Search results for: bulk waves
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1378

Search results for: bulk waves

448 InP Nanocrystals Core and Surface Electronic Structure from Ab Initio Calculations

Authors: Hamad R. Jappor, Zeyad Adnan Saleh, Mudar A. Abdulsattar

Abstract:

The ab initio restricted Hartree-Fock method is used to simulate the electronic structure of indium phosphide (InP) nanocrystals (NCs) (216-738 atoms) with sizes ranging up to about 2.5 nm in diameter. The calculations are divided into two parts, surface, and core. The oxygenated (001)-(1×1) facet that expands with larger sizes of nanocrystals is investigated to determine the rule of the surface in nanocrystals electronic structure. Results show that lattice constant and ionicity of the core part show decreasing order as nanocrystals grow up in size. The smallest investigated nanocrystal is 1.6% larger in lattice constant and 131.05% larger in ionicity than the converged value of largest investigated nanocrystal. Increasing nanocrystals size also resulted in an increase of core cohesive energy (absolute value), increase of core energy gap, and increase of core valence. The surface states are found mostly non-degenerated because of the effect of surface discontinuity and oxygen atoms. Valence bandwidth is wider on the surface due to splitting and oxygen atoms. The method also shows fluctuations in the converged energy gap, valence bandwidth and cohesive energy of core part of nanocrystals duo to shape variation. The present work suggests the addition of ionicity and lattice constant to the quantities that are affected by quantum confinement phenomenon. The method of the present model has threefold results; it can be used to approach the electronic structure of crystals bulk, surface, and nanocrystals.

Keywords: InP, nanocrystals core, ionicity, Hartree-Fock method, large unit cell

Procedia PDF Downloads 383
447 Wave Pressure Metering with the Specific Instrument and Measure Description Determined by the Shape and Surface of the Instrument including the Number of Sensors and Angle between Them

Authors: Branimir Jurun, Elza Jurun

Abstract:

Focus of this paper is description and functioning manner of the instrument for wave pressure metering. Moreover, an essential component of this paper is the proposal of a metering unit for the direct wave pressure measurement determined by the shape and surface of the instrument including the number of sensors and angle between them. Namely, far applied instruments by means of height, length, direction, wave time period and other components determine wave pressure on a particular area. This instrument, allows the direct measurement i.e. measurement without additional calculation, of the wave pressure expressed in a standardized unit of measure. That way the instrument has a standardized form, surface, number of sensors and the angle between them. In addition, it is made with the status that follows the wave and always is on the water surface. Database quality which is listed by the instrument is made possible by using the Arduino chip. This chip is programmed for receiving by two data from each of the sensors each second. From these data by a pre-defined manner a unique representative value is estimated. By this procedure all relevant wave pressure measurement results are directly and immediately registered. Final goal of establishing such a rich database is a comprehensive statistical analysis that ranges from multi-criteria analysis across different modeling and parameters testing to hypothesis accepting relating to the widest variety of man-made activities such as filling of beaches, security cages for aquaculture, bridges construction.

Keywords: instrument, metering, water, waves

Procedia PDF Downloads 247
446 Effects of Hierarchy on Poisson’s Ratio and Phononic Bandgaps of Two-Dimensional Honeycomb Structures

Authors: Davood Mousanezhad, Ashkan Vaziri

Abstract:

As a traditional cellular structure, hexagonal honeycombs are known for their high strength-to-weight ratio. Here, we introduce a class of fractal-appearing hierarchical metamaterials by replacing the vertices of the original non-hierarchical hexagonal grid with smaller hexagons and iterating this process to achieve higher levels of hierarchy. It has been recently shown that the isotropic in-plane Young's modulus of this hierarchical structure at small deformations becomes 25 times greater than its regular counterpart with the same mass. At large deformations, we find that hierarchy-dependent elastic buckling introduced at relatively early stages of deformation decreases the value of Poisson's ratio as the structure is compressed uniaxially leading to auxeticity (i.e., negative Poisson's ratio) in subsequent stages of deformation. We also show that the topological hierarchical architecture and instability-induced pattern transformations of the structure under compression can be effectively used to tune the propagation of elastic waves within the structure. We find that the hierarchy tends to shift the existing phononic bandgaps (defined as frequency ranges of strong wave attenuation) to lower frequencies while opening up new bandgaps. Deformation is also demonstrated as another mechanism for opening more bandgaps in hierarchical structures. The results provide new insights into the role of structural organization and hierarchy in regulating mechanical properties of materials at both the static and dynamic regimes.

Keywords: cellular structures, honeycombs, hierarchical structures, metamaterials, multifunctional structures, phononic crystals, auxetic structures

Procedia PDF Downloads 330
445 Investigating the Socio-ecological Impacts of Sea Level Rise on Coastal Rural Communities in Ghana

Authors: Benjamin Ankomah-Asare, Richard Adade

Abstract:

Sea level rise (SLR) poses a significant threat to coastal communities globally. Ghana has over the years implemented protective measures such as the construction of groynes and revetment to serve as barriers to sea waves in major cities and towns to prevent sea erosion and flooding. For vulnerable rural coastal communities, the planned retreat is often proposed; however, relocation costs are often underestimated as losses of future social and cultural value are not always adequately taken into account. Through a mixed-methods approach combining qualitative interviews, surveys, and spatial analysis, the study examined the experiences of coastal rural communities in Ghana and assess the effectiveness of relocation strategies in addressing the socio-economic and environmental challenges posed by sea level rise. The study revealed the devastating consequences of sea level rise on these communities, including increased flooding, erosion, and saltwater intrusion into freshwater sources. Moreover, it highlights the adaptive capacities within these communities and how factors such as infrastructure, economic activities, cultural heritage, and governance structures shape their resilience in the face of environmental change. While relocation can be an effective strategy in reducing the risks associated with sea level rise, the study recommends that proper implementation of this adaptation strategy can be achieved when coupled with community-led planning, participatory decision-making, and targeted support for vulnerable groups.

