Search results for: cover image
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3908

Search results for: cover image

2978 The Trajectory of the Ball in Football Game

Authors: Mahdi Motahari, Mojtaba Farzaneh, Ebrahim Sepidbar

Abstract:

Tracking of moving and flying targets is one of the most important issues in image processing topic. Estimating of trajectory of desired object in short-term and long-term scale is more important than tracking of moving and flying targets. In this paper, a new way of identifying and estimating of future trajectory of a moving ball in long-term scale is estimated by using synthesis and interaction of image processing algorithms including noise removal and image segmentation, Kalman filter algorithm in order to estimating of trajectory of ball in football game in short-term scale and intelligent adaptive neuro-fuzzy algorithm based on time series of traverse distance. The proposed system attain more than 96% identify accuracy by using aforesaid methods and relaying on aforesaid algorithms and data base video in format of synthesis and interaction. Although the present method has high precision, it is time consuming. By comparing this method with other methods we realize the accuracy and efficiency of that.

Keywords: tracking, signal processing, moving targets and flying, artificial intelligent systems, estimating of trajectory, Kalman filter

Procedia PDF Downloads 461
2977 Low Light Image Enhancement with Multi-Stage Interconnected Autoencoders Integration in Pix to Pix GAN

Authors: Muhammad Atif, Cang Yan

Abstract:

The enhancement of low-light images is a significant area of study aimed at enhancing the quality of captured images in challenging lighting environments. Recently, methods based on convolutional neural networks (CNN) have gained prominence as they offer state-of-the-art performance. However, many approaches based on CNN rely on increasing the size and complexity of the neural network. In this study, we propose an alternative method for improving low-light images using an autoencoder-based multiscale knowledge transfer model. Our method leverages the power of three autoencoders, where the encoders of the first two autoencoders are directly connected to the decoder of the third autoencoder. Additionally, the decoder of the first two autoencoders is connected to the encoder of the third autoencoder. This architecture enables effective knowledge transfer, allowing the third autoencoder to learn and benefit from the enhanced knowledge extracted by the first two autoencoders. We further integrate the proposed model into the PIX to PIX GAN framework. By integrating our proposed model as the generator in the GAN framework, we aim to produce enhanced images that not only exhibit improved visual quality but also possess a more authentic and realistic appearance. These experimental results, both qualitative and quantitative, show that our method is better than the state-of-the-art methodologies.

Keywords: low light image enhancement, deep learning, convolutional neural network, image processing

Procedia PDF Downloads 85
2976 Geographic Information Systems and Remotely Sensed Data for the Hydrological Modelling of Mazowe Dam

Authors: Ellen Nhedzi Gozo

Abstract:

Unavailability of adequate hydro-meteorological data has always limited the analysis and understanding of hydrological behaviour of several dam catchments including Mazowe Dam in Zimbabwe. The problem of insufficient data for Mazowe Dam catchment analysis was solved by extracting catchment characteristics and aerial hydro-meteorological data from ASTER, LANDSAT, Shuttle Radar Topographic Mission SRTM remote sensing (RS) images using ILWIS, ArcGIS and ERDAS Imagine geographic information systems (GIS) software. Available observed hydrological as well as meteorological data complemented the use of the remotely sensed information. Ground truth land cover was mapped using a Garmin Etrex global positioning system (GPS) system. This information was then used to validate land cover classification detail that was obtained from remote sensing images. A bathymetry survey was conducted using a SONAR system connected to GPS. Hydrological modelling using the HBV model was then performed to simulate the hydrological process of the catchment in an effort to verify the reliability of the derived parameters. The model output shows a high Nash-Sutcliffe Coefficient that is close to 1 indicating that the parameters derived from remote sensing and GIS can be applied with confidence in the analysis of Mazowe Dam catchment.

Keywords: geographic information systems, hydrological modelling, remote sensing, water resources management

Procedia PDF Downloads 337
2975 Quest for Literary Past: A Study of Byatt’s Possession

Authors: Chen Jun

Abstract:

Antonia Susan Byatt’s Possession: A Romance has been misread as a postmodern pastiche novel since its publication because there are epics, epigraphs, lyrics, fairy tales, epistles, and even critical articles swollen in this work. The word ‘pastiche’ suggests messy, disorganized, and chaotic, which buries its artistic excellence while overlooking its subtitle, A Romance. The center of romance is the quest that the hero sets forth to conquer the adversity, hardship, and danger to accomplish a task to prove his identity or social worth. This paper argues that Byatt’s Possession is not a postmodern pastiche novel but rather a postmodern romance in which the characters in the academic world set forth their quest into the Victorian literary past that is nostalgically identified by Byatt as the Golden Age of English literature. In doing so, these five following issues are addressed: first, the origin of the protagonist Roland, and consequently, the nature of his quest; second, the central image of the dragon created by the fictional Victorian poet Henry Ash; third, Melusine as an image of female serpent created by the fictional Victorian poet Christabel LaMotte; fourth, the images of the two ladies; last, the image of water that links the dragon and the serpent. In Possession, the past is reinvented not as an unfortunate fall but as a Golden Age presented in the imaginative academic adventure. The dragon, a stereotypical symbol of evil, becomes the symbol of life in Byatt’s work, which parallels with the image of the mythical phoenix that can resurrect from its own ash. At the same time, the phoenix symbolizes Byatt’s efforts to revive the Victorian poetic art that is supposed to be dead in the post-capitalism society when the novel is the dominating literary genre and poetry becomes the minority. The fictional Victorian poet Ash is in fact Byatt’s own poetic mask through which she breathes life into the lost poetic artistry in the postmodern era.

