Search results for: cells or tissue
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4205

Search results for: cells or tissue

3275 High-Dimensional Single-Cell Imaging Maps Inflammatory Cell Types in Pulmonary Arterial Hypertension

Authors: Selena Ferrian, Erin Mccaffrey, Toshie Saito, Aiqin Cao, Noah Greenwald, Mark Robert Nicolls, Trevor Bruce, Roham T. Zamanian, Patricia Del Rosario, Marlene Rabinovitch, Michael Angelo

Abstract:

Recent experimental and clinical observations are advancing immunotherapies to clinical trials in pulmonary arterial hypertension (PAH). However, comprehensive mapping of the immune landscape in pulmonary arteries (PAs) is necessary to understand how immune cell subsets interact to induce pulmonary vascular pathology. We used multiplexed ion beam imaging by time-of-flight (MIBI-TOF) to interrogate the immune landscape in PAs from idiopathic (IPAH) and hereditary (HPAH) PAH patients. Massive immune infiltration in I/HPAH was observed with intramural infiltration linked to PA occlusive changes. The spatial context of CD11c+DCs expressing SAMHD1, TIM-3 and IDO-1 within immune-enriched microenvironments and neutrophils were associated with greater immune activation in HPAH. Furthermore, CD11c-DC3s (mo-DC-like cells) within a smooth muscle cell (SMC) enriched microenvironment were linked to vessel score, proliferating SMCs, and inflamed endothelial cells. Experimental data in cultured cells reinforced a causal relationship between neutrophils and mo-DCs in mediating pulmonary arterial SMC proliferation. These findings merit consideration in developing effective immunotherapies for PAH.

Keywords: pulmonary arterial hypertension, vascular remodeling, indoleamine 2-3-dioxygenase 1 (IDO-1), neutrophils, monocyte-derived dendritic cells, BMPR2 mutation, interferon gamma (IFN-γ)

Procedia PDF Downloads 156
3274 Applying Cationic Porphyrin Derivative 5, 10-Dihexyl-15, 20bis Porphyrin, as Transfection Reagent for Gene Delivery into Mammalian Cells

Authors: Hajar Hosseini Khorami

Abstract:

Porphyrins are organic, aromatic compounds found in heme, cytochrome, cobalamin, chlorophyll , and many other natural products with essential roles in biological processes that their cationic forms have been used as groups of favorable non-viral vectors recently. Cationic porphyrins are self-chromogenic reagents with a high capacity for modifications, great interaction with DNA and protection of DNA from nuclease during delivery of it into a cell with low toxicity. In order to have high efficient gene transfection into the cell while causing low toxicity, genetically manipulations of the non-viral vector, cationic porphyrin, would be useful. In this study newly modified cationic porphyrin derivative, 5, 10-dihexyl-15, 20bis (N-methyl-4-pyridyl) porphyrin was applied. Cytotoxicity of synthesized cationic porphyrin on Chinese Hamster Ovarian (CHO) cells was evaluated by using MTT assay. This cationic derivative is dose-dependent, with low cytotoxicity at the ranges from 100 μM to 0.01μM. It was uptake by cells at high concentration. Using direct non-viral gene transfection method and different concentration of cationic porphyrin were tested on transfection of CHO cells by applying derived transfection reagent with X-tremeGENE HP DNA as a positive control. However, no transfection observed by porphyrin derivative and the parameters tested except for positive control. Results of this study suggested that applying different protocol, and also trying other concentration of cationic porphyrins and DNA for forming a strong complex would increase the possibility of efficient gene transfection by using cationic porphyrins.

Keywords: cationic porphyrins, gene delivery, non-viral vectors, transfection reagents

Procedia PDF Downloads 183
3273 An Inverse Docking Approach for Identifying New Potential Anticancer Targets

Authors: Soujanya Pasumarthi

Abstract:

Inverse docking is a relatively new technique that has been used to identify potential receptor targets of small molecules. Our docking software package MDock is well suited for such an application as it is both computationally efficient, yet simultaneously shows adequate results in binding affinity predictions and enrichment tests. As a validation study, we present the first stage results of an inverse-docking study which seeks to identify potential direct targets of PRIMA-1. PRIMA-1 is well known for its ability to restore mutant p53's tumor suppressor function, leading to apoptosis in several types of cancer cells. For this reason, we believe that potential direct targets of PRIMA-1 identified in silico should be experimentally screened for their ability to inhibitcancer cell growth. The highest-ranked human protein of our PRIMA-1 docking results is oxidosqualene cyclase (OSC), which is part of the cholesterol synthetic pathway. The results of two followup experiments which treat OSC as a possible anti-cancer target are promising. We show that both PRIMA-1 and Ro 48-8071, a known potent OSC inhibitor, significantly reduce theviability of BT-474 breast cancer cells relative to normal mammary cells. In addition, like PRIMA-1, we find that Ro 48-8071 results in increased binding of mutant p53 to DNA in BT- 474cells (which highly express p53). For the first time, Ro 48-8071 is shown as a potent agent in killing human breast cancer cells. The potential of OSC as a new target for developing anticancer therapies is worth further investigation.

Keywords: inverse docking, in silico screening, protein-ligand interactions, molecular docking

Procedia PDF Downloads 425
3272 Examination of Porcine Gastric Biomechanics in the Antrum Region

Authors: Sif J. Friis, Mette Poulsen, Torben Strom Hansen, Peter Herskind, Jens V. Nygaard

Abstract:

Gastric biomechanics governs a large range of scientific and engineering fields, from gastric health issues to interaction mechanisms between external devices and the tissue. Determination of mechanical properties of the stomach is, thus, crucial, both for understanding gastric pathologies as well as for the development of medical concepts and device designs. Although the field of gastric biomechanics is emerging, advances within medical devices interacting with the gastric tissue could greatly benefit from an increased understanding of tissue anisotropy and heterogeneity. Thus, in this study, uniaxial tensile tests of gastric tissue were executed in order to study biomechanical properties within the same individual as well as across individuals. With biomechanical tests in the strain domain, tissue from the antrum region of six porcine stomachs was tested using eight samples from each stomach (n = 48). The samples were cut so that they followed dominant fiber orientations. Accordingly, from each stomach, four samples were longitudinally oriented, and four samples were circumferentially oriented. A step-wise stress relaxation test with five incremental steps up to 25 % strain with 200 s rest periods for each step was performed, followed by a 25 % strain ramp test with three different strain rates. Theoretical analysis of the data provided stress-strain/time curves as well as 20 material parameters (e.g., stiffness coefficients, dissipative energy densities, and relaxation time coefficients) used for statistical comparisons between samples from the same stomach as well as in between stomachs. Results showed that, for the 20 material parameters, heterogeneity across individuals, when extracting samples from the same area, was in the same order of variation as the samples within the same stomach. For samples from the same stomach, the mean deviation percentage for all 20 parameters was 21 % and 18 % for longitudinal and circumferential orientations, compared to 25 % and 19 %, respectively, for samples across individuals. This observation was also supported by a nonparametric one-way ANOVA analysis, where results showed that the 20 material parameters from each of the six stomachs came from the same distribution with a level of statistical significance of P > 0.05. Direction-dependency was also examined, and it was found that the maximum stress for longitudinal samples was significantly higher than for circumferential samples. However, there were no significant differences in the 20 material parameters, with the exception of the equilibrium stiffness coefficient (P = 0.0039) and two other stiffness coefficients found from the relaxation tests (P = 0.0065, 0.0374). Nor did the stomach tissue show any significant differences between the three strain-rates used in the ramp test. Heterogeneity within the same region has not been examined earlier, yet, the importance of the sampling area has been demonstrated in this study. All material parameters found are essential to understand the passive mechanics of the stomach and may be used for mathematical and computational modeling. Additionally, an extension of the protocol used may be relevant for compiling a comparative study between the human stomach and the pig stomach.