Keywords: sea level rise, relocation, socio-ecological impacts, rural communities

Procedia PDF Downloads 26
444 The Study of Spray Drying Process for Skimmed Coconut Milk

Authors: Jaruwan Duangchuen, Siwalak Pathaveerat

Abstract:

Coconut (Cocos nucifera) belongs to the family Arecaceae. Coconut juice and meat are consumed as food and dessert in several regions of the world. Coconut juice contains low proteins, and arginine is the main amino acid content. Coconut meat is the endosperm of coconut that has nutritional value. It composes of carbohydrate, protein and fat. The objective of this study is utilization of by-products from the virgin coconut oil extraction process by using the skimmed coconut milk as a powder. The skimmed coconut milk was separated from the coconut milk in virgin coconut oil extraction process that consists approximately of protein 6.4%, carbohydrate 7.2%, dietary fiber 0.27 %, sugar 6.27%, fat 3.6 % and moisture content of 86.93%. This skimmed coconut milk can be made to powder for value - added product by using spray drying. The factors effect to the yield and properties of dry skimmed coconut milk in spraying process are inlet, outlet air temperature and the maltodextrin concentration. The percentage of maltodextrin content (15, 20%), outlet air temperature (80 ºC, 85 ºC, 90 ºC) and inlet air temperature (190 ºC, 200 ºC, 210 ºC) were conducted to the skimmed coconut milk spray drying process. The spray dryer was kept air flow rate (0.2698 m3 /s). The result that shown 2.22 -3.23% of moisture content, solubility, bulk density (0.4-0.67g/mL), solubility, wettability (4.04 -19.25 min) for solubility in the water, color, particle size were analyzed for the powder samples. The maximum yield (18.00%) of spray dried coconut milk powder was obtained at 210 °C of temperature, 80°C of outlet temperature and 20% maltodextrin for 27.27 second for drying time. For the amino analysis shown that the high amino acids are Glutamine (16.28%), Arginine (10.32%) and Glycerin (9.59%) by using HPLP method (UV detector).

Keywords: skimmed coconut milk, spray drying, virgin coconut oil process (VCO), maltodextrin

Procedia PDF Downloads 310
443 Seismic Interpretation and Petrophysical Evaluation of SM Field, Libya

Authors: Abdalla Abdelnabi, Yousf Abushalah

Abstract:

The G Formation is a major gas producing reservoir in the SM Field, eastern, Libya. It is called G limestone because it consists of shallow marine limestone. Well data and 3D-Seismic in conjunction with the results of a previous study were used to delineate the hydrocarbon reservoir of Middle Eocene G-Formation of SM Field area. The data include three-dimensional seismic data acquired in 2009. It covers approximately an area of 75 mi² and with more than 9 wells penetrating the reservoir. Seismic data are used to identify any stratigraphic and structural and features such as channels and faults and which may play a significant role in hydrocarbon traps. The well data are used to calculation petrophysical analysis of S field. The average porosity of the Middle Eocene G Formation is very good with porosity reaching 24% especially around well W 6. Average water saturation was calculated for each well from porosity and resistivity logs using Archie’s formula. The average water saturation for the whole well is 25%. Structural mapping of top and bottom of Middle Eocene G formation revealed the highest area in the SM field is at 4800 ft subsea around wells W4, W5, W6, and W7 and the deepest point is at 4950 ft subsea. Correlation between wells using well data and structural maps created from seismic data revealed that net thickness of G Formation range from 0 ft in the north part of the field to 235 ft in southwest and south part of the field. The gas water contact is found at 4860 ft using the resistivity log. The net isopach map using both the trapezoidal and pyramid rules are used to calculate the total bulk volume. The original gas in place and the recoverable gas were calculated volumetrically to be 890 Billion Standard Cubic Feet (BSCF) and 630 (BSCF) respectively.

Keywords: 3D seismic data, well logging, petrel, kingdom suite

Procedia PDF Downloads 135
442 Employee Job Performance and Supervisor Workplace Gossip Employee Job Engagement's Mediation Effect

Authors: Pphakamani Irvine Dlamini

Abstract:

The impact of supervisory gossip on subordinate work performance was investigated in this paper. The paper postulated that supervisory gossip, both bad and positive, has an impact on employee job engagement, which in turn has an impact on employee job performance. Data was collected from 238 employees and supervisors from the Mpumalanga Government Municipality in South Africa using a dyadic study approach. Employees responded to questions on supervisor gossip and job engagement, while supervisors responded to questions about employee work performance. Three waves of data gathering were carried out. Favourable superior gossip had a positive and substantial effect on employee job engagement, which increased employee job performance, according to the study, but negative superior gossip had a positive but insignificant effect on employee job engagement. The multicultural aspect of the municipality, as well as causation concerns and frequent method biases connected with research design, hampered the study. After successfully disentangling the supervisor-subordinate reciprocal communication web using Social Exchange Theory (SET), the study suggests that managers should instil effective ways for using both positive and negative gossip in the workplace to achieve favourable employee outcomes. Positive gossip creates workplace rivalry and competition, but negative gossip creates tension, stress, and mistrust among employees. This study attempted to assess the implication of supervisor gossip on employee job engagement and performance in the public service sector, whose employees are characterised by high job security as compared to their peers in the private sector.

Keywords: worlplace gossip, supervisor, employee engagement, LMX

Procedia PDF Downloads 105
441 Investigating the Viability of Small-Scale Rapid Alloy Prototyping of Interstitial Free Steels

Authors: Talal S. Abdullah, Shahin Mehraban, Geraint Lodwig, Nicholas P. Lavery

Abstract:

The defining property of Interstitial Free (IF) steels is formability, comprehensively measured using the Lankford coefficient (r-value) on uniaxial tensile test data. The contributing factors supporting this feature are grain size, orientation, and elemental additions. The processes that effectively modulate these factors are the casting procedure, hot rolling, and heat treatment. An existing methodology is well-practised in the steel Industry; however, large-scale production and experimentation consume significant proportions of time, money, and material. Introducing small-scale rapid alloy prototyping (RAP) as an alternative process would considerably reduce the drawbacks relative to standard practices. The aim is to finetune the existing fundamental procedures implemented in the industrial plant to adapt to the RAP route. IF material is remelted in the 80-gram coil induction melting (CIM) glovebox. To birth small grains, maximum deformation must be induced onto the cast material during the hot rolling process. The rolled strip must then satisfy the polycrystalline behaviour of the bulk material by displaying a resemblance in microstructure, hardness, and formability to that of the literature and actual plant steel. A successful outcome of this work is that small-scale RAP can achieve target compositions with similar microstructures and statistically consistent mechanical properties which complements and accelerates the development of novel steel grades.

