Search results for: multiple kink solution
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9780

Search results for: multiple kink solution

360 Translation and Validation of the Thai Version of the Japanese Sleep Questionnaire for Preschoolers

Authors: Natcha Lueangapapong, Chariya Chuthapisith, Lunliya Thampratankul

Abstract:

Background: There is a need to find an appropriate tool to help healthcare providers determine sleep problems in children for early diagnosis and management. The Japanese Sleep Questionnaire for Preschoolers (JSQ-P) is a parent-reported sleep questionnaire that has good psychometric properties and can be used in the context of Asian culture, which is likely suitable for Thai children. Objectives: This study aimed to translate and validate the Japanese Sleep Questionnaire for Preschoolers (JSQ-P) into a Thai version and to evaluate factors associated with sleep disorders in preschoolers. Methods: After approval by the original developer, the cross-cultural adaptation process of JSQ-P was performed, including forward translation, reconciliation, backward translation, and final approval of the Thai version of JSQ-P (TH-JSQ-P) by the original creator. This study was conducted between March 2021 and February 2022. The TH-JSQ-P was completed by 2,613 guardians whose children were aged 2-6 years twice in 10-14 days to assess its reliability and validity. Content validity was measured by an index of item-objective congruence (IOC) and a content validity index (CVI). Face validity, content validity, structural validity, construct validity (discriminant validity), criterion validity and predictive validity were assessed. The sensitivity and specificity of the TH-JSQ-P were also measured by using a total JSQ-P score cutoff point 84, recommended by the original JSQ-P and each subscale score among the clinical samples of obstructive sleep apnea syndrome. Results: Internal consistency reliability, evaluated by Cronbach’s α coefficient, showed acceptable reliability in all subscales of JSQ-P. It also had good test-retest reliability, as the intraclass correlation coefficient (ICC) for all items ranged between 0.42-0.84. The content validity was acceptable. For structural validity, our results indicated that the final factor solution for the Th-JSQ-P was comparable to the original JSQ-P. For construct validity, age group was one of the clinical parameters associated with some sleep problems. In detail, parasomnias, insomnia, daytime excessive sleepiness and sleep habits significantly decreased when the children got older; on the other hand, insufficient sleep was significantly increased with age. For criterion validity, all subscales showed a correlation with the Epworth Sleepiness Scale (r = -0.049-0.349). In predictive validity, the Epworth Sleepiness Scale was significantly a strong factor that correlated to sleep problems in all subscales of JSQ-P except in the subscale of sleep habit. The sensitivity and specificity of the total JSQ-P score were 0.72 and 0.66, respectively. Conclusion: The Thai version of JSQ-P has good internal consistency reliability and test-retest reliability. It passed 6 validity tests, and this can be used to evaluate sleep problems in preschool children in Thailand. Furthermore, it has satisfactory general psychometric properties and good reliability and validity. The data collected in examining the sensitivity of the Thai version revealed that the JSQ-P could detect differences in sleep problems among children with obstructive sleep apnea syndrome. This confirmed that the measure is sensitive and can be used to discriminate sleep problems among different children.

Keywords: preschooler, questionnaire, validation, Thai version

Procedia PDF Downloads 62
359 South African Breast Cancer Mutation Spectrum: Pitfalls to Copy Number Variation Detection Using Internationally Designed Multiplex Ligation-Dependent Probe Amplification and Next Generation Sequencing Panels

Authors: Jaco Oosthuizen, Nerina C. Van Der Merwe

Abstract:

The National Health Laboratory Services in Bloemfontien has been the diagnostic testing facility for 1830 patients for familial breast cancer since 1997. From the cohort, 540 were comprehensively screened using High-Resolution Melting Analysis or Next Generation Sequencing for the presence of point mutations and/or indels. Approximately 90% of these patients stil remain undiagnosed as they are BRCA1/2 negative. Multiplex ligation-dependent probe amplification was initially added to screen for copy number variation detection, but with the introduction of next generation sequencing in 2017, was substituted and is currently used as a confirmation assay. The aim was to investigate the viability of utilizing internationally designed copy number variation detection assays based on mostly European/Caucasian genomic data for use within a South African context. The multiplex ligation-dependent probe amplification technique is based on the hybridization and subsequent ligation of multiple probes to a targeted exon. The ligated probes are amplified using conventional polymerase chain reaction, followed by fragment analysis by means of capillary electrophoresis. The experimental design of the assay was performed according to the guidelines of MRC-Holland. For BRCA1 (P002-D1) and BRCA2 (P045-B3), both multiplex assays were validated, and results were confirmed using a secondary probe set for each gene. The next generation sequencing technique is based on target amplification via multiplex polymerase chain reaction, where after the amplicons are sequenced parallel on a semiconductor chip. Amplified read counts are visualized as relative copy numbers to determine the median of the absolute values of all pairwise differences. Various experimental parameters such as DNA quality, quantity, and signal intensity or read depth were verified using positive and negative patients previously tested internationally. DNA quality and quantity proved to be the critical factors during the verification of both assays. The quantity influenced the relative copy number frequency directly whereas the quality of the DNA and its salt concentration influenced denaturation consistency in both assays. Multiplex ligation-dependent probe amplification produced false positives due to ligation failure when ligation was inhibited due to a variant present within the ligation site. Next generation sequencing produced false positives due to read dropout when primer sequences did not meet optimal multiplex binding kinetics due to population variants in the primer binding site. The analytical sensitivity and specificity for the South African population have been proven. Verification resulted in repeatable reactions with regards to the detection of relative copy number differences. Both multiplex ligation-dependent probe amplification and next generation sequencing multiplex panels need to be optimized to accommodate South African polymorphisms present within the genetically diverse ethnic groups to reduce the false copy number variation positive rate and increase performance efficiency.

Keywords: familial breast cancer, multiplex ligation-dependent probe amplification, next generation sequencing, South Africa

Procedia PDF Downloads 204
358 Comparative Appraisal of Polymeric Matrices Synthesis and Characterization Based on Maleic versus Itaconic Anhydride and 3,9-Divinyl-2,4,8,10-Tetraoxaspiro[5.5]-Undecane

Authors: Iordana Neamtu, Aurica P. Chiriac, Loredana E. Nita, Mihai Asandulesa, Elena Butnaru, Nita Tudorachi, Alina Diaconu

Abstract:

In the last decade, the attention of many researchers is focused on the synthesis of innovative “intelligent” copolymer structures with great potential for different uses. This considerable scientific interest is stimulated by possibility of the significant improvements in physical, mechanical, thermal and other important specific properties of these materials. Functionalization of polymer in synthesis by designing a suitable composition with the desired properties and applications is recognized as a valuable tool. In this work is presented a comparative study of the properties of the new copolymers poly(maleic anhydride maleic-co-3,9-divinyl-2,4,8,10-tetraoxaspiro[5.5]undecane) and poly(itaconic-anhydride-co-3,9-divinyl-2,4,8,10-tetraoxaspiro[5.5]undecane) obtained by radical polymerization in dioxane, using 2,2′-azobis(2-methylpropionitrile) as free-radical initiator. The comonomers are able for generating special effects as for example network formation, biodegradability and biocompatibility, gel formation capacity, binding properties, amphiphilicity, good oxidative and thermal stability, good film formers, and temperature and pH sensitivity. Maleic anhydride (MA) and also the isostructural analog itaconic anhydride (ITA) as polyfunctional monomers are widely used in the synthesis of reactive macromolecules with linear, hyperbranched and self & assembled structures to prepare high performance engineering, bioengineering and nano engineering materials. The incorporation of spiroacetal groups in polymer structures improves the solubility and the adhesive properties, induce good oxidative and thermal stability, are formers of good fiber or films with good flexibility and tensile strength. Also, the spiroacetal rings induce interactions on ether oxygen such as hydrogen bonds or coordinate bonds with other functional groups determining bulkiness and stiffness. The synthesized copolymers are analyzed by DSC, oscillatory and rotational rheological measurements and dielectric spectroscopy with the aim of underlying the heating behavior, solution viscosity as a function of shear rate and temperature and to investigate the relaxation processes and the motion of functional groups present in side chain around the main chain or bonds of the side chain. Acknowledgments This work was financially supported by the grant of the Romanian National Authority for Scientific Research, CNCS-UEFISCDI, project number PN-II-132/2014 “Magnetic biomimetic supports as alternative strategy for bone tissue engineering and repair’’ (MAGBIOTISS).