Keywords: antrum region, gastric biomechanics, loading-unloading, stress relaxation, uniaxial tensile testing

Procedia PDF Downloads 408
3271 A Derivative of L-allo Threonine Alleviates Asthmatic Symptoms in vitro and in vivo

Authors: Kun Chun, Jin-Chun Heo, Sang-Han Lee

Abstract:

Asthma is a chronic airway inflammatory disease characterized by the infiltration of inflammatory cells and tissue remodeling. In this study, we examined the anti-asthmatic activity of a derivative of L-allo threonine by in vitro and in vivo anti-asthmatic assays. Ovalbumin (OVA)-induced C57BL/6 mice were used to analyze lung inflammation and cytokine expressions for exhibiting anti-atopic activity of the derivative. LX519290, a derivative of L-allo threonine, induced an increased IFN-γ and a decreased IL-10 mRNA level. This compound exhibited potent anti-asthmatic activity by decreasing immune cell infiltration in the lung, and IL-4 and IL-13 cytokine levels in the serum of OVA-induced mice. These results indicated that chronic airway injury was decreased by LX519290. We also assessed that LX519290 inhibits infiltration of immune cell, mucus release and cytokine expression in an in vivo model. Our results collectively suggest that the L-allo threonine is effective in alleviating asthmatic symptoms by treating inflammatory factors in the lung.

Keywords: asthma, L -allo threonine, LX519290, mice

Procedia PDF Downloads 366
3270 Applications of AFM in 4D to Optimize the Design of Genetic Nanoparticles

Authors: Hosam Abdelhady

Abstract:

Filming the behaviors of individual DNA molecules in their environment when they interact with individual medicinal nano-polymers in a molecular scale has opened the door to understand the effect of the molecular shape, size, and incubation time with nanocarriers on optimizing the design of robust genetic Nano molecules able to resist the enzymatic degradation, enter the cell, reach to the nucleus and kill individual cancer cells in their environment. To this end, we will show how we applied the 4D AFM as a guide to finetune the design of genetic nanoparticles and to film the effects of these nanoparticles on the nanomechanical and morphological profiles of individual cancer cells.

Keywords: AFM, dendrimers, nanoparticles, DNA, gene therapy, imaging

Procedia PDF Downloads 61
3269 Vortices Structure in Internal Laminar and Turbulent Flows

Authors: Farid Gaci, Zoubir Nemouchi

Abstract:

A numerical study of laminar and turbulent fluid flows in 90° bend of square section was carried out. Three-dimensional meshes, based on hexahedral cells, were generated. The QUICK scheme was employed to discretize the convective term in the transport equations. The SIMPLE algorithm was adopted to treat the velocity-pressure coupling. The flow structure obtained showed interesting features such as recirculation zones and counter-rotating pairs of vortices. The performance of three different turbulence models was evaluated: the standard k- ω model, the SST k-ω model and the Reynolds Stress Model (RSM). Overall, it was found that, the multi-equation model performed better than the two equation models. In fact, the existence of four pairs of counter rotating cells, in the straight duct upstream of the bend, were predicted by the RSM closure but not by the standard eddy viscosity model nor the SST k-ω model. The analysis of the results led to a better understanding of the induced three dimensional secondary flows and the behavior of the local pressure coefficient and the friction coefficient.

Keywords: curved duct, counter-rotating cells, secondary flow, laminar, turbulent

Procedia PDF Downloads 320
3268 Tumour Radionuclides Therapy: in vitro and in vivo Dose Distribution Study

Authors: Rekaya A. Shabbir, Marco Mingarelli, Glenn Flux, Ananya Choudhury, Tim A. D. Smith

Abstract:

Introduction: Heterogeneity of dose distributions across a tumour is problematic for targeted radiotherapy. Gold nanoparticles (AuNPs) enhance dose-distributions of targeted radionuclides. The aim of this study is to demonstrate if tumour dose-distribution of targeted AuNPs radiolabelled with either of two radioisotopes (¹⁷⁷Lu and ⁹⁰Y) in breast cancer cells produced homogeneous dose distributions. Moreover, in vitro and in vivo studies were conducted to study the importance of receptor level on cytotoxicity of EGFR-targeted AuNPs in breast and colorectal cancer cells. Methods: AuNPs were functionalised with DOTA and OPPS-PEG-SVA to optimise labelling with radionuclide tracers and targeting with Erbitux. Radionuclides were chelated with DOTA, and the uptake of the radiolabelled AuNPs and targeted activity in vitro in both cell lines measured using liquid scintillation counting. Cells with medium (HCT8) and high (MDA-MB-468) EGFR expression were incubated with targeted ¹⁷⁷Lu-AuNPs for 4h, then washed and allowed to form colonies. Nude mice bearing tumours were used to study the biodistribution by injecting ¹⁷⁷Lu-AuNPs or ⁹⁰Y-AuNPs via the tail vein. Heterogeneity of dose-distribution in tumours was determined using autoradiography. Results: Colony formation (% control) was 81 ± 4.7% (HCT8) and 32 ± 9% (MDA-MB-468). High uptake was observed in the liver and spleen, indicating hepatobiliary excretion. Imaging showed heterogeneity in dose-distributions for both radionuclides across the tumours. Conclusion: The cytotoxic effect of EGFR-targeted AuNPs is greater in cells with higher EGFR expression. Dose-distributions for individual radiolabelled nanoparticles were heterogeneous across tumours. Further strategies are required to improve the uniformity of dose distribution prior to clinical trials.