Keywords: Byatt, possession, postmodern romance, literary past

Procedia PDF Downloads 416
2974 The Importance of Upholding Corporate Governance: A Case Study of Government Pension Funds

Authors: Pichamon Chansuchai

Abstract:

This qualitative research paper aimed to study the best practice regulation of the Government Pension Fund of Thailand or GPF to explore the importance of good corporate governance and to identify and compare impacts towards the organizational operation and image before and after adopting the corporate good governance practice. The study employed the six principles of good corporate governance and best practice including accountability, responsibility, equitable treatment, transparency, value creation and ethics. The study pointed out that the GPF was a good example of the organization that regained public trust and receiving a positive image and credibility after implementing corporate good governance in all aspects of its organizational management.

Keywords: corporate governance, government, pension funds, organizational operation

Procedia PDF Downloads 459
2973 National Branding through Education: South Korean Image in Romania through the Language Textbooks for Foreigners

Authors: Raluca-Ioana Antonescu

Abstract:

The paper treats about the Korean public diplomacy and national branding strategies, and how the Korean language textbooks were used in order to construct the Korean national image. The field research of the paper stands at the intersection between Linguistics and Political Science, while the problem of the research is the role of language and culture in national branding process. The research goal is to contribute to the literature situated at the intersection between International Relations and Applied Linguistics, while the objective is to conceptualize the idea of national branding by emphasizing a dimension which is not much discussed, and that would be the education as an instrument of the national branding and public diplomacy strategies. In order to examine the importance of language upon the national branding strategies, the paper will answer one main question, How is the Korean language used in the construction of national branding?, and two secondary questions, How are explored in literature the relations between language and national branding construction? and What kind of image of South Korea the language textbooks for foreigners transmit? In order to answer the research questions, the paper starts from one main hypothesis, that the language is an essential component of the culture, which is used in the construction of the national branding influenced by traditional elements (like Confucianism) but also by modern elements (like Western influence), and from two secondary hypothesis, the first one is that in the International Relations literature there are little explored the connections between language and national branding, while the second hypothesis is that the South Korean image is constructed through the promotion of a traditional society, but also a modern one. In terms of methodology, the paper will analyze the textbooks used in Romania at the universities which provide Korean Language classes during the three years program B.A., following the dialogs, the descriptive texts and the additional text about the Korean culture. The analysis will focus on the rank status difference, the individual in relation to the collectivity, the respect for the harmony, and the image of the foreigner. The results of the research show that the South Korean image projected in the textbooks convey the Confucian values and it does not emphasize the changes suffered by the society due to the modernity and globalization. The Westernized aspect of the Korean society is conveyed more in an informative way about the Korean international companies, Korean internal development (like the transport or other services), but it does not show the cultural changed the society underwent. Even if the paper is using the textbooks which are used in Romania as a teaching material, it could be used and applied at least to other European countries, since the textbooks are the ones issued by the South Korean language schools, which other European countries are using also.

Keywords: confucianism, modernism, national branding, public diplomacy, traditionalism

Procedia PDF Downloads 244
2972 Secure Transfer of Medical Images Using Hybrid Encryption

Authors: Boukhatem Mohamed Belkaid, Lahdi Mourad

Abstract:

In this paper, we propose a new encryption system for security issues medical images. The hybrid encryption scheme is based on AES and RSA algorithms to validate the three security services are authentication, integrity, and confidentiality. Privacy is ensured by AES, authenticity is ensured by the RSA algorithm. Integrity is assured by the basic function of the correlation between adjacent pixels. Our system generates a unique password every new session of encryption, that will be used to encrypt each frame of the medical image basis to strengthen and ensure his safety. Several metrics have been used for various tests of our analysis. For the integrity test, we noticed the efficiencies of our system and how the imprint cryptographic changes at reception if a change affects the image in the transmission channel.

Keywords: AES, RSA, integrity, confidentiality, authentication, medical images, encryption, decryption, key, correlation

Procedia PDF Downloads 443
2971 The Power of the Proper Orthogonal Decomposition Method

Authors: Charles Lee

Abstract:

The Principal Orthogonal Decomposition (POD) technique has been used as a model reduction tool for many applications in engineering and science. In principle, one begins with an ensemble of data, called snapshots, collected from an experiment or laboratory results. The beauty of the POD technique is that when applied, the entire data set can be represented by the smallest number of orthogonal basis elements. It is the such capability that allows us to reduce the complexity and dimensions of many physical applications. Mathematical formulations and numerical schemes for the POD method will be discussed along with applications in NASA’s Deep Space Large Antenna Arrays, Satellite Image Reconstruction, Cancer Detection with DNA Microarray Data, Maximizing Stock Return, and Medical Imaging.

Keywords: reduced-order methods, principal component analysis, cancer detection, image reconstruction, stock portfolios

Procedia PDF Downloads 86
2970 Recognition of Early Enterococcus Faecalis through Image Treatment by Using Octave

Authors: Laura Victoria Vigoya Morales, David Rolando Suarez Mora

Abstract:

The problem of detecting enterococcus faecalis is receiving considerable attention with the new cases of beachgoers infected with the bacteria, which can be found in fecal matter. The process detection of this kind of bacteria would be taking a long time, which waste time and money as a result of closing recreation place, like beach or pools. Hence, new methods for automating the process of detecting and recognition of this bacteria has become in a challenge. This article describes a novel approach to detect the enterococcus faecalis bacteria in water by using an octave algorithm, which embody a network neural. This document shows result of performance, quality and integrity of the algorithm.