Keywords: Poly(maleic anhydride-co-3, 9-divinyl-2, 4, 8, 10-tetraoxaspiro (5.5)undecane); Poly(itaconic anhydride-co-3, 9-divinyl-2, 4, 8, 10-tetraoxaspiro (5.5)undecane); DSC; oscillatory and rotational rheological analysis; dielectric spectroscopy

Procedia PDF Downloads 201
357 Heritage, Cultural Events and Promises for Better Future: Media Strategies for Attracting Tourism during the Arab Spring Uprisings

Authors: Eli Avraham

Abstract:

The Arab Spring was widely covered in the global media and the number of Western tourists traveling to the area began to fall. The goal of this study was to analyze which media strategies marketers in Middle Eastern countries chose to employ in their attempts to repair the negative image of the area in the wake of the Arab Spring. Several studies were published concerning image-restoration strategies of destinations during crises around the globe; however, these strategies were not part of an overarching theory, conceptual framework or model from the fields of crisis communication and image repair. The conceptual framework used in the current study was the ‘multi-step model for altering place image’, which offers three types of strategies: source, message and audience. Three research questions were used: 1.What public relations crisis techniques and advertising campaign components were used? 2. What media policies and relationships with the international media were adopted by Arab officials? 3. Which marketing initiatives (such as cultural and sports events) were promoted? This study is based on qualitative content analysis of four types of data: 1) advertising components (slogans, visuals and text); (2) press interviews with Middle Eastern officials and marketers; (3) official media policy adopted by government decision-maker (e.g. boycotting or arresting newspeople); and (4) marketing initiatives (e.g. organizing heritage festivals and cultural events). The data was located in three channels from December 2010, when the events started, to September 31, 2013: (1) Internet and video-sharing websites: YouTube and Middle Eastern countries' national tourism board websites; (2) News reports from two international media outlets, The New York Times and Ha’aretz; these are considered quality newspapers that focus on foreign news and tend to criticize institutions; (3) Global tourism news websites: eTurbo news and ‘Cities and countries branding’. Using the ‘multi-step model for altering place image,’ the analysis reveals that Middle Eastern marketers and officials used three kinds of strategies to repair their countries' negative image: 1. Source (cooperation and media relations; complying, threatening and blocking the media; and finding alternatives to the traditional media) 2. Message (ignoring, limiting, narrowing or reducing the scale of the crisis; acknowledging the negative effect of an event’s coverage and assuring a better future; promotion of multiple facets, exhibitions and softening the ‘hard’ image; hosting spotlight sporting and cultural events; spinning liabilities into assets; geographic dissociation from the Middle East region; ridicule the existing stereotype) and 3. Audience (changing the target audience by addressing others; emphasizing similarities and relevance to specific target audience). It appears that dealing with their image problems will continue to be a challenge for officials and marketers of Middle Eastern countries until the region stabilizes and its regional conflicts are resolved.

Keywords: Arab spring, cultural events, image repair, Middle East, tourism marketing

Procedia PDF Downloads 259
356 Cell-free Bioconversion of n-Octane to n-Octanol via a Heterogeneous and Bio-Catalytic Approach

Authors: Shanna Swart, Caryn Fenner, Athanasios Kotsiopoulos, Susan Harrison

Abstract:

Linear alkanes are produced as by-products from the increasing use of gas-to-liquid fuel technologies for synthetic fuel production and offer great potential for value addition. Their current use as low-value fuels and solvents do not maximize this potential. Therefore, attention has been drawn towards direct activation of these aliphatic alkanes to more useful products such as alcohols, aldehydes, carboxylic acids and derivatives. Cytochrome P450 monooxygenases (P450s) can be used for activation of these aliphatic alkanes using whole-cells or cell-free systems. Some limitations of whole-cell systems include reduced mass transfer, stability and possible side reactions. Since the P450 systems are little studied as cell-free systems, they form the focus of this study. Challenges of a cell-free system include co-factor regeneration, substrate availability and enzyme stability. Enzyme immobilization offers a positive outlook on this dilemma, as it may enhance stability of the enzyme. In the present study, 2 different P450s (CYP153A6 and CYP102A1) as well as the relevant accessory enzymes required for electron transfer (ferredoxin and ferredoxin reductase) and co-factor regeneration (glucose dehydrogenase) have been expressed in E. coli and purified by metal affinity chromatography. Glucose dehydrogenase (GDH), was used as a model enzyme to assess the potential of various enzyme immobilization strategies including; surface attachment on MagReSyn® microspheres with various functionalities and on electrospun nanofibers, using self-assembly based methods forming Cross Linked Enzymes (CLE), Cross Linked Enzyme Aggregates (CLEAs) and spherezymes as well as in a sol gel. The nanofibers were synthesized by electrospinning, which required the building of an electrospinning machine. The nanofiber morphology has been analyzed by SEM and binding will be further verified by FT-IR. Covalent attachment based methods showed limitations where only ferredoxin reductase and GDH retained activity after immobilization which were largely attributed to insufficient electron transfer and inactivation caused by the crosslinkers (60% and 90% relative activity loss for the free enzyme when using 0.5% glutaraldehyde and glutaraldehyde/ethylenediamine (1:1 v/v), respectively). So far, initial experiments with GDH have shown the most potential when immobilized via their His-tag onto the surface of MagReSyn® microspheres functionalized with Ni-NTA. It was found that Crude GDH could be simultaneously purified and immobilized with sufficient activity retention. Immobilized pure and crude GDH could be recycled 9 and 10 times, respectively, with approximately 10% activity remaining. The immobilized GDH was also more stable than the free enzyme after storage for 14 days at 4˚C. This immobilization strategy will also be applied to the P450s and optimized with regards to enzyme loading and immobilization time, as well as characterized and compared with the free enzymes. It is anticipated that the proposed immobilization set-up will offer enhanced enzyme stability (as well as reusability and easy recovery), minimal mass transfer limitation, with continuous co-factor regeneration and minimal enzyme leaching. All of which provide a positive outlook on this robust multi-enzyme system for efficient activation of linear alkanes as well as the potential for immobilization of various multiple enzymes, including multimeric enzymes for different bio-catalytic applications beyond alkane activation.

Keywords: alkane activation, cytochrome P450 monooxygenase, enzyme catalysis, enzyme immobilization

Procedia PDF Downloads 203
355 Forecasting Thermal Energy Demand in District Heating and Cooling Systems Using Long Short-Term Memory Neural Networks

Authors: Kostas Kouvaris, Anastasia Eleftheriou, Georgios A. Sarantitis, Apostolos Chondronasios

Abstract:

To achieve the objective of almost zero carbon energy solutions by 2050, the EU needs to accelerate the development of integrated, highly efficient and environmentally friendly solutions. In this direction, district heating and cooling (DHC) emerges as a viable and more efficient alternative to conventional, decentralized heating and cooling systems, enabling a combination of more efficient renewable and competitive energy supplies. In this paper, we develop a forecasting tool for near real-time local weather and thermal energy demand predictions for an entire DHC network. In this fashion, we are able to extend the functionality and to improve the energy efficiency of the DHC network by predicting and adjusting the heat load that is distributed from the heat generation plant to the connected buildings by the heat pipe network. Two case-studies are considered; one for Vransko, Slovenia and one for Montpellier, France. The data consists of i) local weather data, such as humidity, temperature, and precipitation, ii) weather forecast data, such as the outdoor temperature and iii) DHC operational parameters, such as the mass flow rate, supply and return temperature. The external temperature is found to be the most important energy-related variable for space conditioning, and thus it is used as an external parameter for the energy demand models. For the development of the forecasting tool, we use state-of-the-art deep neural networks and more specifically, recurrent networks with long-short-term memory cells, which are able to capture complex non-linear relations among temporal variables. Firstly, we develop models to forecast outdoor temperatures for the next 24 hours using local weather data for each case-study. Subsequently, we develop models to forecast thermal demand for the same period, taking under consideration past energy demand values as well as the predicted temperature values from the weather forecasting models. The contributions to the scientific and industrial community are three-fold, and the empirical results are highly encouraging. First, we are able to predict future thermal demand levels for the two locations under consideration with minimal errors. Second, we examine the impact of the outdoor temperature on the predictive ability of the models and how the accuracy of the energy demand forecasts decreases with the forecast horizon. Third, we extend the relevant literature with a new dataset of thermal demand and examine the performance and applicability of machine learning techniques to solve real-world problems. Overall, the solution proposed in this paper is in accordance with EU targets, providing an automated smart energy management system, decreasing human errors and reducing excessive energy production.

Keywords: machine learning, LSTMs, district heating and cooling system, thermal demand

Procedia PDF Downloads 114
354 Organic Light Emitting Devices Based on Low Symmetry Coordination Structured Lanthanide Complexes

Authors: Zubair Ahmed, Andrea Barbieri

Abstract:

The need to reduce energy consumption has prompted a considerable research effort for developing alternative energy-efficient lighting systems to replace conventional light sources (i.e., incandescent and fluorescent lamps). Organic light emitting device (OLED) technology offers the distinctive possibility to fabricate large area flat devices by vacuum or solution processing. Lanthanide β-diketonates complexes, due to unique photophysical properties of Ln(III) ions, have been explored as emitting layers in OLED displays and in solid-state lighting (SSL) in order to achieve high efficiency and color purity. For such applications, the excellent photoluminescence quantum yield (PLQY) and stability are the two key points that can be achieved simply by selecting the proper organic ligands around the Ln ion in a coordination sphere. Regarding the strategies to enhance the PLQY, the most common is the suppression of the radiationless deactivation pathways due to the presence of high-frequency oscillators (e.g., OH, –CH groups) around the Ln centre. Recently, a different approach to maximize the PLQY of Ln(β-DKs) has been proposed (named 'Escalate Coordination Anisotropy', ECA). It is based on the assumption that coordinating the Ln ion with different ligands will break the centrosymmetry of the molecule leading to less forbidden transitions (loosening the constraints of the Laporte rule). The OLEDs based on such complexes are available, but with low efficiency and stability. In order to get efficient devices, there is a need to develop some new Ln complexes with enhanced PLQYs and stabilities. For this purpose, the Ln complexes, both visible and (NIR) emitting, of variant coordination structures based on the various fluorinated/non-fluorinated β-diketones and O/N-donor neutral ligands were synthesized using a one step in situ method. In this method, the β-diketones, base, LnCl₃.nH₂O and neutral ligands were mixed in a 3:3:1:1 M ratio in ethanol that gave air and moisture stable complexes. Further, they were characterized by means of elemental analysis, NMR spectroscopy and single crystal X-ray diffraction. Thereafter, their photophysical properties were studied to select the best complexes for the fabrication of stable and efficient OLEDs. Finally, the OLEDs were fabricated and investigated using these complexes as emitting layers along with other organic layers like NPB,N,N′-Di(1-naphthyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine (hole-transporting layer), BCP, 2,9-Dimethyl-4,7-diphenyl-1,10-phenanthroline (hole-blocker) and Alq3 (electron-transporting layer). The layers were sequentially deposited under high vacuum environment by thermal evaporation onto ITO glass substrates. Moreover, co-deposition techniques were used to improve charge transport in the devices and to avoid quenching phenomena. The devices show strong electroluminescence at 612, 998, 1064 and 1534 nm corresponding to ⁵D₀ →⁷F₂(Eu), ²F₅/₂ → ²F₇/₂ (Yb), ⁴F₃/₂→ ⁴I₉/₂ (Nd) and ⁴I1₃/₂→ ⁴I1₅/₂ (Er). All the devices fabricated show good efficiency as well as stability.

Keywords: electroluminescence, lanthanides, paramagnetic NMR, photoluminescence

Procedia PDF Downloads 97
353 The Regulation of the Cancer Epigenetic Landscape Lies in the Realm of the Long Non-coding RNAs

Authors: Ricardo Alberto Chiong Zevallos, Eduardo Moraes Rego Reis

Abstract:

Pancreatic adenocarcinoma (PDAC) patients have a less than 10% 5-year survival rate. PDAC has no defined diagnostic and prognostic biomarkers. Gemcitabine is the first-line drug in PDAC and several other cancers. Long non-coding RNAs (lncRNAs) contribute to the tumorigenesis and are potential biomarkers for PDAC. Although lncRNAs aren’t translated into proteins, they have important functions. LncRNAs can decoy or recruit proteins from the epigenetic machinery, act as microRNA sponges, participate in protein translocation through different cellular compartments, and even promote chemoresistance. The chromatin remodeling enzyme EZH2 is a histone methyltransferase that catalyzes the methylation of histone 3 at lysine 27, silencing local expression. EZH2 is ambivalent, it can also activate gene expression independently of its histone methyltransferase activity. EZH2 is overexpressed in several cancers and interacts with lncRNAs, being recruited to a specific locus. EZH2 can be recruited to activate an oncogene or silence a tumor suppressor. The lncRNAs misregulation in cancer can result in the differential recruitment of EZH2 and in a distinct epigenetic landscape, promoting chemoresistance. The relevance of the EZH2-lncRNAs interaction to chemoresistant PDAC was assessed by Real Time quantitative PCR (RT-qPCR) and RNA Immunoprecipitation (RIP) experiments with naïve and gemcitabine-resistant PDAC cells. The expression of several lncRNAs and EZH2 gene targets was evaluated contrasting naïve and resistant cells. Selection of candidate genes was made by bioinformatic analysis and literature curation. Indeed, the resistant cell line showed higher expression of chemoresistant-associated lncRNAs and protein coding genes. RIP detected lncRNAs interacting with EZH2 with varying intensity levels in the cell lines. During RIP, the nuclear fraction of the cells was incubated with an antibody for EZH2 and with magnetic beads. The RNA precipitated with the beads-antibody-EZH2 complex was isolated and reverse transcribed. The presence of candidate lncRNAs was detected by RT-qPCR, and the enrichment was calculated relative to INPUT (total lysate control sample collected before RIP). The enrichment levels varied across the several lncRNAs and cell lines. The EZH2-lncRNA interaction might be responsible for the regulation of chemoresistance-associated genes in multiple cancers. The relevance of the lncRNA-EZH2 interaction to PDAC was assessed by siRNA knockdown of a lncRNA, followed by the analysis of the EZH2 target expression by RT-qPCR. The chromatin immunoprecipitation (ChIP) of EZH2 and H3K27me3 followed by RT-qPCR with primers for EZH2 targets also assess the specificity of the EZH2 recruitment by the lncRNA. This is the first report of the interaction of EZH2 and lncRNAs HOTTIP and PVT1 in chemoresistant PDAC. HOTTIP and PVT1 were described as promoting chemoresistance in several cancers, but the role of EZH2 is not clarified. For the first time, the lncRNA LINC01133 was detected in a chemoresistant cancer. The interaction of EZH2 with LINC02577, LINC00920, LINC00941, and LINC01559 have never been reported in any context. The novel lncRNAs-EZH2 interactions regulate chemoresistant-associated genes in PDAC and might be relevant to other cancers. Therapies targeting EZH2 alone weren’t successful, and a combinatorial approach also targeting the lncRNAs interacting with it might be key to overcome chemoresistance in several cancers.

Keywords: epigenetics, chemoresistance, long non-coding RNAs, pancreatic cancer, histone modification

Procedia PDF Downloads 66
352 Expanding Behavioral Crisis Care: Expansion of Psychiatric and Addiction-Care Services through a 23/7 Behavioral Crisis Center

Authors: Garima Singh

Abstract:

Objectives: Behavioral Crisis Center (BCC) is a community solution to a community problem. There has been an exponential increase in the incidence and prevalence of mental health crises around the world. The effects of the crisis negatively impact our patients and their families and strain the law enforcement and emergency room. The goal of the multi-disciplinary care model is to break the crisis cycle and provide 24-7 rapid access to an acre and crisis stabilization. We initiated our first BCC care center in 2020 in the midst of the COVID pandemic and have seen a remarkable improvement in patient ‘care and positive financial outcome. Background: Mental illnesses are common in the United States. Nearly one in five U.S. adults live with a mental illness (52.9 million in 2020). This number represented 21.0% of all U.S. adults. To address some of these challenges and help our community, In May 2020, we opened our first Behavioral crisis center (BCC). Since then, we have served more than 2500 patients and is the first southwest Missouri’s first 24/7 facility for crisis–level behavioral health and substance use needs. It has been proven to be a more effective place than emergency departments, jails, or local law enforcement. Methods: BCC was started in 2020 to serve the unmet need of the community and provide access to behavioral health and substance use services identified in the community. Funding was possible with significant investment from the county and Missouri Foundation for Health, with contributions from medical partners. It is a multi-disciplinary care center consisting of Physicians, nurse practitioners, nurses, behavioral technicians, peer support specialists, clinical intake specialists, and clinical coordinators and hospitality specialists. The center provides services including psychiatry care, outpatient therapy, community support services, primary care, peer support and engagement. It is connected to a residential treatment facility for substance use treatment for continuity of care and bridging the gap, which has resulted in the completion of treatment and better outcomes. Results: BCC has proven to be a great resource to the community and the Missouri Health Coalition is providing funding to replicate the model in other regions and work on a similar model for children and adolescents. Overall, 29% of the patients seen at BCC are stabilized and discharged with outpatient care. 50% needed acute stabilization in a hospital setting and 21% required long-term admission, mostly for substance use treatment. The local emergency room had a 42% reduction in behavioral health encounters compared to the previous 3 years. Also, by a quick transfer to BCC, the average stay in ER was reduced by 10 hours and time to follow up behavioral health assessment decreased by an average of 4 hours. Uninsured patients are also provided Medicaid application assistance which has benefited 55% of individuals receiving care at BCC. Conclusions: BCC is impacting community health and improving access to quality care and substance use treatment. It is a great investment for our patients and families.

Keywords: BCC, behvaioral health, community health care, addiction treatment

Procedia PDF Downloads 51
351 Online Factorial Experimental Study Testing the Effectiveness of Pictorial Waterpipe-specific Health Warning Labels Compared with Text-only Labels in the United States of America

Authors: Taghrid Asfar, Olusanya J. Oluwole, Michael Schmidt, Alejandra Casas, Zoran Bursac, Wasim Maziak.