Keywords: rapid alloy prototyping, plastic anisotropy, interstitial free, miniaturised tensile testing, formability

Procedia PDF Downloads 95
440 Photophysics and Rotational Relaxation Dynamics of 6-Methoxyquinoline Fluorophore in Cationic Alkyltrimethylammonium Bromide Micelles

Authors: Tej Varma Y, Debi D. Pant

Abstract:

Photophysics and rotational dynamics of the fluorescent probe, 6-methoxyquinoline (6MQ) with cationic surfactant, alkyltrimethylammonium bromide (nTAB) micelle solutions have been investigated (n = 12, 14 and 16). Absorption and emission peaks of the dye have been observed to shift at concentrations around critical micellar concentration (cmc) of nTAB compared to that of bulk solutions suggesting probe is in a lower polar environment. The probe senses changes in polarity (ET (30)) brought about by variation of surfactant chain length concentration and is invariably solubilized in the aqueous interface or palisade layer. The order of change in polarity observed was DTAB > CTAB > TTAB. The binding constant study shows that the probe binds strongest with TTAB (is of the order TTAB > CTAB > DTAB) due to deeper penetration into the micelle. The anisotropy decay for the probe in all the nTAB micelles studied have been rationalized based on a two-step model consisting of fast-restricted rotation of the probe and slow lateral diffusion of the probe in the micelle that is coupled to the overall rotation of the micelle. Fluorescence lifetime measurements of probe in the cationic micelles demonstrate the close proximity of the 6MQ to the Br - counterions. The fluorescence lifetimes of TTAB and DTAB are much shorter than in CTAB. These results indicate that 6MQ resides to a substantial degree in the head group region of the micelles. All the changes observed in the steady state fluorescence, microenvironment, fluorescence lifetimes, fluorescence anisotropy, and other calculations are in agreement with each other suggesting binding of the cationic surfactant with the neutral dye molecule.

Keywords: photophysics, chain length, ntaB, micelles

Procedia PDF Downloads 617
439 Study of the Middle and Upper Atmosphere during Sudden Stratospheric Warming Episodes

Authors: Jinee Gogoi, Som K. Sharma, Kalyan Bhuyan

Abstract:

The atmospheric layers are coupled to each other with the different dynamical, electrical, radiative and chemical processes. A large scale thermodynamical phenomenon in winter polar regions which affects the middle atmosphere vigorously is Sudden Stratospheric Warming (SSW). Two major SSW events were occurred during 1998-1999; one in December 1998 which is associated with vortex displacement and another in February- March 1999 associated with vortex splitting. Lidar study of these two major events from Mt. Abu (24.36⁰N, 72.45⁰E, ~1670 m amsl) has shown that though SSWs are mostly observed over high and mid latitudes, their effects can also be seen over India. We have studied ionospheric variations (primarily fₒF₂, h’F and hpF₂) over Ahmedabad (23.1⁰N, 72.58⁰E) during these events. Ionospheric disturbances have been found after four-five days of peak temperature. An increase (decrease) in critical frequency (fₒF₂) during morning (afternoon) has been noticed which may be in response to the updrift (down drift). Effects are stronger during displacement event (1998) than during the splitting event (1999). We have also studied some recent events occurred during 2006 (January), 2009 (January) and 2013 (January) using temperature data from Sounding of Atmosphere using Broadband Emission Radiometry (SABER) satellite. Though some modeling work supports the hypothesis that planetary waves are responsible for atmosphere-ionosphere coupling, there is still more significant works to do to understand how exactly the coupling can take place.

Keywords: sudden stratospheric warming (SSW), polar vortex, ionosphere, critical frequency

Procedia PDF Downloads 234
438 Luminescent and Conductive Cathode Buffer Layer for Enhanced Power Conversion Efficiency of Bulk-Heterojunction Solar Cells

Authors: Swati Bishnoi, D. Haranath, Vinay Gupta

Abstract:

In this work, we demonstrate that the power conversion efficiency (PCE) of organic solar cells (OSCs) could be improved significantly by using ZnO doped with Aluminum (Al) and Europium (Eu) as cathode buffer layer (CBL). The ZnO:Al,Eu nanoparticle layer has broadband absorption in the ultraviolet (300-400 nm) region. The Al doping contributes to the enhancement in the conductivity whereas Eu doping significantly improves emission in the visible region. Moreover, this emission overlaps with the absorption range of polymer poly [N -9′-heptadecanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′- benzothiadiazole)] (PCDTBT) significantly and results in an enhanced absorption by the active layer and hence high photocurrent. An increase in the power conversion efficiency (PCE) of 6.8% has been obtained for ZnO: Al,Eu CBL as compared to 5.9% for pristine ZnO, in the inverted device configuration ITO/CBL/active layer/MoOx/Al. The active layer comprises of a blend of PCDTBT donor and [6-6]-phenyl C71 butyric acid methyl ester (PC71BM) acceptor. In the reference device pristine ZnO has been used as CBL, whereas in the other one ZnO:Al,Eu has been used as CBL. The role of the luminescent CBL layer is to down-shift the UV light into visible range which overlaps with the absorption of PCDTBT polymer, resulting in an energy transfer from ZnO:Al,Eu to PCDTBT polymer and the absorption by active layer is enhanced as revealed by transient spectroscopy. This enhancement resulted in an increase in the short circuit current which contributes in an increased PCE in the device employing ZnO: Al,Eu CBL. Thus, the luminescent ZnO: Al, Eu nanoparticle CBL has great potential in organic solar cells.