Keywords: Enterococcus faecalis, image treatment, octave and network neuronal

Procedia PDF Downloads 230
2969 Self-Attention Mechanism for Target Hiding Based on Satellite Images

Authors: Hao Yuan, Yongjian Shen, Xiangjun He, Yuheng Li, Zhouzhou Zhang, Pengyu Zhang, Minkang Cai

Abstract:

Remote sensing data can provide support for decision-making in disaster assessment or disaster relief. The traditional processing methods of sensitive targets in remote sensing mapping are mainly based on manual retrieval and image editing tools, which are inefficient. Methods based on deep learning for sensitive target hiding are faster and more flexible. But these methods have disadvantages in training time and cost of calculation. This paper proposed a target hiding model Self Attention (SA) Deepfill, which used self-attention modules to replace part of gated convolution layers in image inpainting. By this operation, the calculation amount of the model becomes smaller, and the performance is improved. And this paper adds free-form masks to the model’s training to enhance the model’s universal. The experiment on an open remote sensing dataset proved the efficiency of our method. Moreover, through experimental comparison, the proposed method can train for a longer time without over-fitting. Finally, compared with the existing methods, the proposed model has lower computational weight and better performance.

Keywords: remote sensing mapping, image inpainting, self-attention mechanism, target hiding

Procedia PDF Downloads 139
2968 The Effect of the Acquisition and Reconstruction Parameters in Quality of Spect Tomographic Images with Attenuation and Scatter Correction

Authors: N. Boutaghane, F. Z. Tounsi

Abstract:

Many physical and technological factors degrade the SPECT images, both qualitatively and quantitatively. For this, it is not always put into leading technological advances to improve the performance of tomographic gamma camera in terms of detection, collimation, reconstruction and correction of tomographic images methods. We have to master firstly the choice of various acquisition and reconstruction parameters, accessible to clinical cases and using the attenuation and scatter correction methods to always optimize quality image and minimized to the maximum dose received by the patient. In this work, an evaluation of qualitative and quantitative tomographic images is performed based on the acquisition parameters (counts per projection) and reconstruction parameters (filter type, associated cutoff frequency). In addition, methods for correcting physical effects such as attenuation and scatter degrading the image quality and preventing precise quantitative of the reconstructed slices are also presented. Two approaches of attenuation and scatter correction are implemented: the attenuation correction by CHANG method with a filtered back projection reconstruction algorithm and scatter correction by the subtraction JASZCZAK method. Our results are considered as such recommandation, which permits to determine the origin of the different artifacts observed both in quality control tests and in clinical images.

Keywords: attenuation, scatter, reconstruction filter, image quality, acquisition and reconstruction parameters, SPECT

Procedia PDF Downloads 455
2967 Evaluating the Performance of Color Constancy Algorithm

Authors: Damanjit Kaur, Avani Bhatia

Abstract:

Color constancy is significant for human vision since color is a pictorial cue that helps in solving different visions tasks such as tracking, object recognition, or categorization. Therefore, several computational methods have tried to simulate human color constancy abilities to stabilize machine color representations. Two different kinds of methods have been used, i.e., normalization and constancy. While color normalization creates a new representation of the image by canceling illuminant effects, color constancy directly estimates the color of the illuminant in order to map the image colors to a canonical version. Color constancy is the capability to determine colors of objects independent of the color of the light source. This research work studies the most of the well-known color constancy algorithms like white point and gray world.

Keywords: color constancy, gray world, white patch, modified white patch

Procedia PDF Downloads 321
2966 Deep Learning Approach to Trademark Design Code Identification

Authors: Girish J. Showkatramani, Arthi M. Krishna, Sashi Nareddi, Naresh Nula, Aaron Pepe, Glen Brown, Greg Gabel, Chris Doninger

Abstract:

Trademark examination and approval is a complex process that involves analysis and review of the design components of the marks such as the visual representation as well as the textual data associated with marks such as marks' description. Currently, the process of identifying marks with similar visual representation is done manually in United States Patent and Trademark Office (USPTO) and takes a considerable amount of time. Moreover, the accuracy of these searches depends heavily on the experts determining the trademark design codes used to catalog the visual design codes in the mark. In this study, we explore several methods to automate trademark design code classification. Based on recent successes of convolutional neural networks in image classification, we have used several different convolutional neural networks such as Google’s Inception v3, Inception-ResNet-v2, and Xception net. The study also looks into other techniques to augment the results from CNNs such as using Open Source Computer Vision Library (OpenCV) to pre-process the images. This paper reports the results of the various models trained on year of annotated trademark images.

Keywords: trademark design code, convolutional neural networks, trademark image classification, trademark image search, Inception-ResNet-v2

Procedia PDF Downloads 233
2965 Dynamics Pattern of Land Use and Land Cover Change and Its Driving Factors Based on a Cellular Automata Markov Model: A Case Study at Ibb Governorate, Yemen

Authors: Abdulkarem Qasem Dammag, Basema Qasim Dammag, Jian Dai

Abstract:

Change in Land use and Land cover (LU/LC) has a profound impact on the area's natural, economic, and ecological development, and the search for drivers of land cover change is one of the fundamental issues of LU/LC change. The study aimed to assess the temporal and Spatio-temporal dynamics of LU/LC in the past and to predict the future using Landsat images by exploring the characteristics of different LU/LC types. Spatio-temporal patterns of LU/LC change in Ibb Governorate, Yemen, were analyzed based on RS and GIS from 1990, 2005, and 2020. A socioeconomic survey and key informant interviews were used to assess potential drivers of LU/LC. The results showed that from 1990 to 2020, the total area of vegetation land decreased by 5.3%, while the area of barren land, grassland, built-up area, and waterbody increased by 2.7%, 1.6%, 1.04%, and 0.06%, respectively. Based on socio-economic surveys and key informant interviews, natural factors had a significant and long-term impact on land change. In contrast, site construction and socio-economic factors were the main driving forces affecting land change in a short time scale. The analysis results have been linked to the CA-Markov Land Use simulation and forecasting model for the years 2035 and 2050. The simulation results revealed from the period 2020 to 2050, the trend of dynamic changes in land use, where the total area of barren land decreased by 7.0% and grassland by 0.2%, while the vegetation land, built-up area, and waterbody increased by 4.6%, 2.6%, and 0.1 %, respectively. Overall, these findings provide LULC's past and future trends and identify drivers, which can play an important role in sustainable land use planning and management by balancing and coordinating urban growth and land use and can also be used at the regional level in different levels to provide as a reference. In addition, the results provide scientific guidance to government departments and local decision-makers in future land-use planning through dynamic monitoring of LU/LC change.