Abstract:

Waterpipe (WP) smoking (a.k.a. hookah) has increased dramatically in the US mainly due to the misperception that it is safer than cigarette smoking. Mounting evidence show that WP smoking is addictive and harmful. Health warning labels (HWLs) are effective in communicating smoking-related risks. Currently, the FDA requires that WP tobacco packages have a textual HWL about nicotine. While this represents a good step, it is inadequate given the established harm of WP smoking beyond addiction and the superior performance of pictorial HWLs over text-only ones. We developed 24 WP pictorial HWLs in a Delphi study among international expert panel. HWLs were grouped into 6 themes: addiction, harm compared to cigarettes, harm to others, health effects, quitting, and specific harms. This study aims to compare the effect of the pictorial HWLs compared to the FDA HWL, and 2) the effect of pictorial HWLs between the 6 themes. A 2x7 between/within subject online factorial experimental study was conducted among a national convenience sample of 300 (50% current WP smokers; 50% nonsmokers) US adults (females 71.1%; mean age of 31.1±3.41 years) in March 2022. The first factor varied WP smoking status (smokers, nonsmokers). The second factor varied the HWL theme and type (text, pictorial). Participants were randomized to view and rate 7 HWLs: 1 FDA text HWL (control) and 6 HWLs, one from each of the 6 themes, all presented in random order. HWLs were rated based on the message impact framework into five categories: attention, reaction (believability, relevance, fear), perceived effectiveness, intentions to quit WP among current smokers, and intention to not initiate WP among nonsmokers. measures were assessed on a 5-point Likert scale (1=not at all to 5=very much) for attention and reaction and on a 7-point Likert scale (1=not at all to 7=very much) for the perceived effectiveness and intentions to quit or not initiate WP smoking. Means and SDs of outcome measures for each HWL type and theme were calculated. Planned comparisons using Friedman test followed by pairwise Wilcoxon signed-rank test for multiple comparisons were used to examine distributional differences of outcomes between the HWL type and themes. Approximately 74.4 % of participants were non-Hispanic Whites, 68.4% had college degrees, and 41.5% were under the poverty level. Participants reported starting WTS on average at 20.3±8.19 years. Compared with the FDA text HWL, pictorial HWLs elicited higher attention (p<0.0001), fear (p<0.0001), harm perception (p<0.0003), perceived effectiveness (p<0.0001), and intentions to quit (p=0.0014) and not initiate WP smoking (p<0.0003). HWLs in theme 3 (harm to others) achieved the highest rating in attention (4.14±1), believability (4.15±0.95), overall perceived effectiveness (7.60±2.35), harm perception (7.53±2.43), and intentions to quit (7.35±2.57). HWLs in theme 2 (WP harm compared to cigarettes) achieved the highest rating in discouraging WP smoking initiation (7.32±2.54). Pictorial HWLs were superior to the FDA text-only for several communication outcomes. Pictorial HWLs related to WP harm to others and WP harm compared to cigarette are promising. These findings provide strong evidence for the potential implementation of WP-specific pictorial HWLs.

Keywords: health communication, waterpipe smoking, factorial experiment, reaction, harm perception, tobacco regulations

Procedia PDF Downloads 87
350 Green Production of Chitosan Nanoparticles and their Potential as Antimicrobial Agents

Authors: L. P. Gomes, G. F. Araújo, Y. M. L. Cordeiro, C. T. Andrade, E. M. Del Aguila, V. M. F. Paschoalin

Abstract:

The application of nanoscale materials and nanostructures is an emerging area, these since materials may provide solutions to technological and environmental challenges in order to preserve the environment and natural resources. To reach this goal, the increasing demand must be accompanied by 'green' synthesis methods. Chitosan is a natural, nontoxic, biopolymer derived by the deacetylation of chitin and has great potential for a wide range of applications in the biological and biomedical areas, due to its biodegradability, biocompatibility, non-toxicity and versatile chemical and physical properties. Chitosan also presents high antimicrobial activities against a wide variety of pathogenic and spoilage microorganisms. Ultrasonication is a common tool for the preparation and processing of polymer nanoparticles. It is particularly effective in breaking up aggregates and in reducing the size and polydispersity of nanoparticles. High-intensity ultrasonication has the potential to modify chitosan molecular weight and, thus, alter or improve chitosan functional properties. The aim of this study was to evaluate the influence of sonication intensity and time on the changes of commercial chitosan characteristics, such as molecular weight and its potential antibacterial activity against Gram-negative bacteria. The nanoparticles (NPs) were produced from two commercial chitosans, of medium molecular weight (CS-MMW) and low molecular weight (CS-LMW) from Sigma-Aldrich®. These samples (2%) were solubilized in 100 mM sodium acetate pH 4.0, placed on ice and irradiated with an ultrasound SONIC ultrasonic probe (model 750 W), equipped with a 1/2" microtip during 30 min at 4°C. It was used on constant duty cycle and 40% amplitude with 1/1s intervals. The ultrasonic degradation of CS-MMW and CS-LMW were followed up by means of ζ-potential (Brookhaven Instruments, model 90Plus) and dynamic light scattering (DLS) measurements. After sonication, the concentrated samples were diluted 100 times and placed in fluorescence quartz cuvettes (Hellma 111-QS, 10 mm light path). The distributions of the colloidal particles were calculated from the DLS and ζ-potential are measurements taken for the CS-MMW and CS-LMW solutions before and after (CS-MMW30 and CS-LMW30) sonication for 30 min. Regarding the results for the chitosan sample, the major bands can be distinguished centered at Radius hydrodynamic (Rh), showed different distributions for CS-MMW (Rh=690.0 nm, ζ=26.52±2.4), CS-LMW (Rh=607.4 and 2805.4 nm, ζ=24.51±1.29), CS-MMW30 (Rh=201.5 and 1064.1 nm, ζ=24.78±2.4) and CS-LMW30 (Rh=492.5, ζ=26.12±0.85). The minimal inhibitory concentration (MIC) was determined using different chitosan samples concentrations. MIC values were determined against to E. coli (106 cells) harvested from an LB medium (Luria-Bertani BD™) after 18h growth at 37 ºC. Subsequently, the cell suspension was serially diluted in saline solution (0.8% NaCl) and plated on solid LB at 37°C for 18 h. Colony-forming units were counted. The samples showed different MICs against E. coli for CS-LMW (1.5mg), CS-MMW30 (1.5 mg/mL) and CS-LMW30 (1.0 mg/mL). The results demonstrate that the production of nanoparticles by modification of their molecular weight by ultrasonication is simple to be performed and dispense acid solvent addition. Molecular weight modifications are enough to provoke changes in the antimicrobial potential of the nanoparticles produced in this way.

Keywords: antimicrobial agent, chitosan, green production, nanoparticles

Procedia PDF Downloads 303
349 Hydrogen Production from Auto-Thermal Reforming of Ethanol Catalyzed by Tri-Metallic Catalyst

Authors: Patrizia Frontera, Anastasia Macario, Sebastiano Candamano, Fortunato Crea, Pierluigi Antonucci

Abstract:

The increasing of the world energy demand makes today biomass an attractive energy source, based on the minimizing of CO2 emission and on the global warming reduction purposes. Recently, COP-21, the international meeting on global climate change, defined the roadmap for sustainable worldwide development, based on low-carbon containing fuel. Hydrogen is an energy vector able to substitute the conventional fuels from petroleum. Ethanol for hydrogen production represents a valid alternative to the fossil sources due to its low toxicity, low production costs, high biodegradability, high H2 content and renewability. Ethanol conversion to generate hydrogen by a combination of partial oxidation and steam reforming reactions is generally called auto-thermal reforming (ATR). The ATR process is advantageous due to the low energy requirements and to the reduced carbonaceous deposits formation. Catalyst plays a pivotal role in the ATR process, especially towards the process selectivity and the carbonaceous deposits formation. Bimetallic or trimetallic catalysts, as well as catalysts with doped-promoters supports, may exhibit high activity, selectivity and deactivation resistance with respect to the corresponding monometallic ones. In this work, NiMoCo/GDC, NiMoCu/GDC and NiMoRe/GDC (where GDC is Gadolinia Doped Ceria support and the metal composition is 60:30:10 for all catalyst) have been prepared by impregnation method. The support, Gadolinia 0.2 Doped Ceria 0.8, was impregnated by metal precursors solubilized in aqueous ethanol solution (50%) at room temperature for 6 hours. After this, the catalysts were dried at 100°C for 8 hours and, subsequently, calcined at 600°C in order to have the metal oxides. Finally, active catalysts were obtained by reduction procedure (H2 atmosphere at 500°C for 6 hours). All sample were characterized by different analytical techniques (XRD, SEM-EDX, XPS, CHNS, H2-TPR and Raman Spectorscopy). Catalytic experiments (auto-thermal reforming of ethanol) were carried out in the temperature range 500-800°C under atmospheric pressure, using a continuous fixed-bed microreactor. Effluent gases from the reactor were analyzed by two Varian CP4900 chromarographs with a TCD detector. The analytical investigation focused on the preventing of the coke deposition, the metals sintering effect and the sulfur poisoning. Hydrogen productivity, ethanol conversion and products distribution were measured and analyzed. At 600°C, all tri-metallic catalysts show the best performance: H2 + CO reaching almost the 77 vol.% in the final gases. While NiMoCo/GDC catalyst shows the best selectivity to hydrogen whit respect to the other tri-metallic catalysts (41 vol.% at 600°C). On the other hand, NiMoCu/GDC and NiMoRe/GDC demonstrated high sulfur poisoning resistance (up to 200 cc/min) with respect to the NiMoCo/GDC catalyst. The correlation among catalytic results and surface properties of the catalysts will be discussed.