Keywords: cathode buffer layer, energy transfer, organic solar cell, power conversion efficiency

Procedia PDF Downloads 237
437 Physical and Morphological Response to Land Reclamation Projects in a Wave-Dominated Bay

Authors: Florian Monetti, Brett Beamsley, Peter McComb, Simon Weppe

Abstract:

Land reclamation from the ocean has considerably increased over past decades to support worldwide rapid urban growth. Reshaping the coastline, however, inevitably affects coastal systems. One of the main challenges for coastal oceanographers is to predict the physical and morphological responses for nearshore systems to man-made changes over multiple time-scales. Fully-coupled numerical models are powerful tools for simulating the wide range of interactions between flow field and bedform morphology. Restricted and inconsistent measurements, combined with limited computational resources, typically make this exercise complex and uncertain. In the present study, we investigate the impact of proposed land reclamation within a wave-dominated bay in New Zealand. For this purpose, we first calibrated our morphological model based on the long-term evolution of the bay resulting from land reclamation carried out in the 1950s. This included the application of sedimentological spin-up and reduction techniques based on historical bathymetry datasets. The updated bathymetry, including the proposed modifications of the bay, was then used to predict the effect of the proposed land reclamation on the wave climate and morphology of the bay after one decade. We show that reshaping the bay induces a distinct symmetrical response of the shoreline which likely will modify the nearshore wave patterns and consequently recreational activities in the area.

Keywords: coastal waves, impact of land reclamation, long-term coastal evolution, morphodynamic modeling

Procedia PDF Downloads 159
436 Bimetallic Cu/Au Nanostructures and Bio-Application

Authors: Si Yin Tee

Abstract:

Bimetallic nanostructures have received tremendous interests as a new class of nanomaterials which may have better technological usefulness with distinct properties from those of individual atoms and molecules or bulk matter. They excelled over the monometallic counterparts because of their improved electronic, optical and catalytic performances. The properties and the applicability of these bimetallic nanostructures not only depend on their size and shape, but also on the composition and their fine structure. These bimetallic nanostructures are potential candidates for bio-applications such as biosensing, bioimaging, biodiagnostics, drug delivery, targeted therapeutics, and tissue engineering. Herein, gold-incorporated copper (Cu/Au) nanostructures were synthesized through the controlled disproportionation of Cu⁺-oleylamine complex at 220 ºC to form copper nanowires and the subsequent reaction with Au³⁺ at different temperatures of 140, 220 and 300 ºC. This is to achieve their synergistic effect through the combined use of the merits of low-cost transition and high-stability noble metals. Of these Cu/Au nanostructures, Cu/Au nanotubes display the best performance towards electrochemical non-enzymatic glucose sensing, originating from the high conductivity of gold and the high aspect ratio copper nanotubes with high surface area so as to optimise the electroactive sites and facilitate mass transport. In addition to high sensitivity and fast response, the Cu/Au nanotubes possess high selectivity against interferences from other potential interfering species and excellent reproducibility with long-term stability. By introducing gold into copper nanostructures at a low level of 3, 1 and 0.1 mol% relative to initial copper precursor, a significant electrocatalytic enhancement of the resulting bimetallic Cu/Au nanostructures starts to occur at 1 mol%. Overall, the present fabrication of stable Cu/Au nanostructures offers a promising low-cost platform for sensitive, selective, reproducible and reusable electrochemical sensing of glucose.

Keywords: bimetallic, electrochemical sensing, glucose oxidation, gold-incorporated copper nanostructures

Procedia PDF Downloads 503
435 Local Development and Community Participation in Owo Local Government Area of Ondo State, Nigeria

Authors: Tolu Lawal

Abstract:

The genuine development of the grassroots particularly in the developing societies depends largely on the participation of the rural populace in policy conception and implementation, especially in the area of development policies, fundamentally, the rural people play a vital and significance role in economic and political development of the nation. This is because the bulk of the economic produce as well as votes come from these areas. However, the much needed development has continued to elude the rural communities inspire of the various development policies carried out by successive governments in the state. The exclusion of rural communities from planning and implementation of facilities meant to benefit them, and the international debate on sustainable rural development led Ondo State government to re-think its rural development policy with a view to establishing more effective strategies for rural development. The 31s initiatives introduced in 2009 emphasizes the important role of communities in their own development. The paper therefore critically assessed the 31s initiative of the present government in Ondo State with a view to knowing its impact on rural people. The study adopted both primary and secondary data to source its information. Interviews were conducted with the key informants, and field survey (visit) was also part of method of collecting data. Documents, reports and records on 31s initiatives in the selected villages and from outside were also consulted. The paper submitted that 31s initiative has not impacted positively on the lives of rural dwellers in Ondo-State, most especially in the areas of infrastructure and integrated development. The findings also suggested that 31s initiatives is not hopeless, but needs a different kind of investment, for example introducing measures of accountability, addressing the politicization of the initiative and exploiting key principles of development and service delivery.

Keywords: development, infrastructure, rural development, participation

Procedia PDF Downloads 286
434 Understanding the Issue of Reproductive Matters among Urban Women: A Study of Four Cities in India from National Family Health Survey-4

Authors: Priyanka Dixit

Abstract:

Reproductive health problem is an important public health issue in most of the developing countries like India. It is a common problem in India for women in the reproductive age group to suffer from reproductive illnesses and not seek care. Existing literatures tell us very little about the several dimensions of reproductive morbidity. In addition the general perception says, metros have better medical infrastructure, so its residents should lead a healthier life. However some of the studies reveal a very different picture. Therefore, the present study is conducted with the specific objectives to find out the prevalence of reproductive health problem and treatment seeking behavior of currently married women in four metro cities in India namely; Mumbai, Delhi, Chennai and Kolkata. In addition, this paper also examines the effect of socio-economic and demographic factors on self-reported reproductive health problems. Bi-variate and multivariate regression have been applied to achieve the proposed objectives. Study is based on National Family Health Survey 2015-16 data. The analysis shows that the prevalence of any reproductive health problem among women is the highest in Mumbai followed by Delhi, Chennai, and Kolkata. A bulk of women in all four metro cities has reported abdominal pain, itching and burning sensation as the major problems while urinating. However, in spite of the high prevalence of reproductive health problems, a huge proportion of such women in all these cities do not seek any advice or treatment for these problems. This study also investigates determinants that affect the prevalence of reproductive health problem to policy makers plan for proper interventions for improving women’s reproductive health.