Keywords: LU/LC change, CA-Markov model, driving forces, change detection, LU/LC change simulation

Procedia PDF Downloads 64
2964 QCARNet: Networks for Quality-Adaptive Compression Artifact

Authors: Seung Ho Park, Young Su Moon, Nam Ik Cho

Abstract:

We propose a convolution neural network (CNN) for quality adaptive compression artifact reduction named QCARNet. The proposed method is different from the existing discriminative models that learn a specific model at a certain quality level. The method is composed of a quality estimation CNN (QECNN) and a compression artifact reduction CNN (CARCNN), which are two functionally separate CNNs. By connecting the QECNN and CARCNN, each CARCNN layer is able to adaptively reduce compression artifacts and preserve details depending on the estimated quality level map generated by the QECNN. We experimentally demonstrate that the proposed method achieves better performance compared to other state-of-the-art blind compression artifact reduction methods.

Keywords: compression artifact reduction, deblocking, image denoising, image restoration

Procedia PDF Downloads 142
2963 Machine Learning Classification of Fused Sentinel-1 and Sentinel-2 Image Data Towards Mapping Fruit Plantations in Highly Heterogenous Landscapes

Authors: Yingisani Chabalala, Elhadi Adam, Khalid Adem Ali

Abstract:

Mapping smallholder fruit plantations using optical data is challenging due to morphological landscape heterogeneity and crop types having overlapped spectral signatures. Furthermore, cloud covers limit the use of optical sensing, especially in subtropical climates where they are persistent. This research assessed the effectiveness of Sentinel-1 (S1) and Sentinel-2 (S2) data for mapping fruit trees and co-existing land-use types by using support vector machine (SVM) and random forest (RF) classifiers independently. These classifiers were also applied to fused data from the two sensors. Feature ranks were extracted using the RF mean decrease accuracy (MDA) and forward variable selection (FVS) to identify optimal spectral windows to classify fruit trees. Based on RF MDA and FVS, the SVM classifier resulted in relatively high classification accuracy with overall accuracy (OA) = 0.91.6% and kappa coefficient = 0.91% when applied to the fused satellite data. Application of SVM to S1, S2, S2 selected variables and S1S2 fusion independently produced OA = 27.64, Kappa coefficient = 0.13%; OA= 87%, Kappa coefficient = 86.89%; OA = 69.33, Kappa coefficient = 69. %; OA = 87.01%, Kappa coefficient = 87%, respectively. Results also indicated that the optimal spectral bands for fruit tree mapping are green (B3) and SWIR_2 (B10) for S2, whereas for S1, the vertical-horizontal (VH) polarization band. Including the textural metrics from the VV channel improved crop discrimination and co-existing land use cover types. The fusion approach proved robust and well-suited for accurate smallholder fruit plantation mapping.

Keywords: smallholder agriculture, fruit trees, data fusion, precision agriculture

Procedia PDF Downloads 56
2962 3D Dentofacial Surgery Full Planning Procedures

Authors: Oliveira M., Gonçalves L., Francisco I., Caramelo F., Vale F., Sanz D., Domingues M., Lopes M., Moreia D., Lopes T., Santos T., Cardoso H.

Abstract:

The ARTHUR project consists of a platform that allows the virtual performance of maxillofacial surgeries, offering, in a photorealistic concept, the possibility for the patient to have an idea of the surgical changes before they are performed on their face. For this, the system brings together several image formats, dicoms and objs that, after loading, will generate the bone volume, soft tissues and hard tissues. The system also incorporates the patient's stereophotogrammetry, in addition to their data and clinical history. After loading and inserting data, the clinician can virtually perform the surgical operation and present the final result to the patient, generating a new facial surface that contemplates the changes made in the bone and tissues of the maxillary area. This tool acts in different situations that require facial reconstruction, however this project focuses specifically on two types of use cases: bone congenital disfigurement and acquired disfiguration such as oral cancer with bone attainment. Being developed a cloud based solution, with mobile support, the tool aims to reduce the decision time window of patient. Because the current simulations are not realistic or, if realistic, need time due to the need of building plaster models, patient rates on decision, rely on a long time window (1,2 months), because they don’t identify themselves with the presented surgical outcome. On the other hand, this planning was performed time based on average estimated values of the position of the maxilla and mandible. The team was based on averages of the facial measurements of the population, without specifying racial variability, so the proposed solution was not adjusted to the real individual physiognomic needs.