Keywords: cancer cells, dose distributions, radionuclide therapy, targeted gold nanoparticles

Procedia PDF Downloads 102
3267 Modeling of Silicon Window Layers for Solar Cells Based SIGE

Authors: Meriem Boukais, B. Dennai, A. Ould- Abbas

Abstract:

The efficiency of SiGe solar cells might be improved by a wide-band-gap window layer. In this work we were simulated using the one dimensional simulation program called analysis of microelectronic and photonic structures (AMPS-1D). In the modeling, the thickness of silicon window was varied from 80 to 150 nm. The rest of layer’s thicknesses were kept constant, by varying thickness of window layer the simulated device performance was demonstrate in the form of current-voltage (I-V) characteristics and quantum efficiency (QE).

Keywords: modeling, SiGe, AMPS-1D, quantum efficiency, conversion, efficiency

Procedia PDF Downloads 697
3266 Contrast-to-Noise Ratio Comparison of Different Calcification Types in Dual Energy Breast Imaging

Authors: Vaia N. Koukou, Niki D. Martini, George P. Fountos, Christos M. Michail, Athanasios Bakas, Ioannis S. Kandarakis, George C. Nikiforidis

Abstract:

Various substitute materials of calcifications are used in phantom measurements and simulation studies in mammography. These include calcium carbonate, calcium oxalate, hydroxyapatite and aluminum. The aim of this study is to compare the contrast-to-noise ratio (CNR) values of the different calcification types using the dual energy method. The constructed calcification phantom consisted of three different calcification types and thicknesses: hydroxyapatite, calcite and calcium oxalate of 100, 200, 300 thicknesses. The breast tissue equivalent materials were polyethylene and polymethyl methacrylate slabs simulating adipose tissue and glandular tissue, respectively. The total thickness was 4.2 cm with 50% fixed glandularity. The low- (LE) and high-energy (HE) images were obtained from a tungsten anode using 40 kV filtered with 0.1 mm cadmium and 70 kV filtered with 1 mm copper, respectively. A high resolution complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) X-ray detector was used. The total mean glandular dose (MGD) and entrance surface dose (ESD) from the LE and HE images were constrained to typical levels (MGD=1.62 mGy and ESD=1.92 mGy). On average, the CNR of hydroxyapatite calcifications was 1.4 times that of calcite calcifications and 2.5 times that of calcium oxalate calcifications. The higher CNR values of hydroxyapatite are attributed to its attenuation properties compared to the other calcification materials, leading to higher contrast in the dual energy image. This work was supported by Grant Ε.040 from the Research Committee of the University of Patras (Programme K. Karatheodori).

Keywords: calcification materials, CNR, dual energy, X-rays

Procedia PDF Downloads 334
3265 Assessment of Landfill Pollution Load on Hydroecosystem by Use of Heavy Metal Bioaccumulation Data in Fish

Authors: Gintarė Sauliutė, Gintaras Svecevičius

Abstract:

Landfill leachates contain a number of persistent pollutants, including heavy metals. They have the ability to spread in ecosystems and accumulate in fish which most of them are classified as top-consumers of trophic chains. Fish are freely swimming organisms; but perhaps, due to their species-specific ecological and behavioral properties, they often prefer the most suitable biotopes and therefore, did not avoid harmful substances or environments. That is why it is necessary to evaluate the persistent pollutant dispersion in hydroecosystem using fish tissue metal concentration. In hydroecosystems of hybrid type (e.g. river-pond-river) the distance from the pollution source could be a perfect indicator of such a kind of metal distribution. The studies were carried out in the Kairiai landfill neighboring hybrid-type ecosystem which is located 5 km east of the Šiauliai City. Fish tissue (gills, liver, and muscle) metal concentration measurements were performed on two types of ecologically-different fishes according to their feeding characteristics: benthophagous (Gibel carp, roach) and predatory (Northern pike, perch). A number of mathematical models (linear, non-linear, using log and other transformations) have been applied in order to identify the most satisfactorily description of the interdependence between fish tissue metal concentration and the distance from the pollution source. However, the only one log-multiple regression model revealed the pattern that the distance from the pollution source is closely and positively correlated with metal concentration in all predatory fish tissues studied (gills, liver, and muscle).

Keywords: bioaccumulation in fish, heavy metals, hydroecosystem, landfill leachate, mathematical model

Procedia PDF Downloads 273
3264 Development of the Squamate Egg Tooth on the Basis of Grass Snake Natrix natrix Studies

Authors: Mateusz Hermyt, Pawel Kaczmarek, Weronika Rupik

Abstract:

The egg tooth is a crucial structure during hatching of lizards and snakes. In contrast to birds, turtles, crocodiles, and monotremes, egg tooth of squamate reptiles is a true tooth sharing common features of structure and development with all the other teeth of vertebrates. The egg tooth; however, due to its function, exhibits structural differences in relation to regular teeth. External morphology seems to be important in the context of phylogenetic relationships within Squamata but up to date, there is scarce information concerning structure and development of the egg tooth at the submicroscopical level. In presented studies detailed analysis of the egg tooth development in grass snake has been performed with the usage of light (including fluorescent), transmission and scanning electron microscopy. Grass snake embryo’s heads have been used in our studies. Grass snake is common snake species occurring in most of Europe including Poland. The grass snake is characterized by the presence of single unpaired egg tooth (as in most squamates) in contrast to geckos and dibamids possessing paired egg teeth. Studies show changes occurring on the external morphology, tissue and cellular levels of differentiating egg tooth. The egg tooth during its development changes its curvature. Initially, faces directly downward and in the course of its differentiation, it gradually changes to rostro-ventral orientation. Additionally, it forms conical dentinal protrusions on the sides. Histological analysis showed that egg tooth development occurs in similar steps in relation to regular teeth. It undergoes initiation, bud, cap and bell morphological stages. Analyses focused on describing morphological changes in hard tissues (mainly dentin and predentin) of egg tooth and in cells which enamel organ consists of. It included: outer enamel epithelium, stratum intermedium, inner enamel epithelium, odontoblasts, and cells of dental pulp. All specimens used in the study were captured according to the Polish regulations concerning the protection of wild species. Permission was granted by the Local Ethics Commission in Katowice (41/2010; 87/2015) and the Regional Directorate for Environmental Protection in Katowice (WPN.6401.257.2015.DC).

Keywords: hatching, organogenesis, reptile, Squamata

Procedia PDF Downloads 164
3263 The Healing Effect of Unrestricted Somatic Stem Cells Loaded in Collagen-Modified Nanofibrous PHBV Scaffold on Full-Thickness Skin Defects

Authors: Hadi Rad

Abstract:

Unrestricted somatic stem cells (USSCs) loaded in nanofibrous PHBV scaffold can be used for skin regeneration when grafted into full-thickness skin defects of rats. Nanofibrous PHBV scaffolds were designed using electrospinning method and then, modified with the immobilized collagen via the plasma method. Afterward, the scaffolds were evaluated using scanning electron microscopy, physical and mechanical assays. In this study; nanofibrous PHBV scaffolds loaded with and without USSCs were grafted into the skin defects. The wounds were subsequently investigated at 21 days after grafting. Results of mechanical and physical analyses showed good resilience and compliance to movement as a skin graft. In animal models; all study groups excluding the control group exhibited the most pronounced effect on wound closure, with the statistically significant improvement in wound healing being seen on post-operative Day 21. Histological and immunostaining examinations of healed wounds from all groups, especially the groups treated with stem cells, showed a thin epidermis plus recovered skin appendages in the dermal layer. Thus, the graft of collagen-coated nanofibrous PHBV scaffold loaded with USSC showed better results during the healing process of skin defects in rat model.