Keywords: reproductive health, India, national family health survey-4, city

Procedia PDF Downloads 190
433 Internal Displacement in Iraq due to ISIS Occupation and Its Effects on Human Security and Coexistence

Authors: Feisal Khudher Mahmood, Abdul Samad Rahman Sultan

Abstract:

Iraq had been a diverse society with races, cultures and religions that peacefully coexistence. The phenomenon of internal displacement occurred after April 2003, because of political instability as will as the deterioration of the political and security situation as a result of United States of America occupation. Biggest internal displacement have occurred (and keep happening) since 10th of June 2014 due to rise of Islamic State of Iraq and Syria (ISIS) and it’s occupation of one third of country territories. This crisis effected directly 3,275,000 people and reflected negatively on the social fabric of Iraq community and led to waves of sectorial violence that swept the country. Internal displaced communities are vulnerable, especially under non functional and weak government, that led to lose of essential human rights and dignity. Using Geographic Information System (GIS) and Geospatial Techniques, two types of internal displacement have been found; voluntary and forced. Both types of displacement are highly influenced by location, race and religion. The main challenge for Iraqi government and NGOs will be after defeating ISIS. Helping the displaced to resettle within their community and to re-establish the coexistence. By spatial-statical analysis hot spots of future conflicts among displaced community have been highlighted. This will help the government to tackle future conflicts before they occur. Also, it will be the base for social conflict early warning system.

Keywords: internal displacement, Iraq, ISIS, human security, human rights, GIS, spatial-statical analysis

Procedia PDF Downloads 503
432 Pellegrini-Stieda Syndrome: A Physical Medicine and Rehabilitation Approach

Authors: Pedro Ferraz-Gameiro

Abstract:

Introduction: The Pellegrini-Stieda lesion is the result of post-traumatic calcification and/or ossification on the medial collateral ligament (MCL) of the knee. When this calcification is accompanied by gonalgia and limitation of knee flexion, it is called Pellegrini-Stieda syndrome. The pathogenesis is probably the calcification of a post-traumatic hematoma at least three weeks after the initial trauma or secondary to repetitive microtrauma. On anteroposterior radiographs, a Pellegrini-Stieda lesion is a linear vertical ossification or calcification of the proximal portion of the MCL and usually near the medial femoral condyle. Patients with Pellegrini-Stieda syndrome present knee pain associated with loss of range of motion. The treatment is usually conservative with analgesic and anti-inflammatory drugs, either systemic or intra-articular. Physical medicine and rehabilitation techniques associated with shock wave therapy can be a way of reduction of pain/inflammation. Patients who maintain instability with significant limitation of knee mobility may require surgical excision. Methods: Research was done using PubMed central using the terms Pellegrini-Stieda syndrome. Discussion/conclusion: Medical treatment is the rule, with initial rest, anti-inflammatory, and physiotherapy. If left untreated, this ossification can potentially form a significant bone mass, which can compromise the range of motion of the knee. Physical medicine and rehabilitation techniques associated with shock wave therapy are a way of reduction of pain/inflammation.

Keywords: knee, Pellegrini-Stieda syndrome, rehabilitation, shock waves therapy

Procedia PDF Downloads 117
431 A Theoretical Analysis of Air Cooling System Using Thermal Ejector under Variable Generator Pressure

Authors: Mohamed Ouzzane, Mahmoud Bady

Abstract:

Due to energy and environment context, research is looking for the use of clean and energy efficient system in cooling industry. In this regard, the ejector represents one of the promising solutions. The thermal ejector is a passive component used for thermal compression in refrigeration and cooling systems, usually activated by heat either waste or solar. The present study introduces a theoretical analysis of the cooling system which uses a gas ejector thermal compression. A theoretical model is developed and applied for the design and simulation of the ejector, as well as the whole cooling system. Besides the conservation equations of mass, energy and momentum, the gas dynamic equations, state equations, isentropic relations as well as some appropriate assumptions are applied to simulate the flow and mixing in the ejector. This model coupled with the equations of the other components (condenser, evaporator, pump, and generator) is used to analyze profiles of pressure and velocity (Mach number), as well as evaluation of the cycle cooling capacity. A FORTRAN program is developed to carry out the investigation. Properties of refrigerant R134a are calculated using real gas equations. Among many parameters, it is thought that the generator pressure is the cornerstone in the cycle, and hence considered as the key parameter in this investigation. Results show that the generator pressure has a great effect on the ejector and on the whole cooling system. At high generator pressures, strong shock waves inside the ejector are created, which lead to significant condenser pressure at the ejector exit. Additionally, at higher generator pressures, the designed system can deliver cooling capacity for high condensing pressure (hot season).

Keywords: air cooling system, refrigeration, thermal ejector, thermal compression

Procedia PDF Downloads 150
430 Current Epizootic Situation of Q Fever in Polish Cattle

Authors: Monika Szymańska-Czerwińska, Agnieszka Jodełko, Krzysztof Niemczuk

Abstract:

Q fever (coxiellosis) is an infectious disease of animals and humans causes by C. burnetii and widely distributed throughout the world. Cattle and small ruminants are commonly known as shedders of C. burnetii. The aims of this study were the evaluation of seroprevalence and shedding of C. burnetii in cattle. Genotypes of the pathogen present in the tested specimens were also identified using MLVA (Multiple Locus Variable-Number Tandem Repeat Analysis) and MST (multispacer sequence typing) methods. Sampling was conducted in different regions of Poland in 2018-2021. In total, 2180 bovine serum samples from 801 cattle herds were tested by ELISA (enzyme-linked immunosorbent assay). 489 specimens from 157 cattle herds such as: individual milk samples (n=407), bulk tank milk (n=58), vaginal swabs (n=20), placenta (n=3) and feces (n=1) were subjected to C. burnetii specific qPCR. The qPCR (IS1111 transposon-like repetitive region) was performed using Adiavet COX RealTime PCR kit. Genotypic characterization of the strains was conducted utilizing MLVA and MST methods. MLVA was performed using 6 variable loci. The overall herd-level seroprevalence of C. burnetii infection was 36.74% (801/2180). Shedders were detected in 29.3% (46/157) cattle herds in all tested regions. ST 61 sequence type was identified in 10 out of 18 genotyped strains. Interestingly one strain represents sequence type which has never been recorded previously. MLVA method identified three previously known genotypes: most common was J but also I and BE were recognized. Moreover, a one genotype has never been described previously. Seroprevalence and shedding of C. burnetii in cattle is common and strains are genetically diverse.

