can be installed in a specific boat datum for shallow water high-resolution seabed mapping. The system is designed to operate in the Aegean Sea. The developed USV is planned to be utilized as a system for autonomous data acquisition, mapping, and monitoring bathymetry and various environmental parameters. ARGO USV can operate in small or large ports with high maneuverability and endurance to map large geographical extends at sea. The system presents state of the art solutions in the following areas i) the on-board/real-time data processing/analysis capabilities, ii) the energy-independent and environmentally friendly platform entirely made using the latest aeronautical and marine materials, iii) the integration of advanced technology sensors, all in one system (photogrammetric and radiometric footprint, as well as its connection with various environmental and inertial sensors) and iv) the information management application. The ARGO web-based application enables the system to depict the results of the data acquisition process in near real-time. All the recorded environmental variables and indices are presented, allowing users to remotely access all the raw and processed information using the implemented web-based GIS application.

Keywords: monitor marine environment, unmanned surface vehicle, mapping bythometry, sea environmental monitoring

Procedia PDF Downloads 138
2 Nigeria Rural Water Supply Management: Participatory Process as the Best Option

Authors: E. O. Aluta, C. A. Booth, D. G. Proverbs, T. Appleby

Abstract:

Challenges in the effective management of potable water have attracted global attention in recent years and remain many world regions’ major priorities. Scarcity and unavailability of potable water may potentially escalate poverty, obviate democratic expression of views and militate against inter-sectoral development. These challenges contra-indicate the inherent potentials of the resource. Thus, while creation of poverty may be regarded as a broad-based problem, it is capable of reflecting life-span reduction diseases, the friction of interests manifesting in threats and warfare, the relegation of democratic principles for authoritarian definitions and Human Rights abuse. The challenges may be identified as manifestations of ineffective management of potable water resource and therefore, regarded as major problems in environmental protection. In reaction, some nations have re-examined their laws and policies, while others have developed innovative projects, which seek to ameliorate difficulties of providing sustainable potable water. The problems resonate in Nigeria, where the legal framework supporting the supply and management of potable water has been criticized as ineffective. This has impacted more on rural community members, often regarded as ‘voiceless’. At that level, the participation of non-state actors has been identified as an effective strategy, which can improve water supply. However, there are indications that there is no pragmatic application of this, resulting in over-centralization and top-down management. Thus, this study focuses on how the participatory process may enable the development of participatory water governance framework, for use in Nigeria rural communities. The Rural Advisory Board (RAB) is proposed as a governing body to promote proximal relationships, institute democratisation borne out of participation, while enabling effective accountability and information. The RAB establishes mechanisms for effectiveness, taking into consideration Transparency, Accountability and Participation (TAP), advocated as guiding principles of decision-makers. Other tools, which may be explored in achieving these are, Laws and Policies supporting the water sector, under the direction of the Ministries and Law Courts, which ensure non-violation of laws. Community norms and values, consisting of Nigerian traditional belief system, perceptions, attitude and reality (often undermined in favour of legislations), are relied on to pave the way for enforcement. While the Task Forces consist of community members with specific designation of duties, which ensure compliance and enforceability, a cross-section of community members are assigned duties. Thus, the principle of participation is pragmatically reflected. A review of the literature provided information on the potentials of the participatory process, in potable water governance. Qualitative methodology was explored by using the semi-structured interview as strategy for inquiry. The purposive sampling strategy, consisting of homogeneous, heterogeneous and criterion techniques was applied to enable sampling. The samples, sourced from diverse positions of life, were from the study area of Delta State of Nigeria, involving three local governments of Oshimili South, Uvwie and Warri South. From the findings, there are indications that the application of the participatory process is inhered with empowerment of the rural community members to make legitimate demands for TAP. This includes the obviation of mono-decision making for the supply and management of potable water. This is capable of restructuring the top-down management to a top-down/bottom-up system.

Keywords: participation, participatory process, participatory water governance, rural advisory board

Procedia PDF Downloads 382