Keywords: 3D computing, image processing, image registry, image reconstruction

Procedia PDF Downloads 208
2961 Factors Influencing the Acceptance of Y Series among the Residents in Three Southern Border Provinces of Thailand

Authors: Chetsada Noknoi

Abstract:

The acceptance of Y series refers to the willingness and enjoyment of watching Y series without feeling different from general series. This occurs when people watch Y series and derive happiness and entertainment from it. The viewing experience has the most significant impact on Y series acceptance. This research aims to 1) investigate the levels of acceptance of sexual diversity, image of Y series Actors, media exposure, and Y series acceptance among the residents in three southern border provinces of Thailand, and 2) examine how acceptance of sexual diversity, actor perceptions in Y series, and media exposure influence Y series acceptance in these provinces. The sample consisted of 322 participants from the three southern border provinces of Thailand. The research instrument used was a questionnaire, and data were analyzed using frequency, percentage, mean, standard deviation, and multiple regression analysis. The findings revealed that overall, acceptance of sexual diversity, Image of Y series Actors, and Y series acceptance among the residents in three southern border provinces of Thailand were at a high level, while media exposure was moderate overall. However, the two factors that had the most significant impact on Y series acceptance in these provinces, ranked from highest to lowest influence, were media exposure and acceptance of sexual diversity. Both of these factors had a positive effect on Y series acceptance among the residents in three southern border provinces of Thailand. Collectively, these factors accounted for 40.7% of the variance in Y series acceptance among the residents in three southern border provinces of Thailand.

Keywords: acceptance, acceptance of sexual diversity, image of Y series actors, media exposure, Y series

Procedia PDF Downloads 78
2960 Calibration and Validation of the Aquacrop Model for Simulating Growth and Yield of Rain-fed Sesame (Sesamum indicum L.) Under Different Soil Fertility Levels in the Semi-arid Areas of Tigray

Authors: Abadi Berhane, Walelign Worku, Berhanu Abrha, Gebre Hadgu, Tigray

Abstract:

Sesame is an important oilseed crop in Ethiopia; which is the second most exported agricultural commodity next to coffee. However, there is poor soil fertility management and a research-led farming system for the crop. The AquaCrop model was applied as a decision-support tool; which performs a semi-quantitative approach to simulate the yield of crops under different soil fertility levels. The objective of this experiment was to calibrate and validated the AquaCrop model for simulating the growth and yield of sesame under different nitrogen fertilizer levels and to test the performance of the model as a decision-support tool for improved sesame cultivation in the study area. The experiment was laid out as a randomized complete block design (RCBD) in a factorial arrangement in the 2016, 2017, and 2018 main cropping seasons. In this experiment, four nitrogen fertilizer rates; 0, 23, 46, and 69 Kg/ha nitrogen, and three improved varieties (Setit-1, Setit-2, and Humera-1). In the meantime, growth, yield, and yield components of sesame were collected from each treatment. Coefficient of determination (R2), Root mean square error (RMSE), Normalized root mean square error (N-RMSE), Model efficiency (E), and Degree of agreement (D) were used to test the performance of the model. The results indicated that the AquaCrop model successfully simulated soil water content with R2 varying from 0.92 to 0.98, RMSE 6.5 to 13.9 mm, E 0.78 to 0.94, and D 0.95 to 0.99; and the corresponding values for AB also varied from 0.92 to 0.98, 0.33 to 0.54 tons/ha, 0.74 to 0.93, and 0.9 to 0.98, respectively. The results on the canopy cover of sesame also showed that the model acceptably simulated canopy cover with R2 varying from 0.95 to 0.99, and a RMSE of 5.3 to 8.6%. The AquaCrop model was appropriately calibrated to simulate soil water content, canopy cover, aboveground biomass, and sesame yield; the results indicated that the model adequately simulated the growth and yield of sesame under the different nitrogen fertilizer levels. The AquaCrop model might be an important tool for improved soil fertility management and yield enhancement strategies of sesame. Hence, the model might be applied as a decision-support tool in soil fertility management in sesame production.

Keywords: aquacrop model, sesame, normalized water productivity, nitrogen fertilizer

Procedia PDF Downloads 75
2959 Experimental Study on a Solar Heat Concentrating Steam Generator

Authors: Qiangqiang Xu, Xu Ji, Jingyang Han, Changchun Yang, Ming Li

Abstract:

Replacing of complex solar concentrating unit, this paper designs a solar heat-concentrating medium-temperature steam-generating system. Solar radiation is collected by using a large solar collecting and heat concentrating plate and is converged to the metal evaporating pipe with high efficient heat transfer. In the meantime, the heat loss is reduced by employing a double-glazed cover and other heat insulating structures. Thus, a high temperature is reached in the metal evaporating pipe. The influences of the system's structure parameters on system performance are analyzed. The steam production rate and the steam production under different solar irradiance, solar collecting and heat concentrating plate area, solar collecting and heat concentrating plate temperature and heat loss are obtained. The results show that when solar irradiance is higher than 600 W/m2, the effective heat collecting area is 7.6 m2 and the double-glazing cover is adopted, the system heat loss amount is lower than the solar irradiance value. The stable steam is produced in the metal evaporating pipe at 100 ℃, 110 ℃, and 120 ℃, respectively. When the average solar irradiance is about 896 W/m2, and the steaming cumulative time is about 5 hours, the daily steam production of the system is about 6.174 kg. In a single day, the solar irradiance is larger at noon, thus the steam production rate is large at that time. Before 9:00 and after 16:00, the solar irradiance is smaller, and the steam production rate is almost 0.