Keywords: catalysts, ceria, ethanol, gadolinia, hydrogen, Nickel

Procedia PDF Downloads 130
348 Severe Post Operative Gas Gangrene of the Liver: Off-Label Treatment by Percutaneous Radiofrequency Ablation

Authors: Luciano Tarantino

Abstract:

Gas gangrene is a rare, severe infection with a very high mortality rate caused by Clostridium species. The infection causes a non-suppurative localized producing gas lesion from which harmful toxins that impair the inflammatory response cause vessel damage and multiple organ failure. Gas gangrene of the liver is very rare and develops suddenly, often as a complication of abdominal surgery and liver transplantation. The present paper deals with a case of gas gangrene of the liver that occurred after percutaneous MW ablation of hepatocellular carcinoma, resulting in progressive liver necrosis and multi-organ failure in spite of specific antibiotics administration. The patient was successfully treated with percutaneous Radiofrequency ablation. Case report: Female, 76 years old, Child A class cirrhosis, treated with synchronous insertion of 3 MW antennae for large HCC (5.5 cm) in the VIII segment. 24 hours after treatment, the patient was asymptomatic and left the hospital . 2 days later, she complained of fever, weakness, abdominal swelling, and pain. Abdominal US detected a 2.3 cm in size gas-containing area, eccentric within the large (7 cm) ablated area. The patient was promptly hospitalized with the diagnosis of anaerobic liver abscess and started antibiotic therapy with Imipenem/cilastatine+metronidazole+teicoplanine. On the fourth day, the patient was moved to the ICU because of dyspnea, congestive heart failure, atrial fibrillation, right pleural effusion, ascites, and renal failure. Blood tests demonstrated severe leukopenia and neutropenia, anemia, increased creatinine and blood nitrogen, high-level FDP, and high INR. Blood cultures were negative. At US, unenhanced CT, and CEUS, a progressive enlargement of the infected liver lesion was observed. Percutaneous drainage was attempted, but only drops of non-suppurative brownish material could be obtained. Pleural and peritoneal drainages gave serosanguineous muddy fluid. The Surgeon and the Anesthesiologist excluded any indication of surgical resection because of the high perioperative mortality risk. Therefore, we asked for the informed consent of the patient and her relatives to treat the gangrenous liver lesion by percutaneous Ablation. Under conscious sedation, percutaneous RFA of GG was performed by double insertion of 3 cool-tip needles (Covidien LDT, USA ) into the infected area. The procedure was well tolerated by the patient. A dramatic improvement in the patient's condition was observed in the subsequent 24 hours and thereafter. Fever and dyspnea disappeared. Normalization of blood tests, including creatinine, was observed within 4 days. Heart performance improved, 10 days after the RFA the patient left the hospital and was followed-up with weekly as an outpatient for 2 months and every two months thereafter. At 18 months follow-up, the patient is well compensated (Child-Pugh class B7), without any peritoneal or pleural effusion and without any HCC recurrence at imaging (US every 3 months, CT every 6 months). Percutaneous RFA could be a valuable therapy of focal GG of the liver in patients non-responder to antibiotics and when surgery and liver transplantation are not feasible. A fast and early indication is needed in case of rapid worsening of patient's conditions.

Keywords: liver tumor ablation, interventional ultrasound, liver infection, gas gangrene, radiofrequency ablation

Procedia PDF Downloads 53
347 Assessing Image Quality in Mobile Radiography: A Phantom-Based Evaluation of a New Lightweight Mobile X-Ray Equipment

Authors: May Bazzi, Shafik Tokmaj, Younes Saberi, Mats Geijer, Tony Jurkiewicz, Patrik Sund, Anna Bjällmark

Abstract:

Mobile radiography, employing portable X-ray equipment, has become a routine procedure within hospital settings, with chest X-rays in intensive care units standing out as the most prevalent mobile X-ray examinations. This approach is not limited to hospitals alone, as it extends its benefits to imaging patients in various settings, particularly those too frail to be transported, such as elderly care residents in nursing homes. Moreover, the utility of mobile X-ray isn't confined solely to traditional healthcare recipients; it has proven to be a valuable resource for vulnerable populations, including the homeless, drug users, asylum seekers, and patients with multiple co-morbidities. Mobile X-rays reduce patient stress, minimize costly hospitalizations, and offer cost-effective imaging. While studies confirm its reliability, further research is needed, especially regarding image quality. Recent advancements in lightweight equipment with enhanced battery and detector technology provide the potential for nearly handheld radiography. The main aim of this study was to evaluate a new lightweight mobile X-ray system with two different detectors and compare the image quality with a modern stationary system. Methods: A total of 74 images of the chest (chest anterior-posterior (AP) views and chest lateral views) and pelvic/hip region (AP pelvis views, hip AP views, and hip cross-table lateral views) were acquired on a whole-body phantom (Kyotokagaku, Japan), utilizing varying image parameters. These images were obtained using a stationary system - 18 images (Mediel, Sweden), a mobile X-ray system with a second-generation detector - 28 images (FDR D-EVO II; Fujifilm, Japan) and a mobile X-ray system with a third-generation detector - 28 images (FDR D-EVO III; Fujifilm, Japan). Image quality was assessed by visual grading analysis (VGA), which is a method to measure image quality by assessing the visibility and accurate reproduction of anatomical structures within the images. A total of 33 image criteria were used in the analysis. A panel of two experienced radiologists, two experienced radiographers, and two final-term radiographer students evaluated the image quality on a 5-grade ordinal scale using the software Viewdex 3.0 (Viewer for Digital Evaluation of X-ray images, Sweden). Data were analyzed using visual grading characteristics analysis. The dose was measured by the dose-area product (DAP) reported by the respective systems. Results: The mobile X-ray equipment (both detectors) showed significantly better image quality than the stationary equipment for the pelvis, hip AP and hip cross-table lateral images with AUCVGA-values ranging from 0.64-0.92, while chest images showed mixed results. The number of images rated as having sufficient quality for diagnostic use was significantly higher for mobile X-ray generation 2 and 3 compared with the stationary X-ray system. The DAP values were higher for the stationary compared to the mobile system. Conclusions: The new lightweight radiographic equipment had an image quality at least as good as a fixed system at a lower radiation dose. Future studies should focus on clinical images and consider radiographers' viewpoints for a comprehensive assessment.

Keywords: mobile x-ray, visual grading analysis, radiographer, radiation dose

Procedia PDF Downloads 38
346 Engineering Topology of Photonic Systems for Sustainable Molecular Structure: Autopoiesis Systems

Authors: Moustafa Osman Mohammed

Abstract:

This paper introduces topological order in descried social systems starting with the original concept of autopoiesis by biologists and scientists, including the modification of general systems based on socialized medicine. Topological order is important in describing the physical systems for exploiting optical systems and improving photonic devices. The stats of topological order have some interesting properties of topological degeneracy and fractional statistics that reveal the entanglement origin of topological order, etc. Topological ideas in photonics form exciting developments in solid-state materials, that being; insulating in the bulk, conducting electricity on their surface without dissipation or back-scattering, even in the presence of large impurities. A specific type of autopoiesis system is interrelated to the main categories amongst existing groups of the ecological phenomena interaction social and medical sciences. The hypothesis, nevertheless, has a nonlinear interaction with its natural environment 'interactional cycle' for exchange photon energy with molecules without changes in topology. The engineering topology of a biosensor is based on the excitation boundary of surface electromagnetic waves in photonic band gap multilayer films. The device operation is similar to surface Plasmonic biosensors in which a photonic band gap film replaces metal film as the medium when surface electromagnetic waves are excited. The use of photonic band gap film offers sharper surface wave resonance leading to the potential of greatly enhanced sensitivity. So, the properties of the photonic band gap material are engineered to operate a sensor at any wavelength and conduct a surface wave resonance that ranges up to 470 nm. The wavelength is not generally accessible with surface Plasmon sensing. Lastly, the photonic band gap films have robust mechanical functions that offer new substrates for surface chemistry to understand the molecular design structure and create sensing chips surface with different concentrations of DNA sequences in the solution to observe and track the surface mode resonance under the influences of processes that take place in the spectroscopic environment. These processes led to the development of several advanced analytical technologies: which are; automated, real-time, reliable, reproducible, and cost-effective. This results in faster and more accurate monitoring and detection of biomolecules on refractive index sensing, antibody-antigen reactions with a DNA or protein binding. Ultimately, the controversial aspect of molecular frictional properties is adjusted to each other in order to form unique spatial structure and dynamics of biological molecules for providing the environment mutual contribution in investigation of changes due to the pathogenic archival architecture of cell clusters.

Keywords: autopoiesis, photonics systems, quantum topology, molecular structure, biosensing

Procedia PDF Downloads 65
345 Decarbonising Urban Building Heating: A Case Study on the Benefits and Challenges of Fifth-Generation District Heating Networks

Authors: Mazarine Roquet, Pierre Dewallef

Abstract:

The building sector, both residential and tertiary, accounts for a significant share of greenhouse gas emissions. In Belgium, partly due to poor insulation of the building stock, but certainly because of the massive use of fossil fuels for heating buildings, this share reaches almost 30%. To reduce carbon emissions from urban building heating, district heating networks emerge as a promising solution as they offer various assets such as improving the load factor, integrating combined heat and power systems, and enabling energy source diversification, including renewable sources and waste heat recovery. However, mainly for sake of simple operation, most existing district heating networks still operate at high or medium temperatures ranging between 120°C and 60°C (the socalled second and third-generations district heating networks). Although these district heating networks offer energy savings in comparison with individual boilers, such temperature levels generally require the use of fossil fuels (mainly natural gas) with combined heat and power. The fourth-generation district heating networks improve the transport and energy conversion efficiency by decreasing the operating temperature between 50°C and 30°C. Yet, to decarbonise the building heating one must increase the waste heat recovery and use mainly wind, solar or geothermal sources for the remaining heat supply. Fifth-generation networks operating between 35°C and 15°C offer the possibility to decrease even more the transport losses, to increase the share of waste heat recovery and to use electricity from renewable resources through the use of heat pumps to generate low temperature heat. The main objective of this contribution is to exhibit on a real-life test case the benefits of replacing an existing third-generation network by a fifth-generation one and to decarbonise the heat supply of the building stock. The second objective of the study is to highlight the difficulties resulting from the use of a fifth-generation, low-temperature, district heating network. To do so, a simulation model of the district heating network including its regulation is implemented in the modelling language Modelica. This model is applied to the test case of the heating network on the University of Liège's Sart Tilman campus, consisting of around sixty buildings. This model is validated with monitoring data and then adapted for low-temperature networks. A comparison of primary energy consumptions as well as CO2 emissions is done between the two cases to underline the benefits in term of energy independency and GHG emissions. To highlight the complexity of operating a lowtemperature network, the difficulty of adapting the mass flow rate to the heat demand is considered. This shows the difficult balance between the thermal comfort and the electrical consumption of the circulation pumps. Several control strategies are considered and compared to the global energy savings. The developed model can be used to assess the potential for energy and CO2 emissions savings retrofitting an existing network or when designing a new one.