Keywords: Coxiella burnetii, cattle, MST, MLVA, Q fever

Procedia PDF Downloads 67
429 Designing Dibenzosilole and Methyl Carbazole Based Donor Materials with Favourable Photovoltaic Parameters for Bulk Heterojunction Organic Solar Cells

Authors: J. Iqbal, Z. Zara

Abstract:

Five new Acceptor-Donor-Acceptor (A-D-A) type small donor molecules (M1-M5) namely; dimethyl cyanoacetate terthiophene di(methylthiophene) dibenzosilole (DMCAO3TBS) (M1), dimelononitrile terthiophene di(methylthiophene) dibenzosilole (DMCNTBS) (M2), dimethyl rhodanine terthiophene di(methylthiophene) dibenzosilole (DMRTBS) (M3), dimelanonitrile terthiophene di(methylthiophene) methyl fluorene (DMCNTF) (M4) and dimethyl rhodanine terthiophene di(methylthiophene) methyl fluorine (DMRTF) (M5) were designed and theoretically explored their electronic, photophysical and geometrical properties via DFT best functional MPW1PW91/6-311G (d,p) level of theory with respect to reference molecules dioctyl cyanoacetate terthiophene di(octylthiophene) dioctylfluorene (DCAO3TF) (Ra) and dioctyl cyanoacetate terthiophene di(octylthiophene) octylcarbazole (DCAO3TCz) (Rb). Among the designed donor molecules (M1-M5), M2 and M4 represented lowest band gap value (2.480 eV and 2.47 eV) with distinctive broad absorption peak at 598 and 601 nm in chloroform due to the presence of stronger electron withdrawing acceptor molecule which pulls the λmax value towards red shift. Theoretically estimated reorganization energies of these molecules recommended excellent property of charge mobility. The designed donor molecules M1-M5, demonstrated lower λe value with reference to their λh, showing that these molecules could be ideal candidates for the transfer of electron with and M2, M4 are best among these as champion molecules with having lowest λe (0.006 D and 0.005 D respectively). Additionally, the Voc of M2 and M4 are 2.01 eV and 1.85 eV respectively with reference respect to PCBM. Thus, our present investigation suggested that our designed donor molecules (M1-M5) are suitable candidates for the solar cell and proposed for high and better performance for the small molecule based solar cell devices.

Keywords: dibenzisilol, donor materials, hole mobility, organic solar cells

Procedia PDF Downloads 179
428 Recent Progress in Wave Rotor Combustion

Authors: Mohamed Razi Nalim, Shahrzad Ghadiri

Abstract:

With current concerns regarding global warming, demand for a society with greater environmental awareness significantly increases. With gradual development in hybrid and electric vehicles and the availability of renewable energy resources, increasing efficiency in fossil fuel and combustion engines seems a faster solution toward sustainability and reducing greenhouse gas emissions. This paper aims to provide a comprehensive review of recent progress in wave rotor combustor, one of the combustion concepts with considerable potential to improve power output and emission standards. A wave rotor is an oscillatory flow device that uses the unsteady gas dynamic concept to transfer energy by generating pressure waves. From a thermodynamic point of view, unlike conventional positive-displacement piston engines which follow the Brayton cycle, wave rotors offer higher cycle efficiency due to pressure gain during the combustion process based on the Humphrey cycle. First, the paper covers all recent and ongoing computational and experimental studies around the world with a quick look at the milestones in the history of wave rotor development. Second, the main similarity and differences in the ignition system of the wave rotor with piston engines are considered. Also, the comparison is made with another pressure gain device, rotating detonation engines. Next, the main challenges and research needs for wave rotor combustor commercialization are discussed.

Keywords: wave rotor combustor, unsteady gas dynamic, pre-chamber jet ignition, pressure gain combustion, constant-volume combustion

Procedia PDF Downloads 64
427 Simulation and Fabrication of Plasmonic Lens for Bacteria Detection

Authors: Sangwoo Oh, Jaewoo Kim, Dongmin Seo, Jaewon Park, Yongha Hwang, Sungkyu Seo

Abstract:

Plasmonics has been regarded one of the most powerful bio-sensing modalities to evaluate bio-molecular interactions in real-time. However, most of the plasmonic sensing methods are based on labeling metallic nanoparticles, e.g. gold or silver, as optical modulation markers, which are non-recyclable and expensive. This plasmonic modulation can be usually achieved through various nano structures, e.g., nano-hole arrays. Among those structures, plasmonic lens has been regarded as a unique plasmonic structure due to its light focusing characteristics. In this study, we introduce a custom designed plasmonic lens array for bio-sensing, which was simulated by finite-difference-time-domain (FDTD) approach and fabricated by top-down approach. In our work, we performed the FDTD simulations of various plasmonic lens designs for bacteria sensor, i.e., Samonella and Hominis. We optimized the design parameters, i.e., radius, shape, and material, of the plasmonic lens. The simulation results showed the change in the peak intensity value with the introduction of each bacteria and antigen i.e., peak intensity 1.8711 a.u. with the introduction of antibody layer of thickness of 15nm. For Salmonella, the peak intensity changed from 1.8711 a.u. to 2.3654 a.u. and for Hominis, the peak intensity changed from 1.8711 a.u. to 3.2355 a.u. This significant shift in the intensity due to the interaction between bacteria and antigen showed a promising sensing capability of the plasmonic lens. With the batch processing and bulk production of this nano scale design, the cost of biological sensing can be significantly reduced, holding great promise in the fields of clinical diagnostics and bio-defense.