Keywords: heat concentrating, heat loss, medium temperature, solar steam production

Procedia PDF Downloads 181
2958 Rethinking Urban Green Space Quality and Planning Models from Users and Experts’ Perspective for Sustainable Development: The Case of Debre Berhan and Debre Markos Cities, Ethiopia

Authors: Alemaw Kefale, Aramde Fetene, Hayal Desta

Abstract:

This study analyzed the users' and experts' views on the green space quality and planning models in Debre Berhan (DB) and Debre Markos (DM) cities in Ethiopia. A questionnaire survey was conducted on 350 park users (148 from DB and 202 from DM) to rate the accessibility, size, shape, vegetation cover, social and cultural context, conservation and heritage, community participation, attractiveness, comfort, safety, inclusiveness, and maintenance of green spaces using a Likert scale. A key informant interview was held with 13 experts in DB and 12 in DM. Descriptive statistics and tests of independence of variables using the chi-square test were done. A statistically significant association existed between the perception of green space quality attributes and users' occupation (χ² (160, N = 350) = 224.463, p < 0.001), age (χ² (128, N = 350) = 212.812, p < 0.001), gender (χ² (32, N = 350) = 68.443, p < 0.001), and education level (χ² (192, N = 350) = 293.396, p < 0.001). 61.7 % of park users were unsatisfied with the quality of urban green spaces. The users perceived dense vegetation cover as "good," with a mean value of 3.41, while the remaining were perceived as "medium with a mean value of 2.62 – 3.32". Only quantitative space standards are practiced as a green space planning model, while other models are unfamiliar and never used in either city. Therefore, experts need to be aware of and practice urban green models during urban planning to ensure that new developments include green spaces to accommodate the community's and the environment's needs.

Keywords: urban green space, quality, users and experts, green space planning models, Ethiopia

Procedia PDF Downloads 59
2957 Status and Image of the Nurse as Perceived by the Public

Authors: Salam Hadid, Mohammad Khatib

Abstract:

The International Council of Nurses-ICN defined nursing as a sphere integrating autonomous and collaborative care intended for the individual, family and community within and outside of the care setting. Nursing as a care profession has developed broadly over recent decades in terms of its essentials, expertise and primarily academically. Despite the impressive growth of the profession, there is still extreme diversity in the public’s perceptions and opinions of the profession and its professionals and in the knowledge on the fundamentals of its true function and spheres of engagement. The current study examines the existing knowledge among the general population regarding the nursing profession. The population consisted of 498 respondents, 236 women and 262 men, age 18-81. The respondents noted that nursing focuses on the technical, and the emotional aspects and promotion of health for the patient are not the nurse’s responsibility. Most of the respondents saw nurses working mainly in hospital and community-based clinic settings. They considered nursing to be a high prestige profession in general, but less prestigious among respondents exposed to healthcare provision. Most of the respondents considered nursing to be a humane profession but without independence and with no need for academic studies. The findings are incompatible with the definition of nursing and its spheres of action as defined in the ICN Code of Ethics. Two suggestions are to work through nursing schools addressing the student nurses, as ambassadors for the profession. The second is using the healthcare encounter between the nursing staff and the public to improve the image of nurses.

Keywords: ethics, nurse image, public, nursing

Procedia PDF Downloads 297
2956 Timescape-Based Panoramic View for Historic Landmarks

Authors: H. Ali, A. Whitehead

Abstract:

Providing a panoramic view of famous landmarks around the world offers artistic and historic value for historians, tourists, and researchers. Exploring the history of famous landmarks by presenting a comprehensive view of a temporal panorama merged with geographical and historical information presents a unique challenge of dealing with images that span a long period, from the 1800’s up to the present. This work presents the concept of temporal panorama through a timeline display of aligned historic and modern images for many famous landmarks. Utilization of this panorama requires a collection of hundreds of thousands of landmark images from the Internet comprised of historic images and modern images of the digital age. These images have to be classified for subset selection to keep the more suitable images that chronologically document a landmark’s history. Processing of historic images captured using older analog technology under various different capturing conditions represents a big challenge when they have to be used with modern digital images. Successful processing of historic images to prepare them for next steps of temporal panorama creation represents an active contribution in cultural heritage preservation through the fulfillment of one of UNESCO goals in preservation and displaying famous worldwide landmarks.

Keywords: cultural heritage, image registration, image subset selection, registered image similarity, temporal panorama, timescapes

Procedia PDF Downloads 166
2955 Accurate Cortical Reconstruction in Narrow Sulci with Zero-Non-Zero Distance (ZNZD) Vector Field

Authors: Somojit Saha, Rohit K. Chatterjee, Sarit K. Das, Avijit Kar

Abstract:

A new force field is designed for propagation of the parametric contour into deep narrow cortical fold in the application of knowledge based reconstruction of cerebral cortex from MR image of brain. Designing of this force field is highly inspired by the Generalized Gradient Vector Flow (GGVF) model and markedly differs in manipulation of image information in order to determine the direction of propagation of the contour. While GGVF uses edge map as its main driving force, the newly designed force field uses the map of distance between zero valued pixels and their nearest non-zero valued pixel as its main driving force. Hence, it is called Zero-Non-Zero Distance (ZNZD) force field. The objective of this force field is forceful propagation of the contour beyond spurious convergence due to partial volume effect (PVE) in to narrow sulcal fold. Being function of the corresponding non-zero pixel value, the force field has got an inherent property to determine spuriousness of the edge automatically. It is effectively applied along with some morphological processing in the application of cortical reconstruction to breach the hindrance of PVE in narrow sulci where conventional GGVF fails.