Keywords: building simulation, fifth-generation district heating network, low-temperature district heating network, urban building heating

Procedia PDF Downloads 51
344 Effectiveness of an Intervention to Increase Physics Students' STEM Self-Efficacy: Results of a Quasi-Experimental Study

Authors: Stephanie J. Sedberry, William J. Gerace, Ian D. Beatty, Michael J. Kane

Abstract:

Increasing the number of US university students who attain degrees in STEM and enter the STEM workforce is a national priority. Demographic groups vary in their rates of participation in STEM, and the US produces just 10% of the world’s science and engineering degrees (2014 figures). To address these gaps, we have developed and tested a practical, 30-minute, single-session classroom-based intervention to improve students’ self-efficacy and academic performance in University STEM courses. Self-efficacy is a psychosocial construct that strongly correlates with academic success. Self-efficacy is a construct that is internal and relates to the social, emotional, and psychological aspects of student motivation and performance. A compelling body of research demonstrates that university students’ self-efficacy beliefs are strongly related to their selection of STEM as a major, aspirations for STEM-related careers, and persistence in science. The development of an intervention to increase students’ self-efficacy is motivated by research showing that short, social-psychological interventions in education can lead to large gains in student achievement. Our intervention addresses STEM self-efficacy via two strong, but previously separate, lines of research into attitudinal/affect variables that influence student success. The first is ‘attributional retraining,’ in which students learn to attribute their successes and failures to internal rather than external factors. The second is ‘mindset’ about fixed vs. growable intelligence, in which students learn that the brain remains plastic throughout life and that they can, with conscious effort and attention to thinking skills and strategies, become smarter. Extant interventions for both of these constructs have significantly increased academic performance in the classroom. We developed a 34-item questionnaire (Likert scale) to measure STEM Self-efficacy, Perceived Academic Control, and Growth Mindset in a University STEM context, and validated it with exploratory factor analysis, Rasch analysis, and multi-trait multi-method comparison to coded interviews. Four iterations of our 42-week research protocol were conducted across two academic years (2017-2018) at three different Universities in North Carolina, USA (UNC-G, NC A&T SU, and NCSU) with varied student demographics. We utilized a quasi-experimental prospective multiple-group time series research design with both experimental and control groups, and we are employing linear modeling to estimate the impact of the intervention on Self-Efficacy,wth-Mindset, Perceived Academic Control, and final course grades (performance measure). Preliminary results indicate statistically significant effects of treatment vs. control on Self-Efficacy, Growth-Mindset, Perceived Academic Control. Analyses are ongoing and final results pending. This intervention may have the potential to increase student success in the STEM classroom—and ownership of that success—to continue in a STEM career. Additionally, we have learned a great deal about the complex components and dynamics of self-efficacy, their link to performance, and the ways they can be impacted to improve students’ academic performance.

Keywords: academic performance, affect variables, growth mindset, intervention, perceived academic control, psycho-social variables, self-efficacy, STEM, university classrooms

Procedia PDF Downloads 113
343 Preparation, Characterization and Photocatalytic Activity of a New Noble Metal Modified TiO2@SrTiO3 and SrTiO3 Photocatalysts

Authors: Ewelina Grabowska, Martyna Marchelek

Abstract:

Among the various semiconductors, nanosized TiO2 has been widely studied due to its high photosensitivity, low cost, low toxicity, and good chemical and thermal stability. However, there are two main drawbacks to the practical application of pure TiO2 films. One is that TiO2 can be induced only by ultraviolet (UV) light due to its intrinsic wide bandgap (3.2 eV for anatase and 3.0 eV for rutile), which limits its practical efficiency for solar energy utilization since UV light makes up only 4-5% of the solar spectrum. The other is that a high electron-hole recombination rate will reduce the photoelectric conversion efficiency of TiO2. In order to overcome the above drawbacks and modify the electronic structure of TiO2, some semiconductors (eg. CdS, ZnO, PbS, Cu2O, Bi2S3, and CdSe) have been used to prepare coupled TiO2 composites, for improving their charge separation efficiency and extending the photoresponse into the visible region. It has been proved that the fabrication of p-n heterostructures by combining n-type TiO2 with p-type semiconductors is an effective way to improve the photoelectric conversion efficiency of TiO2. SrTiO3 is a good candidate for coupling TiO2 and improving the photocatalytic performance of the photocatalyst because its conduction band edge is more negative than TiO2. Due to the potential differences between the band edges of these two semiconductors, the photogenerated electrons transfer from the conduction band of SrTiO3 to that of TiO2. Conversely, the photogenerated electrons transfer from the conduction band of SrTiO3 to that of TiO2. Then the photogenerated charge carriers can be efficiently separated by these processes, resulting in the enhancement of the photocatalytic property in the photocatalyst. Additionally, one of the methods for improving photocatalyst performance is addition of nanoparticles containing one or two noble metals (Pt, Au, Ag and Pd) deposited on semiconductor surface. The mechanisms were proposed as (1) the surface plasmon resonance of noble metal particles is excited by visible light, facilitating the excitation of the surface electron and interfacial electron transfer (2) some energy levels can be produced in the band gap of TiO2 by the dispersion of noble metal nanoparticles in the TiO2 matrix; (3) noble metal nanoparticles deposited on TiO2 act as electron traps, enhancing the electron–hole separation. In view of this, we recently obtained series of TiO2@SrTiO3 and SrTiO3 photocatalysts loaded with noble metal NPs. using photodeposition method. The M- TiO2@SrTiO3 and M-SrTiO3 photocatalysts (M= Rh, Rt, Pt) were studied for photodegradation of phenol in aqueous phase under UV-Vis and visible irradiation. Moreover, in the second part of our research hydroxyl radical formations were investigated. Fluorescence of irradiated coumarin solution was used as a method of ˙OH radical detection. Coumarin readily reacts with generated hydroxyl radicals forming hydroxycoumarins. Although the major hydroxylation product is 5-hydroxycoumarin, only 7-hydroxyproduct of coumarin hydroxylation emits fluorescent light. Thus, this method was used only for hydroxyl radical detection, but not for determining concentration of hydroxyl radicals.

Keywords: composites TiO2, SrTiO3, photocatalysis, phenol degradation

Procedia PDF Downloads 201
342 Nursing Education in the Pandemic Time: Case Study

Authors: Jaana Sepp, Ulvi Kõrgemaa, Kristi Puusepp, Õie Tähtla

Abstract:

COVID-19 was officially recognized as a pandemic in late 2019 by the WHO, and it has led to changes in the education sector. Educational institutions were closed, and most schools adopted distance learning. Estonia is known as a digitally well-developed country. Based on that, in the pandemic time, nursing education continued, and new technological solutions were implemented. To provide nursing education, special focus was paid on quality and flexibility. The aim of this paper is to present administrative, digital, and technological solutions which support Estonian nursing educators to continue the study process in the pandemic time and to develop a sustainable solution for nursing education for the future. This paper includes the authors’ analysis of the documents and decisions implemented in the institutions through the pandemic time. It is a case study of Estonian nursing educators. Results of the analysis show that the implementation of distance learning principles challenges the development of innovative strategies and technics for the assessment of student performance and educational outcomes and implement new strategies to encourage student engagement in the virtual classroom. Additionally, hospital internships were canceled, and the simulation approach was deeply implemented as a new opportunity to develop and assess students’ practical skills. There are many other technical and administrative changes that have also been carried out, such as students’ support and assessment systems, the designing and conducting of hybrid and blended studies, etc. All services were redesigned and made more available, individual, and flexible. Hence, the feedback system was changed, the information was collected in parallel with educational activities. Experiences of nursing education during the pandemic time are widely presented in scientific literature. However, to conclude our study, authors have found evidence that solutions implemented in Estonian nursing education allowed the students to graduate within the nominal study period without any decline in education quality. Operative information system and flexibility provided the minimum distance between the students, support, and academic staff, and likewise, the changes were implemented quickly and efficiently. Institution memberships were updated with the appropriate information, and it positively affected their satisfaction, motivation, and commitment. We recommend that the feedback process and the system should be permanently changed in the future to place all members in the same information area, redefine the hospital internship process, implement hybrid learning, as well as to improve the communication system between stakeholders inside and outside the organization. The main limitation of this study relates to the size of Estonia. Nursing education is provided by two institutions only, and similarly, the number of students is low. The result could be generated to the institutions with a similar size and administrative system. In the future, the relationship between nurses’ performance and organizational outcomes should be deeply investigated and influences of the pandemic time education analyzed at workplaces.