Keywords: collagen, nanofibrous PHBV scaffold, unrestricted somatic stem cells, wound healing.

Procedia PDF Downloads 347
3262 An Investigation of Tetraspanin Proteins’ Role in UPEC Infection

Authors: Fawzyah Albaldi

Abstract:

Urinary tract infections (UTIs) are the most prevalent of infectious diseases and > 80% are caused by uropathogenic E. coli (UPEC). Infection occurs following adhesion to urothelial plaques on bladder epithelial cells, whose major protein constituent are the uroplakins (UPs). Two of the four uroplakins (UPIa and UPIb) are members of the tetraspanin superfamily. The UPEC adhesin FimH is known to interact directly with UPIa. Tetraspanins are a diverse family of transmembrane proteins that generally act as “molecular organizers” by binding different proteins and lipids to form tetraspanin enriched microdomains (TEMs). Previous work by our group has shown that TEMs are involved in the adhesion of many pathogenic bacteria to human cells. Adhesion can be blocked by tetraspanin-derived synthetic peptides, suggesting that tetraspanins may be valuable drug targets. In this study, we investigate the role of tetraspanins in UPEC adherence to bladder epithelial cells. Human bladder cancer cell lines (T24, 5637, RT4), commonly used as in-vitro models to investigate UPEC infection, along with primary human bladder cells, were used in this project. The aim was to establish a model for UPEC adhesion/infection with the objective of evaluating the impact of tetraspanin-derived reagents on this process. Such reagents could reduce the progression of UTI, particularly in patients with indwelling catheters. Tetraspanin expression on the bladder cells was investigated by q-PCR and flow cytometry, with CD9 and CD81 generally highly expressed. Interestingly, despite these cell lines being used by other groups to investigate FimH antagonists, uroplakin proteins (UPIa, UPIb and UPIII) were poorly expressed at the cell surface, although some were present intracellularly. Attempts were made to differentiate the cell lines, to induce cell surface expression of these UPs, but these were largely unsuccessful. Pre-treatment of bladder epithelial cells with anti-CD9 monoclonal antibody significantly decreased UPEC infection, whilst anti-CD81 had no effects. A short (15aa) synthetic peptide corresponding to the large extracellular region (EC2) of CD9 also significantly reduced UPEC adherence. Furthermore, we demonstrated specific binding of that fluorescently tagged peptide to the cells. CD9 is known to associate with a number of heparan sulphate proteoglycans (HSPGs) that have also been implicated in bacterial adhesion. Here, we demonstrated that unfractionated heparin (UFH)and heparin analogs significantly inhibited UPEC adhesion to RT4 cells, as did pre-treatment of the cells with heparinases. Pre-treatment with chondroitin sulphate (CS) and chondroitinase also significantly decreased UPEC adherence to RT4 cells. This study may shed light on a common pathogenicity mechanism involving the organisation of HSPGs by tetraspanins. In summary, although we determined that the bladder cell lines were not suitable to investigate the role of uroplakins in UPEC adhesion, we demonstrated roles for CD9 and cell surface proteoglycans in this interaction. Agents that target these may be useful in treating/preventing UTIs.

Keywords: UTIs, tspan, uroplakins, CD9

Procedia PDF Downloads 90
3261 Simulation Of Silicon Window Layers For Solar Cells Based Sige

Authors: Boukais Meriem, B. Dennai, A. Ould-Abbas

Abstract:

The efficiency of SiGe solar cells might be improved by a wide-band-gap window layer. In this work we were simulated using the one dimensional simulation program called analysis of microelectronic and photonic structures (AMPS-1D). In the simulation, the thickness of silicon window was varied from 80 to 150 nm. The rest of layer’s thicknesses were kept constant, by varying thickness of window layer the simulated device performance was demonstrate in the form of current-voltage (I-V) characteristics and quantum efficiency (QE).

Keywords: SiGe, AMPS-1D, simulation, conversion, efficiency, quantum efficiency

Procedia PDF Downloads 782
3260 A Review Investigating the Potential Of Zooxanthellae to Be Genetically Engineered to Combat Coral Bleaching

Authors: Anuschka Curran, Sandra Barnard

Abstract:

Coral reefs are of the most diverse and productive ecosystems on the planet, but due to the impact of climate change, these infrastructures are dying off primarily through coral bleaching. Coral bleaching can be described as the process by which zooxanthellae (algal endosymbionts) are expelled from the gastrodermal cavity of the respective coral host, causing increased coral whitening. The general consensus is that mass coral bleaching is due to the dysfunction of photosynthetic processes in the zooxanthellae as a result of the combined action of elevated temperature and light-stress. The question then is, do zooxanthellae have the potential to play a key role in the future of coral reef restoration through genetic engineering? The aim of this study is firstly to review the different zooxanthellae taxa and their traits with respect to environmental stress, and secondly, to review the information available on the protective mechanisms present in zooxanthellae cells when experiencing temperature fluctuations, specifically concentrating on heat shock proteins and the antioxidant stress response of zooxanthellae. The eight clades (A-H) previously recognized were redefined into seven genera. Different zooxanthellae taxa exhibit different traits, such as their photosynthetic stress responses to light and temperature. Zooxanthellae have the ability to determine the amount and type of heat shock proteins (hsps) present during a heat response. The zooxanthellae can regulate both the host’s respective hsps as well as their own. Hsps, generally found in genotype C3 zooxanthellae, such as Hsp70 and Hsp90, contribute to the thermal stress response of the respective coral host. Antioxidant activity found both within exposed coral tissue, and the zooxanthellae cells can prevent coral hosts from expelling their endosymbionts. The up-regulation of gene expression, which may mitigate thermal stress induction of any of the physiological aspects discussed, can ensure stable coral-zooxanthellae symbiosis in the future. It presents a viable alternative strategy to preserve reefs amidst climate change. In conclusion, despite their unusual molecular design, genetic engineering poses as a useful tool in understanding and manipulating variables and systems within zooxanthellae and therefore presents a solution that can ensure stable coral-zooxanthellae symbiosis in the future.