Keywords: deformable model, external force field, partial volume effect, cortical reconstruction, MR image of brain

Procedia PDF Downloads 398
2954 Investigating the Influence of Activation Functions on Image Classification Accuracy via Deep Convolutional Neural Network

Authors: Gulfam Haider, sana danish

Abstract:

Convolutional Neural Networks (CNNs) have emerged as powerful tools for image classification, and the choice of optimizers profoundly affects their performance. The study of optimizers and their adaptations remains a topic of significant importance in machine learning research. While numerous studies have explored and advocated for various optimizers, the efficacy of these optimization techniques is still subject to scrutiny. This work aims to address the challenges surrounding the effectiveness of optimizers by conducting a comprehensive analysis and evaluation. The primary focus of this investigation lies in examining the performance of different optimizers when employed in conjunction with the popular activation function, Rectified Linear Unit (ReLU). By incorporating ReLU, known for its favorable properties in prior research, the aim is to bolster the effectiveness of the optimizers under scrutiny. Specifically, we evaluate the adjustment of these optimizers with both the original Softmax activation function and the modified ReLU activation function, carefully assessing their impact on overall performance. To achieve this, a series of experiments are conducted using a well-established benchmark dataset for image classification tasks, namely the Canadian Institute for Advanced Research dataset (CIFAR-10). The selected optimizers for investigation encompass a range of prominent algorithms, including Adam, Root Mean Squared Propagation (RMSprop), Adaptive Learning Rate Method (Adadelta), Adaptive Gradient Algorithm (Adagrad), and Stochastic Gradient Descent (SGD). The performance analysis encompasses a comprehensive evaluation of the classification accuracy, convergence speed, and robustness of the CNN models trained with each optimizer. Through rigorous experimentation and meticulous assessment, we discern the strengths and weaknesses of the different optimization techniques, providing valuable insights into their suitability for image classification tasks. By conducting this in-depth study, we contribute to the existing body of knowledge surrounding optimizers in CNNs, shedding light on their performance characteristics for image classification. The findings gleaned from this research serve to guide researchers and practitioners in making informed decisions when selecting optimizers and activation functions, thus advancing the state-of-the-art in the field of image classification with convolutional neural networks.

Keywords: deep neural network, optimizers, RMsprop, ReLU, stochastic gradient descent

Procedia PDF Downloads 128
2953 An Improved Sub-Nyquist Sampling Jamming Method for Deceiving Inverse Synthetic Aperture Radar

Authors: Yanli Qi, Ning Lv, Jing Li

Abstract:

Sub-Nyquist sampling jamming method (SNSJ) is a well known deception jamming method for inverse synthetic aperture radar (ISAR). However, the anti-decoy of the SNSJ method performs easier since the amplitude of the false-target images are weaker than the real-target image; the false-target images always lag behind the real-target image, and all targets are located in the same cross-range. In order to overcome the drawbacks mentioned above, a simple modulation based on SNSJ (M-SNSJ) is presented in this paper. The method first uses amplitude modulation factor to make the amplitude of the false-target images consistent with the real-target image, then uses the down-range modulation factor and cross-range modulation factor to make the false-target images move freely in down-range and cross-range, respectively, thus the capacity of deception is improved. Finally, the simulation results on the six available combinations of three modulation factors are given to illustrate our conclusion.

Keywords: inverse synthetic aperture radar (ISAR), deceptive jamming, Sub-Nyquist sampling jamming method (SNSJ), modulation based on Sub-Nyquist sampling jamming method (M-SNSJ)

Procedia PDF Downloads 218
2952 Erosion Influencing Factors Analysis: Case of Isser Watershed (North-West Algeria)

Authors: Chahrazed Salhi, Ayoub Zeroual, Yasmina Hamitouche

Abstract:

Soil water erosion poses a significant threat to the watersheds in Algeria today. The degradation of storage capacity in large dams over the past two decades, primarily due to erosion, necessitates a comprehensive understanding of the factors that contribute to soil erosion. The Isser watershed, located in the Northwestern region of Algeria, faces additional challenges such as recurrent droughts and the presence of delicate marl and clay outcrops, which amplify its susceptibility to water erosion. This study aims to employ advanced techniques such as Geographic Information Systems (GIS) and Remote Sensing (RS), in conjunction with the Canonical Correlation Analysis (CCA) method and Soil Water Assessment Tool (SWAT) model, to predict specific erosion patterns and analyze the key factors influencing erosion in the Isser basin. To accomplish this, an array of data sources including rainfall, climatic, hydrometric, land use, soil, digital elevation, and satellite data were utilized. The application of the SWAT model to the Isser basin yielded an average annual soil loss of approximately 16 t/ha/year. Particularly high erosion rates, exceeding 12 T/ha/year, were observed in the central and southern parts of the basin, encompassing 41% of the total basin area. Through Canonical Correlation Analysis, it was determined that vegetation cover and topography exerted the most substantial influence on erosion. Consequently, the study identified significant and spatially heterogeneous erosion throughout the study area. The impact of land topography on soil loss was found to be directly proportional, while vegetation cover exhibited an inverse proportional relationship. Modeling specific erosion for the Ladrat dam sub-basin estimated a rate of around 39 T/ha/year, thus accounting for the recorded capacity loss of 17.80% compared to the bathymetric survey conducted in 2019. The findings of this research provide valuable decision-support tools for soil conservation managers, empowering them to make informed decisions regarding soil conservation measures.