Keywords: hybrid learning, nursing education, nursing, COVID-19

Procedia PDF Downloads 103
341 Flux-Gate vs. Anisotropic Magneto Resistance Magnetic Sensors Characteristics in Closed-Loop Operation

Authors: Neoclis Hadjigeorgiou, Spyridon Angelopoulos, Evangelos V. Hristoforou, Paul P. Sotiriadis

Abstract:

The increasing demand for accurate and reliable magnetic measurements over the past decades has paved the way for the development of different types of magnetic sensing systems as well as of more advanced measurement techniques. Anisotropic Magneto Resistance (AMR) sensors have emerged as a promising solution for applications requiring high resolution, providing an ideal balance between performance and cost. However, certain issues of AMR sensors such as non-linear response and measurement noise are rarely discussed in the relevant literature. In this work, an analog closed loop compensation system is proposed, developed and tested as a means to eliminate the non-linearity of AMR response, reduce the 1/f noise and enhance the sensitivity of magnetic sensor. Additional performance aspects, such as cross-axis and hysteresis effects are also examined. This system was analyzed using an analytical model and a P-Spice model, considering both the sensor itself as well as the accompanying electronic circuitry. In addition, a commercial closed loop architecture Flux-Gate sensor (calibrated and certified), has been used for comparison purposes. Three different experimental setups have been constructed for the purposes of this work, each one utilized for DC magnetic field measurements, AC magnetic field measurements and Noise density measurements respectively. The DC magnetic field measurements have been conducted in laboratory environment employing a cubic Helmholtz coil setup in order to calibrate and characterize the system under consideration. A high-accuracy DC power supply has been used for providing the operating current to the Helmholtz coils. The results were recorded by a multichannel voltmeter The AC magnetic field measurements have been conducted in laboratory environment employing a cubic Helmholtz coil setup in order to examine the effective bandwidth not only of the proposed system but also for the Flux-Gate sensor. A voltage controlled current source driven by a function generator has been utilized for the Helmholtz coil excitation. The result was observed by the oscilloscope. The third experimental apparatus incorporated an AC magnetic shielding construction composed of several layers of electric steel that had been demagnetized prior to the experimental process. Each sensor was placed alone and the response was captured by the oscilloscope. The preliminary experimental results indicate that closed loop AMR response presented a maximum deviation of 0.36% with respect to the ideal linear response, while the corresponding values for the open loop AMR system and the Fluxgate sensor reached 2% and 0.01% respectively. Moreover, the noise density of the proposed close loop AMR sensor system remained almost as low as the noise density of the AMR sensor itself, yet considerably higher than that of the Flux-Gate sensor. All relevant numerical data are presented in the paper.

Keywords: AMR sensor, chopper, closed loop, electronic noise, magnetic noise, memory effects, flux-gate sensor, linearity improvement, sensitivity improvement

Procedia PDF Downloads 402
340 Decentralized Peak-Shaving Strategies for Integrated Domestic Batteries

Authors: Corentin Jankowiak, Aggelos Zacharopoulos, Caterina Brandoni

Abstract:

In a context of increasing stress put on the electricity network by the decarbonization of many sectors, energy storage is likely to be the key mitigating element, by acting as a buffer between production and demand. In particular, the highest potential for storage is when connected closer to the loads. Yet, low voltage storage struggles to penetrate the market at a large scale due to the novelty and complexity of the solution, and the competitive advantage of fossil fuel-based technologies regarding regulations. Strong and reliable numerical simulations are required to show the benefits of storage located near loads and promote its development. The present study was restrained from excluding aggregated control of storage: it is assumed that the storage units operate independently to one another without exchanging information – as is currently mostly the case. A computationally light battery model is presented in detail and validated by direct comparison with a domestic battery operating in real conditions. This model is then used to develop Peak-Shaving (PS) control strategies as it is the decentralized service from which beneficial impacts are most likely to emerge. The aggregation of flatter, peak- shaved consumption profiles is likely to lead to flatter and arbitraged profile at higher voltage layers. Furthermore, voltage fluctuations can be expected to decrease if spikes of individual consumption are reduced. The crucial part to achieve PS lies in the charging pattern: peaks depend on the switching on and off of appliances in the dwelling by the occupants and are therefore impossible to predict accurately. A performant PS strategy must, therefore, include a smart charge recovery algorithm that can ensure enough energy is present in the battery in case it is needed without generating new peaks by charging the unit. Three categories of PS algorithms are introduced in detail. First, using a constant threshold or power rate for charge recovery, followed by algorithms using the State Of Charge (SOC) as a decision variable. Finally, using a load forecast – of which the impact of the accuracy is discussed – to generate PS. A performance metrics was defined in order to quantitatively evaluate their operating regarding peak reduction, total energy consumption, and self-consumption of domestic photovoltaic generation. The algorithms were tested on load profiles with a 1-minute granularity over a 1-year period, and their performance was assessed regarding these metrics. The results show that constant charging threshold or power are far from optimal: a certain value is not likely to fit the variability of a residential profile. As could be expected, forecast-based algorithms show the highest performance. However, these depend on the accuracy of the forecast. On the other hand, SOC based algorithms also present satisfying performance, making them a strong alternative when the reliable forecast is not available.

Keywords: decentralised control, domestic integrated batteries, electricity network performance, peak-shaving algorithm

Procedia PDF Downloads 97
339 The Healing 'Touch' of Music: A Neuro-Acoustics Approach to Understand Its Therapeutic Effect

Authors: Jagmeet S. Kanwal, Julia F. Langley

Abstract:

Music can heal the body, but a mechanistic understanding of this phenomenon is lacking. This study explores the effects of music presentation on neurologic and physiologic responses leading to metabolic changes in the human body. The mind and body co-exist in a corporeal entity and within this framework, sickness ensues when the mind-body balance goes awry. It is further hypothesized that music has the capacity to directly reset this balance. Two lines of inquiry taken together can provide a mechanistic understanding of this phenomenon 1) Empirical evidence for a sound-sensitive pressure sensor system in the body, and 2) The notion of a “healing center” within the brain that is activated by specific patterns of sounds. From an acoustics perspective, music is spatially distributed as pressure waves ranging from a few cm to several meters in wavelength. These waves interact and propagate in three-dimensions in unique ways, depending on the wavelength. Furthermore, music creates dynamically changing wave-fronts. Frequencies between 200 Hz and 1 kHz generate wavelengths that range from 5'6" to 1 foot. These dimensions are in the range of the body size of most people making it plausible that these pressure waves can geometrically interact with the body surface and create distinct patterns of pressure stimulation across the skin surface. For humans, short wavelength, high frequency (> 200 Hz) sounds are best received via cochlear receptors. For low frequency (< 200 Hz), long wavelength sound vibrations, however, the whole body may act as an ideal receiver. A vast array of highly sensitive pressure receptors (Pacinian corpuscles) is present just beneath the skin surface, as well as in the tendons, bones, several organs in the abdomen, and the sexual organs. Per the available empirical evidence, these receptors contribute to music perception by allowing the whole body to function as a sound receiver, and knowledge of how they function is essential to fully understanding the therapeutic effect of music. Neuroscientific studies have established that music stimulates the limbic system that can trigger states of anxiety, arousal, fear, and other emotions. These emotional states of brain activity play a crucial role in filtering top-down feedback from thoughts and bottom-up sensory inputs to the autonomic system, which automatically regulates bodily functions. Music likely exerts its pleasurable and healing effects by enhancing functional and effective connectivity and feedback mechanisms between brain regions that mediate reward, autonomic, and cognitive processing. Stimulation of pressure receptors under the skin by low-frequency music-induced sensations can activate multiple centers in the brain, including the amygdala, the cingulate cortex, and nucleus accumbens. Melodies in music in the low (< 600 Hz) frequency range may augment auditory inputs after convergence of the pressure-sensitive inputs from the vagus nerve onto emotive processing regions within the limbic system. The integration of music-generated auditory and somato-visceral inputs may lead to a synergistic input to the brain that promotes healing. Thus, music can literally heal humans through “touch” as it energizes the brain’s autonomic system for restoring homeostasis.