Keywords: plasmonic lens, FDTD, fabrication, bacteria sensor, salmonella, hominis

Procedia PDF Downloads 256
426 Development and Validation of Selective Methods for Estimation of Valaciclovir in Pharmaceutical Dosage Form

Authors: Eman M. Morgan, Hayam M. Lotfy, Yasmin M. Fayez, Mohamed Abdelkawy, Engy Shokry

Abstract:

Two simple, selective, economic, safe, accurate, precise and environmentally friendly methods were developed and validated for the quantitative determination of valaciclovir (VAL) in the presence of its related substances R1 (acyclovir), R2 (guanine) in bulk powder and in the commercial pharmaceutical product containing the drug. Method A is a colorimetric method where VAL selectively reacts with ferric hydroxamate and the developed color was measured at 490 nm over a concentration range of 0.4-2 mg/mL with percentage recovery 100.05 ± 0.58 and correlation coefficient 0.9999. Method B is a reversed phase ultra performance liquid chromatographic technique (UPLC) which is considered superior in technology to the high-performance liquid chromatography with respect to speed, resolution, solvent consumption, time, and cost of analysis. Efficient separation was achieved on Agilent Zorbax CN column using ammonium acetate (0.1%) and acetonitrile as a mobile phase in a linear gradient program. Elution time for the separation was less than 5 min and ultraviolet detection was carried out at 256 nm over a concentration range of 2-50 μg/mL with mean percentage recovery 100.11±0.55 and correlation coefficient 0.9999. The proposed methods were fully validated as per International Conference on Harmonization specifications and effectively applied for the analysis of valaciclovir in pure form and tablets dosage form. Statistical comparison of the results obtained by the proposed and official or reported methods revealed no significant difference in the performance of these methods regarding the accuracy and precision respectively.

Keywords: hydroxamic acid, related substances, UPLC, valaciclovir

Procedia PDF Downloads 229
425 Enhancement in Bactericidal Activity of Hydantoin Based Microsphere from Smooth to Rough

Authors: Rajani Kant Rai, Jayakrishnan Athipet

Abstract:

There have been several attempts to prepare polymers with antimicrobial properties by doping with various N-halamines. Hydantoins (Cyclic N-halamine) is of importance due to their stability rechargeable chloroamide function, broad-spectrum anti-microbial action and ability to prevent resistance to the organisms. Polymerizable hydantoins are synthesized by tethering vinyl moieties to 5,5,-dialkyl hydantoin sacrificing the imide hydrogen in the molecule thereby restricting the halogen capture only to the amide nitrogen that results in compromised antibacterial activity. In order to increase the activity of the antimicrobial polymer, we have developed a scheme to maximize the attachment of chlorine to the amide and the imide moieties of hydantoin. Vinyl hydantoin monomer, (Z)-5-(4-((3-methylbuta-1,3-dien-2-yl)oxy)benzylidene)imidazolidine-2,4-dione (MBBID) was synthesized and copolymerized with a commercially available monomer, methyl methacrylate, by free radical polymerization. The antimicrobial activity of hydantoin is strongly dependent on their surface area and hence their microbial activity increases when incorporated in microspheres or nanoparticles as compared to their bulk counterpart. In this regard, smooth and rough surface microsphere of the vinyl monomer (MBBID) with commercial monomer was synthesized. The oxidative chlorine content of the copolymer ranged from 1.5 to 2.45 %. Further, to demonstrate the water purification potential, the thin column was packed with smooth or rough microspheres and challenged with simulated contaminated water that exhibited 6 log kill (total kill) of the bacteria in 20 minutes of exposure with smooth (25 mg/ml) and rough microsphere (15.0 mg/ml).

Keywords: cyclic N-halamine, vinyl hydantoin monomer, rough surface microsphere, simulated contaminated water

Procedia PDF Downloads 132
424 An Application of Path Planning Algorithms for Autonomous Inspection of Buried Pipes with Swarm Robots

Authors: Richard Molyneux, Christopher Parrott, Kirill Horoshenkov

Abstract:

This paper aims to demonstrate how various algorithms can be implemented within swarms of autonomous robots to provide continuous inspection within underground pipeline networks. Current methods of fault detection within pipes are costly, time consuming and inefficient. As such, solutions tend toward a more reactive approach, repairing faults, as opposed to proactively seeking leaks and blockages. The paper presents an efficient inspection method, showing that autonomous swarm robotics is a viable way of monitoring underground infrastructure. Tailored adaptations of various Vehicle Routing Problems (VRP) and path-planning algorithms provide a customised inspection procedure for complicated networks of underground pipes. The performance of multiple algorithms is compared to determine their effectiveness and feasibility. Notable inspirations come from ant colonies and stigmergy, graph theory, the k-Chinese Postman Problem ( -CPP) and traffic theory. Unlike most swarm behaviours which rely on fast communication between agents, underground pipe networks are a highly challenging communication environment with extremely limited communication ranges. This is due to the extreme variability in the pipe conditions and relatively high attenuation of acoustic and radio waves with which robots would usually communicate. This paper illustrates how to optimise the inspection process and how to increase the frequency with which the robots pass each other, without compromising the routes they are able to take to cover the whole network.

Keywords: autonomous inspection, buried pipes, stigmergy, swarm intelligence, vehicle routing problem

Procedia PDF Downloads 150
423 Spatio-Temporal Variation of Suspended Sediment Concentration in the near Shore Waters, Southern Karnataka, India

Authors: Ateeth Shetty, K. S. Jayappa, Ratheesh Ramakrishnan, A. S. Rajawat

Abstract:

Suspended Sediment Concentration (SSC) was estimated for the period of four months (November, 2013 to February 2014) using Oceansat-2 (Ocean Colour Monitor) satellite images to understand the coastal dynamics and regional sediment transport, especially distribution and budgeting in coastal waters. The coastal zone undergoes continuous changes due to natural processes and anthropogenic activities. The importance of the coastal zone, with respect to safety, ecology, economy and recreation, demands a management strategy in which each of these aspects is taken into account. Monitoring and understanding the sediment dynamics and suspended sediment transport is an important issue for coastal engineering related activities. A study of the transport mechanism of suspended sediments in the near shore environment is essential not only to safeguard marine installations or navigational channels, but also for the coastal structure design, environmental protection and disaster reduction. Such studies also help in assessment of pollutants and other biological activities in the region. An accurate description of the sediment transport, caused by waves and tidal or wave-induced currents, is of great importance in predicting coastal morphological changes. Satellite-derived SSC data have been found to be useful for Indian coasts because of their high spatial (360 m), spectral and temporal resolutions. The present paper outlines the applications of state‐of‐the‐art operational Indian Remote Sensing satellite, Oceansat-2 to study the dynamics of sediment transport.