Keywords: Isser watershed, RS, CCA, SWAT, vegetation cover, topography

Procedia PDF Downloads 72
2951 Assessing Image Quality in Mobile Radiography: A Phantom-Based Evaluation of a New Lightweight Mobile X-Ray Equipment

Authors: May Bazzi, Shafik Tokmaj, Younes Saberi, Mats Geijer, Tony Jurkiewicz, Patrik Sund, Anna Bjällmark

Abstract:

Mobile radiography, employing portable X-ray equipment, has become a routine procedure within hospital settings, with chest X-rays in intensive care units standing out as the most prevalent mobile X-ray examinations. This approach is not limited to hospitals alone, as it extends its benefits to imaging patients in various settings, particularly those too frail to be transported, such as elderly care residents in nursing homes. Moreover, the utility of mobile X-ray isn't confined solely to traditional healthcare recipients; it has proven to be a valuable resource for vulnerable populations, including the homeless, drug users, asylum seekers, and patients with multiple co-morbidities. Mobile X-rays reduce patient stress, minimize costly hospitalizations, and offer cost-effective imaging. While studies confirm its reliability, further research is needed, especially regarding image quality. Recent advancements in lightweight equipment with enhanced battery and detector technology provide the potential for nearly handheld radiography. The main aim of this study was to evaluate a new lightweight mobile X-ray system with two different detectors and compare the image quality with a modern stationary system. Methods: A total of 74 images of the chest (chest anterior-posterior (AP) views and chest lateral views) and pelvic/hip region (AP pelvis views, hip AP views, and hip cross-table lateral views) were acquired on a whole-body phantom (Kyotokagaku, Japan), utilizing varying image parameters. These images were obtained using a stationary system - 18 images (Mediel, Sweden), a mobile X-ray system with a second-generation detector - 28 images (FDR D-EVO II; Fujifilm, Japan) and a mobile X-ray system with a third-generation detector - 28 images (FDR D-EVO III; Fujifilm, Japan). Image quality was assessed by visual grading analysis (VGA), which is a method to measure image quality by assessing the visibility and accurate reproduction of anatomical structures within the images. A total of 33 image criteria were used in the analysis. A panel of two experienced radiologists, two experienced radiographers, and two final-term radiographer students evaluated the image quality on a 5-grade ordinal scale using the software Viewdex 3.0 (Viewer for Digital Evaluation of X-ray images, Sweden). Data were analyzed using visual grading characteristics analysis. The dose was measured by the dose-area product (DAP) reported by the respective systems. Results: The mobile X-ray equipment (both detectors) showed significantly better image quality than the stationary equipment for the pelvis, hip AP and hip cross-table lateral images with AUCVGA-values ranging from 0.64-0.92, while chest images showed mixed results. The number of images rated as having sufficient quality for diagnostic use was significantly higher for mobile X-ray generation 2 and 3 compared with the stationary X-ray system. The DAP values were higher for the stationary compared to the mobile system. Conclusions: The new lightweight radiographic equipment had an image quality at least as good as a fixed system at a lower radiation dose. Future studies should focus on clinical images and consider radiographers' viewpoints for a comprehensive assessment.

Keywords: mobile x-ray, visual grading analysis, radiographer, radiation dose

Procedia PDF Downloads 67
2950 Fused Structure and Texture (FST) Features for Improved Pedestrian Detection

Authors: Hussin K. Ragb, Vijayan K. Asari

Abstract:

In this paper, we present a pedestrian detection descriptor called Fused Structure and Texture (FST) features based on the combination of the local phase information with the texture features. Since the phase of the signal conveys more structural information than the magnitude, the phase congruency concept is used to capture the structural features. On the other hand, the Center-Symmetric Local Binary Pattern (CSLBP) approach is used to capture the texture information of the image. The dimension less quantity of the phase congruency and the robustness of the CSLBP operator on the flat images, as well as the blur and illumination changes, lead the proposed descriptor to be more robust and less sensitive to the light variations. The proposed descriptor can be formed by extracting the phase congruency and the CSLBP values of each pixel of the image with respect to its neighborhood. The histogram of the oriented phase and the histogram of the CSLBP values for the local regions in the image are computed and concatenated to construct the FST descriptor. Several experiments were conducted on INRIA and the low resolution DaimlerChrysler datasets to evaluate the detection performance of the pedestrian detection system that is based on the FST descriptor. A linear Support Vector Machine (SVM) is used to train the pedestrian classifier. These experiments showed that the proposed FST descriptor has better detection performance over a set of state of the art feature extraction methodologies.

Keywords: pedestrian detection, phase congruency, local phase, LBP features, CSLBP features, FST descriptor

Procedia PDF Downloads 490
2949 Pneumoperitoneum Creation Assisted with Optical Coherence Tomography and Automatic Identification

Authors: Eric Yi-Hsiu Huang, Meng-Chun Kao, Wen-Chuan Kuo

Abstract:

For every laparoscopic surgery, a safe pneumoperitoneumcreation (gaining access to the peritoneal cavity) is the first and essential step. However, closed pneumoperitoneum is usually obtained by blind insertion of a Veress needle into the peritoneal cavity, which may carry potential risks suchas bowel and vascular injury.Until now, there remains no definite measure to visually confirm the position of the needle tip inside the peritoneal cavity. Therefore, this study established an image-guided Veress needle method by combining a fiber probe with optical coherence tomography (OCT). An algorithm was also proposed for determining the exact location of the needle tip through the acquisition of OCT images. Our method not only generates a series of “live” two-dimensional (2D) images during the needle puncture toward the peritoneal cavity but also can eliminate operator variation in image judgment, thus improving peritoneal access safety. This study was approved by the Ethics Committee of Taipei Veterans General Hospital (Taipei VGH IACUC 2020-144). A total of 2400 in vivo OCT images, independent of each other, were acquired from experiments of forty peritoneal punctures on two piglets. Characteristic OCT image patterns could be observed during the puncturing process. The ROC curve demonstrates the discrimination capability of these quantitative image features of the classifier, showing the accuracy of the classifier for determining the inside vs. outside of the peritoneal was 98% (AUC=0.98). In summary, the present study demonstrates the ability of the combination of our proposed automatic identification method and OCT imaging for automatically and objectively identifying the location of the needle tip. OCT images translate the blind closed technique of peritoneal access into a visualized procedure, thus improving peritoneal access safety.

Keywords: pneumoperitoneum, optical coherence tomography, automatic identification, veress needle

Procedia PDF Downloads 134