Keywords: antioxidant enzymes, genetic engineering, heat-shock proteins, Symbiodinium

Procedia PDF Downloads 173
3259 Bifunctional Electrospun Fibers Based on Poly(Lactic Acid)/Calcium Oxide Nanocomposites as a Potential Scaffold for Bone Tissue Engineering

Authors: Daniel Canales, Fabián Alvarez, Pablo Varela, Marcela Saavedra, Claudio García, Paula Zapata

Abstract:

Calcium oxide nanoparticles (n-CaO) ca. 8 nm were obtained from eggshell waste. The n-CaO was incorporated into Poly(lactic acid) PLA matrix in 10 and 20 wt.% of filler content by electrospinning process to obtain PLA/n-CaO nanocomposite fibers as a potential use in scaffold for bone tissue regeneration. The fibers morphology and diameter were homogeneity, the PLA had a diameter of 2.2 ± 0.8 µm and, with the nanoparticles incorporation (20wt.%), reached ca. 2.9 ± 0.9 µm. The PLA/n-CaO nanocomposites fibers showed in vitro bioactivity, capable of inducing the precipitation of hydroxyapatite (HA) layer in the fiber surface after 7 days in Simulated Body Solution (SBF). The biocidal and biological properties of PLA/n-Cao with 20 wt.% were evaluated, showing a 30% reduction in bacterial viability against S. aureus and 11% for E. coli after 6 hours of bacterial suspensions exposure. Furthermore, the fibers did not show a cytotoxic effect on the bone marrow ST-2 cell line, permitting the cell adhesion and proliferation in Roswell Park Memorial Institute medium (RPMI). The PLA/n-CaO with 20 wt.% of nanoparticles showed a higher capacity to promote the osteogenic differentiation, significantly increasing the alkaline phosphatase (ALP) expression after 7 days compared to PLA and cell control. The in vivo analysis corroborated the biocompatibility of scaffolds prepared, the presence of n-CaO in PLA reduced the formation of fibrous encapsulation of the material improve the healing process.

Keywords: electrospun scaffolds, PLA based nanocomposites, calcium oxide nanoparticles, bioactive materials, tissue engineering

Procedia PDF Downloads 74
3258 Impact of Mucormycosis Infection In Limb Salvage for Trauma Patients

Authors: Katie-Beth Webster

Abstract:

Mucormycosis is a rare opportunistic fungal infection that, if left untreated, can cause large scale tissue necrosis and death. There are a number of cases of this in the literature, most commonly in the head and neck region arising from sinuses. It is also usually found in immunocompromised patient subgroups. This study reviewed a number of cases of mucormycosis in previously fit and healthy young trauma patients to assess predisposing factors for infection and adequacy of current treatment paradigms. These trauma patients likely contracted the fungal infection from the soil at the site of the incident. Despite early washout and debridement of the wounds at the scene of the injury and on arrival in hospital, both these patients contracted mucormycosis. It was suspected that inadequate early debridement of soil contaminated limbs was one of the major factors that can lead to catastrophic tissue necrosis. In both cases, this resulted in the patients having a higher level of amputation than would have initially been required based on the level of their injury. This was secondary to cutaneous and soft tissue necrosis secondary to the fungal infiltration leading to osteomyelitis and systemic sepsis. In the literature, it appears diagnosis is often protracted in this condition secondary to inadequate early treatment and long processing times for fungal cultures. If fungal cultures were sent at the time of first assessment and adequate debridements are performed aggressively early, it could lead to these critically unwell trauma patients receiving appropriate antifungal and surgical treatment earlier in their episode of care. This is likely to improve long term outcomes for these patients.

Keywords: mucormycosis, plastic surgery, osteomyelitis, trauma

Procedia PDF Downloads 193
3257 Hemocompatible Thin-Film Materials Recreating the Structure of the Cell Niches with High Potential for Endothelialization

Authors: Roman Major, Klaudia Trembecka- Wojciga, Juergen Markus Lackner, Boguslaw Major

Abstract:

The future and the development of science is therefore seen in interdisciplinary areas such as bio medical engineering. Self-assembled structures, similar to stem cell niches would inhibit fast division process and subsequently capture the stem cells from the blood flow. By means of surface topography and the stiffness as well as micro structure progenitor cells should be differentiated towards the formation of endothelial cells monolayer which effectively will inhibit activation of the coagulation cascade. The idea of the material surface development met the interest of the clinical institutions, which support the development of science in this area and are waiting for scientific solutions that could contribute to the development of heart assist systems. This would improve the efficiency of the treatment of patients with myocardial failure, supported with artificial heart assist systems. Innovative materials would enable the redesign, in the post project activity, construction of ventricular heart assist.

Keywords: bio-inspired materials, electron microscopy, haemocompatibility, niche-like structures, thin coatings

Procedia PDF Downloads 464
3256 Chitosan Coated Liposome Incorporated Cyanobacterial Pigment for Nasal Administration in the Brain Stroke

Authors: Kyou Hee Shim, Hwa Sung Shin

Abstract:

When a thrombolysis agent is administered to treat ischemic stroke, excessive reactive oxygen species are generated due to a sudden provision of oxygen and occurs secondary damage cell necrosis. Thus, it is necessary to administrate adjuvant as well as thrombolysis agent to protect and reduce damaged tissue. As cerebral blood vessels have specific structure called blood-brain barrier (BBB), it is not easy to transfer substances from blood to tissue. Therefore, development of a drug carrier is required to increase drug delivery efficiency to brain tissue. In this study, cyanobacterial pigment from the blue-green algae known for having neuroprotective effect as well as antioxidant effect was nasally administrated for bypassing BBB. In order to deliver cyanobacterial pigment efficiently, the nano-sized liposome was used as a carrier. Liposomes were coated with a positive charge of chitosan since negative residues are present at the nasal mucosa the first gateway of nasal administration. Characteristics of liposome including morphology, size and zeta potential were analyzed by transmission electron microscope (TEM) and zeta analyzer. As a result of cytotoxic test, the liposomes were not harmful. Also, being administered a drug to the ischemic stroke animal model, we could confirm that the pharmacological effect of the pigment delivered by chitosan coated liposome was enhanced compared to that of non-coated liposome. Consequently, chitosan coated liposome could be considered as an optimized drug delivery system for the treatment of acute ischemic stroke.