Keywords: suspended sediment concentration, ocean colour monitor, sediment transport, case – II waters

Procedia PDF Downloads 237
422 Analytical Description of Disordered Structures in Continuum Models of Pattern Formation

Authors: Gyula I. Tóth, Shaho Abdalla

Abstract:

Even though numerical simulations indeed have a significant precursory/supportive role in exploring the disordered phase displaying no long-range order in pattern formation models, studying the stability properties of this phase and determining the order of the ordered-disordered phase transition in these models necessitate an analytical description of the disordered phase. First, we will present the results of a comprehensive statistical analysis of a large number (1,000-10,000) of numerical simulations in the Swift-Hohenberg model, where the bulk disordered (or amorphous) phase is stable. We will show that the average free energy density (over configurations) converges, while the variance of the energy density vanishes with increasing system size in numerical simulations, which suggest that the disordered phase is a thermodynamic phase (i.e., its properties are independent of the configuration in the macroscopic limit). Furthermore, the structural analysis of this phase in the Fourier space suggests that the phase can be modeled by a colored isotropic Gaussian noise, where any instant of the noise describes a possible configuration. Based on these results, we developed the general mathematical framework of finding a pool of solutions to partial differential equations in the sense of continuous probability measure, which we will present briefly. Applying the general idea to the Swift-Hohenberg model we show, that the amorphous phase can be found, and its properties can be determined analytically. As the general mathematical framework is not restricted to continuum theories, we hope that the proposed methodology will open a new chapter in studying disordered phases.

Keywords: fundamental theory, mathematical physics, continuum models, analytical description

Procedia PDF Downloads 116
421 Genetic Algorithm and Multi Criteria Decision Making Approach for Compressive Sensing Based Direction of Arrival Estimation

Authors: Ekin Nurbaş

Abstract:

One of the essential challenges in array signal processing, which has drawn enormous research interest over the past several decades, is estimating the direction of arrival (DOA) of plane waves impinging on an array of sensors. In recent years, the Compressive Sensing based DoA estimation methods have been proposed by researchers, and it has been discovered that the Compressive Sensing (CS)-based algorithms achieved significant performances for DoA estimation even in scenarios where there are multiple coherent sources. On the other hand, the Genetic Algorithm, which is a method that provides a solution strategy inspired by natural selection, has been used in sparse representation problems in recent years and provides significant improvements in performance. With all of those in consideration, in this paper, a method that combines the Genetic Algorithm (GA) and the Multi-Criteria Decision Making (MCDM) approaches for Direction of Arrival (DoA) estimation in the Compressive Sensing (CS) framework is proposed. In this method, we generate a multi-objective optimization problem by splitting the norm minimization and reconstruction loss minimization parts of the Compressive Sensing algorithm. With the help of the Genetic Algorithm, multiple non-dominated solutions are achieved for the defined multi-objective optimization problem. Among the pareto-frontier solutions, the final solution is obtained with the multiple MCDM methods. Moreover, the performance of the proposed method is compared with the CS-based methods in the literature.

Keywords: genetic algorithm, direction of arrival esitmation, multi criteria decision making, compressive sensing

Procedia PDF Downloads 134
420 Design of an Acoustic Imaging Sensor Array for Mobile Robots

Authors: Dibyendu Roy, V. Ramu Reddy, Parijat Deshpande, Ranjan Dasgupta

Abstract:

Imaging of underwater objects is primarily conducted by acoustic imagery due to the severe attenuation of electro-magnetic waves in water. Acoustic imagery underwater has varied range of significant applications such as side-scan sonar, mine hunting sonar. It also finds utility in other domains such as imaging of body tissues via ultrasonography and non-destructive testing of objects. In this paper, we explore the feasibility of using active acoustic imagery in air and simulate phased array beamforming techniques available in literature for various array designs to achieve a suitable acoustic sensor array design for a portable mobile robot which can be applied to detect the presence/absence of anomalous objects in a room. The multi-path reflection effects especially in enclosed rooms and environmental noise factors are currently not simulated and will be dealt with during the experimental phase. The related hardware is designed with the same feasibility criterion that the developed system needs to be deployed on a portable mobile robot. There is a trade of between image resolution and range with the array size, number of elements and the imaging frequency and has to be iteratively simulated to achieve the desired acoustic sensor array design. The designed acoustic imaging array system is to be mounted on a portable mobile robot and targeted for use in surveillance missions for intruder alerts and imaging objects during dark and smoky scenarios where conventional optic based systems do not function well.

Keywords: acoustic sensor array, acoustic imagery, anomaly detection, phased array beamforming

Procedia PDF Downloads 388
419 Geostatistical Simulation of Carcinogenic Industrial Effluent on the Irrigated Soil and Groundwater, District Sheikhupura, Pakistan

Authors: Asma Shaheen, Javed Iqbal

Abstract:

The water resources are depleting due to an intrusion of industrial pollution. There are clusters of industries including leather tanning, textiles, batteries, and chemical causing contamination. These industries use bulk quantity of water and discharge it with toxic effluents. The penetration of heavy metals through irrigation from industrial effluent has toxic effect on soil and groundwater. There was strong positive significant correlation between all the heavy metals in three media of industrial effluent, soil and groundwater (P < 0.001). The metal to the metal association was supported by dendrograms using cluster analysis. The geospatial variability was assessed by using geographically weighted regression (GWR) and pollution model to identify the simulation of carcinogenic elements in soil and groundwater. The principal component analysis identified the metals source, 48.8% variation in factor 1 have significant loading for sodium (Na), calcium (Ca), magnesium (Mg), iron (Fe), chromium (Cr), nickel (Ni), lead (Pb) and zinc (Zn) of tannery effluent-based process. In soil and groundwater, the metals have significant loading in factor 1 representing more than half of the total variation with 51.3 % and 53.6 % respectively which showed that pollutants in soil and water were driven by industrial effluent. The cumulative eigen values for the three media were also found to be greater than 1 representing significant clustering of related heavy metals. The results showed that heavy metals from industrial processes are seeping up toxic trace metals in the soil and groundwater. The poisonous pollutants from heavy metals turned the fresh resources of groundwater into unusable water. The availability of fresh water for irrigation and domestic use is being alarming.

Keywords: groundwater, geostatistical, heavy metals, industrial effluent

Procedia PDF Downloads 217