Keywords: ischemic stroke, cyanobacterial pigment, liposome, chitosan, nasal administration

Procedia PDF Downloads 212
3255 On the Utility of Bidirectional Transformers in Gene Expression-Based Classification

Authors: Babak Forouraghi

Abstract:

A genetic circuit is a collection of interacting genes and proteins that enable individual cells to implement and perform vital biological functions such as cell division, growth, death, and signaling. In cell engineering, synthetic gene circuits are engineered networks of genes specifically designed to implement functionalities that are not evolved by nature. These engineered networks enable scientists to tackle complex problems such as engineering cells to produce therapeutics within the patient's body, altering T cells to target cancer-related antigens for treatment, improving antibody production using engineered cells, tissue engineering, and production of genetically modified plants and livestock. Construction of computational models to realize genetic circuits is an especially challenging task since it requires the discovery of the flow of genetic information in complex biological systems. Building synthetic biological models is also a time-consuming process with relatively low prediction accuracy for highly complex genetic circuits. The primary goal of this study was to investigate the utility of a pre-trained bidirectional encoder transformer that can accurately predict gene expressions in genetic circuit designs. The main reason behind using transformers is their innate ability (attention mechanism) to take account of the semantic context present in long DNA chains that are heavily dependent on the spatial representation of their constituent genes. Previous approaches to gene circuit design, such as CNN and RNN architectures, are unable to capture semantic dependencies in long contexts, as required in most real-world applications of synthetic biology. For instance, RNN models (LSTM, GRU), although able to learn long-term dependencies, greatly suffer from vanishing gradient and low-efficiency problem when they sequentially process past states and compresses contextual information into a bottleneck with long input sequences. In other words, these architectures are not equipped with the necessary attention mechanisms to follow a long chain of genes with thousands of tokens. To address the above-mentioned limitations, a transformer model was built in this work as a variation to the existing DNA Bidirectional Encoder Representations from Transformers (DNABERT) model. It is shown that the proposed transformer is capable of capturing contextual information from long input sequences with an attention mechanism. In previous works on genetic circuit design, the traditional approaches to classification and regression, such as Random Forrest, Support Vector Machine, and Artificial Neural Networks, were able to achieve reasonably high R2 accuracy levels of 0.95 to 0.97. However, the transformer model utilized in this work, with its attention-based mechanism, was able to achieve a perfect accuracy level of 100%. Further, it is demonstrated that the efficiency of the transformer-based gene expression classifier is not dependent on the presence of large amounts of training examples, which may be difficult to compile in many real-world gene circuit designs.

Keywords: machine learning, classification and regression, gene circuit design, bidirectional transformers

Procedia PDF Downloads 48
3254 Dual Ion-Crosslinking Human Keratin Based Bioink for 3D Bioprinting

Authors: Jae Seo Lee, Il Keun Kwon

Abstract:

In the last decades, keratin-based on natural extracts has considerably increased interest as a skin tissue regeneration. However, most parts of keratin had a limitation to 3D scaffolds due to low biological affinity and general low mechanical properties. To create a 3D structure, a facile bioink was designed with a photocurable crosslinking stage system using natural polymer-based human keratin. Keratin-based bioink enables the crosslinking more quickly through two types of photo and ion crosslinking for module engineering assembly. Rheological results showed that keratin-based bioink with high concentration possessed superior mechanical rigidity for 3D bioprinting. Different 3D geometrically constructs were successfully fabricated with optimal bioprinting parameters through the 3D printer with X-Y-Z controlled UV laser system. The presented study has offered a distinct advantage for 3D printing of keratin-based hydrogel into 3D complex-shaped biomimetic constructs. Thus, keratin-based bioink opens up new avenues in bioprinting to directly substitute tissue or organs.

Keywords: human keratin, hydrogel, ion-crosslinking, 3D bioprinting

Procedia PDF Downloads 107
3253 Instrumental Characterization of Cyanobacteria as Polyhydroxybutyrate Producer

Authors: Eva Slaninova, Diana Cernayova, Zuzana Sedrlova, Katerina Mrazova, Petr Sedlacek, Jana Nebesarova, Stanislav Obruca

Abstract:

Cyanobacteria are gram-negative prokaryotes belonging to a group of photosynthetic bacteria. In comparison with heterotrophic microorganisms, cyanobacteria utilize atmospheric nitrogen and carbon dioxide without any additional substrates. This ability of these microorganisms could be employed in biotechnology for the production of bioplastics, concretely polyhydroxyalkanoates (PHAs) which are primarily accumulated as a storage material in cells in the form of intracellular granules. In this study, there two cyanobacterial cultures from genera Synechocystis were used, namely Synechocystic sp. PCC 6803 and Synechocystis salina CCALA 192. There were optimized and used several various approaches, including microscopic techniques such as cryo-scanning electron microscopy (Cryo-SEM) and transmission electron microscopy (TEM), and fluorescence lifetime imaging microscopy using Nile red as a fluorescent probe (FLIM). Due to these instrumental techniques, the morphology of intracellular space and surface of cells were characterized. The next group of methods which were employed was spectroscopic techniques such as UV-Vis spectroscopy measured in two modes (turbidimetry and integration sphere) and Fourier transform infrared spectroscopy (FTIR). All these diverse techniques were used for the detection and characterization of pigments (chlorophylls, carotenoids, phycocyanin, etc.) and PHAs, in our case poly (3-hydroxybutyrate) (P3HB). To verify results, gas chromatography (GC) was employed concretely for the determination of the amount of P3HB in biomass. Cyanobacteria were also characterized as polyhydroxybutyrate producers by flow cytometer, which could count cells and at the same time distinguish cells including P3HB and without due to fluorescent probe called BODIPY and live/dead fluorescent probe SYTO Blue. Based on results, P3HB content in cyanobacteria cells was determined, as also the overall fitness of the cells. Acknowledgment: Funding: This study was partly funded by the projectGA19-29651L of the Czech Science Foundation (GACR) and partly funded by the Austrian Science Fund (FWF), project I 4082-B25.

Keywords: cyanobacteria, fluorescent probe, microscopic techniques, poly(3hydroxybutyrate), spectroscopy, chromatography

Procedia PDF Downloads 213
3252 Pre-Implementation of Total Body Irradiation Using Volumetric Modulated Arc Therapy: Full Body Anthropomorphic Phantom Development

Authors: Susana Gonçalves, Joana Lencart, Anabela Gregório Dias

Abstract:

Introduction: In combination with chemotherapy, Total Body Irradiation (TBI) is most used as part of the conditioning regimen prior to allogeneic hematopoietic stem cell transplantation. Conventional TBI techniques have a long application time but non-conformality of beam-application with the inability to individually spare organs at risk. Our institution’s intention is to start using Volumetric Modulated Arc Therapy (VMAT) techniques to increase homogeneity of delivered radiation. As a first approach, a dosimetric plan was performed on a computed tomography (CT) scan of a Rando Alderson antropomorfic phantom (head and torso), using a set of six arcs distributed along the phantom. However, a full body anthropomorphic phantom is essential to carry out technique validation and implementation. Our aim is to define the physical and chemical characteristics and the ideal manufacturing procedure of upper and lower limbs to our anthropomorphic phantom, for later validate TBI using VMAT. Materials and Methods: To study the better fit between our phantom and limbs, a CT scan of Rando Alderson anthropomorphic phantom was acquired. CT was performed on GE Healthcare equipment (model Optima CT580 W), with slice thickness of 2.5 mm. This CT was also used to access the electronic density of soft tissue and bone through Hounsfield units (HU) analysis. Results: CT images were analyzed and measures were made for the ideal upper and lower limbs. Upper limbs should be build under the following measures: 43cm length and 7cm diameter (next to the shoulder section). Lower limbs should be build under the following measures: 79cm length and 16.5cm diameter (next to the thigh section). As expected, soft tissue and bone have very different electronic density. This is important to choose and analyze different materials to better represent soft tissue and bone characteristics. The approximate HU values of the soft tissue and for bone shall be 35HU and 250HU, respectively. Conclusion: At the moment, several compounds are being developed based on different types of resins and additives in order to be able to control and mimic the various constituent densities of the tissues. Concurrently, several manufacturing techniques are being explored to make it possible to produce the upper and lower limbs in a simple and non-expensive way, in order to finally carry out a systematic and appropriate study of the total body irradiation. This preliminary study was a good starting point to demonstrate the feasibility of TBI with VMAT.

Keywords: TBI, VMAT, anthropomorphic phantom, tissue equivalent materials

Procedia PDF Downloads 63
3251 Promoter Methylation of RASSF1A and MGMT Genes in Head and Neck Squamous Cell Carcinoma

Authors: Vitor Rafael Regiani, Carlos Henrique Viesi Do Nascimento Filho, Patricia Matos Biselli-Chicote, Claudia Aparecida Rainho, Luiz Sergio Raposo, José Victor Maniglia, Eny Maria Goloni-Bertollo, Erika Cristina Pavarino

Abstract:

Promoter hypermethylation of tumor-related genes has been associated with prognosis in early-stage head-and-neck cancers, providing strong evidence that these hypermethylated genes are valuable biomarkers for prognostic evaluation. Hence, we selected the MGMT and RASSF1A genes to examine the methylation status in head and neck squamous cell carcinomas (HNSCC) samples matched with non-tumor tissues (tumor-surrounding tissues or peripheral blood samples). DNA methylation analysis was based on Methylation-Sensitive High Resolution Melting, and the methylation status was correlated with clinic-pathological characteristics of the patients. RASSF1A and MGMT promoter methylation was detected in 43.24% (16/37) and in 44.44% (16/36) of the tumors, respectively. RASSF1A and MGMT methylation was significantly more frequent in tumor tissue than non-tumor tissues, as well as, simultaneous methylation of RASSF1A and MGMT also was higher in tumor tissue than non-tumor tissues. In relation to anatomic site, larynx cancer presented significant methylation of MGMT gene compared to tumor-surrounding tissue. The frequency of RASSF1A and MGMT promoter methylated was higher in tumor tissues in relation to peripheral blood from the same patient. No association was found between methylation and the variables analyzed, including gender, age, smoking or alcohol drinking habits. Clinic-pathological characteristics also showed no association in the presence of methylation. The Kaplan–Meier's method showed no association of methylation and both disease-free and overall survival. In conclusion, the presence of epigenetic abnormalities in normal-appearing tissue corroborates the hypothesis of the ‘field cancerization', or it can reflect preneoplastic and/or preinvasive. Moreover, MGMT methylation may serve as an important laryngeal cancer biomarker because it showed significant difference between laryngeal cancer and surrounding tumor tissues.

Keywords: head and neck cancer, DNA methylation, MGMT promoter methylation, RASSF1A promoter methylation

Procedia PDF Downloads 301
3250 Effects of Whole-Body Vibration Training on Fibrinolytic and Coagulative Factors in Healthy Young Man

Authors: Farshad Ghazalian, Seyed Hossein Alavi

Abstract:

Background: Use of whole body vibration (WBV) as an exercise method has rapidly increased over the last decade. The aim of this study was to evaluate effects of five week whole-body vibration training with different amplitudes and progressive frequencies on fibrinolytic and coagulative factors. Methods: Twenty five healthy male students were divided randomly in three groups: high amplitude vibration group (n=10), low amplitude vibration group (n=10), and control group (n=5). The vibration training consisted of 5 week whole-body vibration 3 times a week with amplitudes 4 and 2 mm and progressive frequencies from 25Hz with increments of 5Hz weekly. Concentrations of fibrinogen, plasminogen, tPA, and PAI-1 before and after 5 weeks of training were measured in plasma samples. Statistical analysis was done using one way analysis of variance. In order to compare pre-test with post test we used Wilcoxon signed ranked test .P<0.05 was considered statistically significant. Results: The 5 week high amplitude vibration training caused a significant improvement in tissue plasminogen activator (tPA) (p=0.028), and PAI-1 (p=0.033), fibrinogen showed decrease albeit not significantly (p=0.052). Plasminogen showed decrease not significantly (p=0.508). Low-amplitude vibration training caused a significant improvement in tissue plasminogen activator (tPA) (p=0.006) and and PAI-1 showed decrease not significantly (p=0.907). Fibrinogen showed decrease albeit not significantly (p=0.19). Plasminogen showed decrease not significantly (p=0.095). However, between groups there was no significant effect on tissue plasminogen activator (tPA) (p = 0.50), PAI-1 (p=0.249), Plasminogen (p=0.742), and fibrinogen (p=0.299). Conclusion: Amplitude of vibrations training is a important variable that effect on fibrino lytic factors.

Keywords: vibration, fibrinolysis, blood coagulation, plasminogen

Procedia PDF Downloads 389
3249 Inhibition of Mixed Infection Caused by Human Immunodeficiency Virus and Herpes Virus by Fullerene Compound

Authors: Dmitry Nosik, Nickolay Nosik, Elli Kaplina, Olga Lobach, Marina Chataeva, Lev Rasnetsov

Abstract:

Background and aims: Human Immunodeficiency Virus (HIV) infection is very often associated with Herpes Simplex Virus (HSV) infection but HIV patients are treated with a cocktail of antiretroviral drugs which are toxic. The use of an antiviral drug which will be active against both viruses like ferrovir found in our previous studies is rather actual. Earlier we had shown that Fullerene poly-amino capronic acid (FPACA) was active in case of monoinfection of HIV-1 or HSV-1. The aim of the study was to analyze the efficiency of FPACA against mixed infection of HIV and HSV. Methods: The peripheral blood lymphocytes, CEM, MT-4 cells were simultaneously infected with HIV-1 and HSV-1. FPACA was added 1 hour before infection. Cells viability was detected by MTT assay, virus antigens detected by ELISA, syncytium formation detected by microscopy. The different multiplicity of HIV-1/HSV-1 ratio was used. Results: The double viral HIV-1/HSV-1 infection was more cytopathic comparing with monoinfections. In mixed infection by the HIV-1/HSV-1 concentration of HIV-1 antigens and syncytium formations increased by 1,7 to 2,3 times in different cells in comparison with the culture infected with HIV-1 alone. The concentration of HSV-1 increased by 1,5-1,7 times, respectively. Administration of FPACA (1 microg/ml) protected cells: HIV-1/HSV-1 (1:1) – 80,1%; HIV-1/HSV-1 (1:4) – 57,2%; HIV-1/HSV-1 (1:8) – 46,3 %; HIV-1/HSV-1 (1:16) – 17,0%. Virus’s antigen levels were also reduced. Syncytium formation was totally inhibited in all cases of mixed infection. Conclusion: FPACA showed antiviral activity in case of mixed viral infection induced by Human Immunodeficiency Virus and Herpes Simplex Virus. The effect of viral inhibition increased with the multiplicity of HIV-1 in the inoculum. The mechanism of FPACA action is connected with the blocking of the virus particles adsorption to the cells and it could be suggested that it can have an antiviral activity against some other viruses too. Now FPACA could be considered as a potential drug for treatment of HIV disease complicated with opportunistic herpes viral infection.

Keywords: antiviral drug, human immunodeficiency virus (hiv), herpes simplex virus (hsv), mixed viral infection

Procedia PDF Downloads 322
3248 Chemotactic Behaviour of Human Mesenchymal Stem Cells in Response to Silicate Substituted Hydroxyapatite

Authors: Dinara Ikramova, Karin A. Hing, Simon C. F. Rawlinson

Abstract:

Silicate-substituted hydroxyapatite (SiHA) has been shown to enhance bone regeneration in vivo compared with phase pure stoichiometric hydroxyapatite. Evidence suggests that substrate chemistry dependent formation of a permissive protein layer on the surface of synthetic bone graft substitute materials is key for bioactivity and cell attachment. However, little information is available on whether the substrate chemistry may affect cell migration and recruitment. The aim of this study is to investigate whether or not human Mesenchymal Stem Cells (hMSCs) exhibit a chemotactic response to SiHA porous granules and if it can be linked to either the ion exchange or protein sequestering and enrichment on the surface of the material. 150mg of SiHA granules with 80% total porosity and 20% strut porosity were incubated in 1ml of either Serum Free Media (SFM) or 10% Serum Containing Media (SCM) under static cell culture conditions (37°C, 5% CO2) in absence of cells. Protein sequestering and exchange of calcium, phosphate and silicate ions were analysed at 0.5, 1, 2, 4, 8, 16 and 24 hours with n=12 per time point. Migration of hMSCs in the presence of 150mg of SiHA granules was assessed over 24 hours using a modified transwell migration system in either SFM or SCM (n=6) with 30% serum containing media acting as a positive control. At 24 hours protein sequestering and ionic exchange were analysed, and the number of cells was quantified using a high throughput confocal microscope (IN Cell Analyser 6000). In acellular condition, both calcium and phosphate ion concentrations in media showed a decrease at 24 hours which was greater in SFM than in SCM. This suggests possible formation and precipitation of a bone like apatite on the surface of SiHA. Reduction in this activity observed in SCM indicates that the presence of serum proteins is interfering with the ion exchange at the material and media interface. Adsorbed protein levels showed fluctuation over time followed by sharp decrease at 24 hours, suggesting a possible protein rearrangement on the surface of the material. The ion analysis performed on SFM and SCM after 24-hour incubation with cells in the presence of granules showed a greater reduction in phosphate concentration in both SFM and SCM compared to phosphate levels in acellular condition. Silicate concentration in SCM increased from 1.6mM (absence of cells) to 5.1mM (presence of cells). This indicates that the cells are promoting the uptake of phosphate and release of silicate ions. No significant change was seen in levels of adsorbed proteins in the presence and absence of cells. Further analysis is required to determine whether the species of these proteins change over time. The analysis of cell migration after 24-hour incubation showed more cells migrating towards the granules, 12.7% in SFM and 8.3% in SCM, than in positive control, 4.5% in SFM and 3.6% in SCM respectively. These results suggest that SiHA has a chemotactic activity independent of serum proteins. A property which has not previously been demonstrated for a synthetic bone graft material.

Keywords: cell migration, hMSCs, SiHA, transwell migration system

Procedia PDF Downloads 119
3247 The Effects of Terrein: A Secondary Metabolite from Aspergillus terreus as Anticancer and Antimetastatic Agent on Lung Cancer Cells

Authors: Paiwan Buachan, Maneekarn Namsa-Aid, Suchada Jongrungruangchok, Foengchat Jarintanan, Wanlaya Uthaisang-Tanechpongtamb

Abstract:

Lung cancer or pulmonary carcinoma is the uncontrolled growth of abnormal cells in one or both of the lungs. These abnormal cells can spread to other organs of the body through lymphatic system or bloodstream which is called metastatic stage that leading cause of cancer death. Terrein (C₈H₁₀O₃; MW= 154.06 kDa) is a secondary bioactive fungal metabolite, which was isolated from the Aspergillus terreus. In this study, we investigated the effects of terrein on the inhibition of human lung cancer cell proliferation and metastasis. The A549 human non-small cell lung cancer cell line was used as a model. Terrein significantly inhibited lung cancer cell proliferation measuring by a colorimetric MTT assay (IC₅₀ 0.32 mM) and significantly inhibited metastatic processes including migration, invasion, and adhesion that determined by wound healing assay, transwell assay, and adhesion assay, respectively. These findings indicate that terrein could be a potential therapeutic agent for lung cancer.

Keywords: terrein, lung cancer, anticancer, antimetastatic

Procedia PDF Downloads 150
3246 Fabrication and Assessment of Poly (butylene succinate)/ Poly (ԑ-caprolactone)/Eucomis Autumnalis Cellulose Bio-Composites for Tissue Engineering Applications

Authors: Kumalo F. I., Malimabe M. A., Gumede T. P., Mosoabisane M. F. T.

Abstract:

This study investigates the fabrication and characterization of bio-nanocomposites consisting of poly (butylene succinate) (PBS) and poly (ԑ-caprolactone) (PCL), reinforced with cellulose extracted from Eucomis autumnalis, a medicinal plant. Bio-nanocomposite films were prepared using the solvent casting method, with cellulose content ranging from 1 to 3 wt%. Comprehensive analysis was conducted using FTIR, SEM, TEM, DSC, TGA, and XRD, to assess morphological, thermal, and structural properties. The results indicated significant improvements in the thermal stability and morphological properties with increasing cellulose content, showcasing the potential of these materials for tissue engineering applications. The use of cellulose extracted from a medicinal plant highlight the potential for sustainable and biocompatible materials in biomedical applications.

Keywords: Bionanocomposites, poly(butylene succinate), poly(caprolactone), eucomis autumnalis, medicinal plant

Procedia PDF Downloads 30