Keywords: acoustics, brain, music healing, pressure receptors

Procedia PDF Downloads 141
338 Optimizing Usability Testing with Collaborative Method in an E-Commerce Ecosystem

Authors: Markandeya Kunchi

Abstract:

Usability testing (UT) is one of the vital steps in the User-centred design (UCD) process when designing a product. In an e-commerce ecosystem, UT becomes primary as new products, features, and services are launched very frequently. And, there are losses attached to the company if an unusable and inefficient product is put out to market and is rejected by customers. This paper tries to answer why UT is important in the product life-cycle of an E-commerce ecosystem. Secondary user research was conducted to find out work patterns, development methods, type of stakeholders, and technology constraints, etc. of a typical E-commerce company. Qualitative user interviews were conducted with product managers and designers to find out the structure, project planning, product management method and role of the design team in a mid-level company. The paper tries to address the usual apprehensions of the company to inculcate UT within the team. As well, it stresses upon factors like monetary resources, lack of usability expert, narrow timelines, and lack of understanding of higher management as some primary reasons. Outsourcing UT to vendors is also very prevalent with mid-level e-commerce companies, but it has its own severe repercussions like very little team involvement, huge cost, misinterpretation of the findings, elongated timelines, and lack of empathy towards the customer, etc. The shortfalls of the unavailability of a UT process in place within the team and conducting UT through vendors are bad user experiences for customers while interacting with the product, badly designed products which are neither useful and nor utilitarian. As a result, companies see dipping conversions rates in apps and websites, huge bounce rates and increased uninstall rates. Thus, there was a need for a more lean UT system in place which could solve all these issues for the company. This paper highlights on optimizing the UT process with a collaborative method. The degree of optimization and structure of collaborative method is the highlight of this paper. Collaborative method of UT is one in which the centralised design team of the company takes for conducting and analysing the UT. The UT is usually a formative kind where designers take findings into account and uses in the ideation process. The success of collaborative method of UT is due to its ability to sync with the product management method employed by the company or team. The collaborative methods focus on engaging various teams (design, marketing, product, administration, IT, etc.) each with its own defined roles and responsibility in conducting a smooth UT with users In-house. The paper finally highlights the positive results of collaborative UT method after conducting more than 100 In-lab interviews with users across the different lines of businesses. Some of which are the improvement of interaction between stakeholders and the design team, empathy towards users, improved design iteration, better sanity check of design solutions, optimization of time and money, effective and efficient design solution. The future scope of collaborative UT is to make this method leaner, by reducing the number of days to complete the entire project starting from planning between teams to publishing the UT report.

Keywords: collaborative method, e-commerce, product management method, usability testing

Procedia PDF Downloads 97
337 Developing and Testing a Questionnaire of Music Memorization and Practice

Authors: Diana Santiago, Tania Lisboa, Sophie Lee, Alexander P. Demos, Monica C. S. Vasconcelos

Abstract:

Memorization has long been recognized as an arduous and anxiety-evoking task for musicians, and yet, it is an essential aspect of performance. Research shows that musicians are often not taught how to memorize. While memorization and practice strategies of professionals have been studied, little research has been done to examine how student musicians learn to practice and memorize music in different cultural settings. We present the process of developing and testing a questionnaire of music memorization and musical practice for student musicians in the UK and Brazil. A survey was developed for a cross-cultural research project aiming at examining how young orchestral musicians (aged 7–18 years) in different learning environments and cultures engage in instrumental practice and memorization. The questionnaire development included members of a UK/US/Brazil research team of music educators and performance science researchers. A pool of items was developed for each aspect of practice and memorization identified, based on literature, personal experiences, and adapted from existing questionnaires. Item development took the varying levels of cognitive and social development of the target populations into consideration. It also considered the diverse target learning environments. Items were initially grouped in accordance with a single underlying construct/behavior. The questionnaire comprised three sections: a demographics section, a section on practice (containing 29 items), and a section on memorization (containing 40 items). Next, the response process was considered and a 5-point Likert scale ranging from ‘always’ to ‘never’ with a verbal label and an image assigned to each response option was selected, following effective questionnaire design for children and youths. Finally, a pilot study was conducted with young orchestral musicians from diverse learning environments in Brazil and the United Kingdom. Data collection took place in either one-to-one or group settings to facilitate the participants. Cognitive interviews were utilized to establish response process validity by confirming the readability and accurate comprehension of the questionnaire items or highlighting the need for item revision. Internal reliability was investigated by measuring the consistency of the item groups using the statistical test Cronbach’s alpha. The pilot study successfully relied on the questionnaire to generate data about the engagement of young musicians of different levels and instruments, across different learning and cultural environments, in instrumental practice and memorization. Interaction analysis of the cognitive interviews undertaken with these participants, however, exposed the fact that certain items, and the response scale, could be interpreted in multiple ways. The questionnaire text was, therefore, revised accordingly. The low Cronbach’s Alpha scores of many item groups indicated another issue with the original questionnaire: its low level of internal reliability. Several reasons for each poor reliability can be suggested, including the issues with item interpretation revealed through interaction analysis of the cognitive interviews, the small number of participants (34), and the elusive nature of the construct in question. The revised questionnaire measures 78 specific behaviors or opinions. It can be seen to provide an efficient means of gathering information about the engagement of young musicians in practice and memorization on a large scale.

Keywords: cross-cultural, memorization, practice, questionnaire, young musicians

Procedia PDF Downloads 103
336 Case Report: Treatment Resistant Schizophrenia in an Immigrant Adolescent

Authors: Omaymah Al-Otoom, Rajesh Mehta

Abstract:

Introduction: Migration is an established risk factor in the development of schizophrenia and other forms of psychosis. The exposure to different social adversities, including social isolation, discrimination, and economic stress, is thought to contribute to elevated rates of psychosis in immigrants and their children. We present a case of resistant schizophrenia in an immigrant adolescent. Case: The patient is a 15-year-old male immigrant. In October 2021, the patient was admitted for irritability, suicidal ideations, and hallucinations. He was treated with Fluoxetine 10 mg daily for irritability. In November 2021, he presented with similar manifestations. Fluoxetine was discontinued, and Risperidone 1 mg at bedtime was started for psychotic symptoms. In March 2022, he presented with commanding auditory hallucinations (voices telling him that people were going to kill his father). Risperidone was gradually increased to 2.5 mg twice daily for hallucinations. The outpatient provider discontinued Risperidone and started Olanzapine 7.5 mg and Lurasidone 40 mg daily. In August 2022, he presented with worsening paranoia due to medication non-adherence. The patient had limited improvement on medications. In October 2022, the patient presented to the ED for visual hallucinations and aggression towards the family. His medications were Olanzapine 10 mg daily, Lurasidone 60 mg daily, and Haloperidol 2.5 mg twice daily. In the ED, he received multiple as-needed medications and was placed in seclusion for his aggressive behavior. The patient showed a positive response to a higher dose of Olanzapine and decreased dose of Lurasidone. The patient was discharged home in stable condition. Two days after discharge, he was brought for bizarre behavior, visual hallucinations, and homicidal ideations at school. Due to concerns for potential antipsychotic side effects and poor response, Lurasidone and Olanzapine were discontinued, and he was discharged home on Haloperidol 5 mg in the morning and 15 mg in the evening. Clozapine treatment was recommended on an outpatient basis. He has no family history of psychotic disorders. He has no history of substance use. A medical workup was done, the electroencephalogram was normal, and the urine toxicology was negative. Discussion: Our patient was on three antipsychotics at some point with no improvement in his psychotic symptoms, which qualifies as treatment-resistant schizophrenia (TRP). It is well recognized that migrants are at higher risk of different psychiatric disorders, including posttraumatic stress disorder, affective disorders, schizophrenia, and psychosis. This is thought to be related to higher exposure to traumatic life events compared to the general population. In addition, migrants are more likely to experience poverty, separation from family members, and discrimination which could contribute to mental health issues. In one study, they found that people who migrated before the age of 18 had twice the risk of psychotic disorders compared to the native-born population. It is unclear whether migration increases the risk of treatment resistance. In a Canadian study, neither ethnicity nor migrant status was associated with treatment resistance; however, this study was limited by its small sample size. There is a need to implement psychiatric prevention strategies and outreach programs through research to mitigate the risk of mental health disorders among immigrants.

Keywords: psychosis, immigrant, adolescent, treatment resistant schizophrenia

Procedia PDF Downloads 93
335 Vision and Challenges of Developing VR-Based Digital Anatomy Learning Platforms and a Solution Set for 3D Model Marking

Authors: Gizem Kayar, Ramazan Bakir, M. Ilkay Koşar, Ceren U. Gencer, Alperen Ayyildiz

Abstract:

Anatomy classes are crucial for general education of medical students, whereas learning anatomy is quite challenging and requires memorization of thousands of structures. In traditional teaching methods, learning materials are still based on books, anatomy mannequins, or videos. This results in forgetting many important structures after several years. However, more interactive teaching methods like virtual reality, augmented reality, gamification, and motion sensors are becoming more popular since such methods ease the way we learn and keep the data in mind for longer terms. During our study, we designed a virtual reality based digital head anatomy platform to investigate whether a fully interactive anatomy platform is effective to learn anatomy and to understand the level of teaching and learning optimization. The Head is one of the most complicated human anatomy structures, with thousands of tiny, unique structures. This makes the head anatomy one of the most difficult parts to understand during class sessions. Therefore, we developed a fully interactive digital tool with 3D model marking, quiz structures, 2D/3D puzzle structures, and VR support so as to integrate the power of VR and gamification. The project has been developed in Unity game engine with HTC Vive Cosmos VR headset. The head anatomy 3D model has been selected with full skeletal, muscular, integumentary, head, teeth, lymph, and vein system. The biggest issue during the development was the complexity of our model and the marking of it in the 3D world system. 3D model marking requires to access to each unique structure in the counted subsystems which means hundreds of marking needs to be done. Some parts of our 3D head model were monolithic. This is why we worked on dividing such parts to subparts which is very time-consuming. In order to subdivide monolithic parts, one must use an external modeling tool. However, such tools generally come with high learning curves, and seamless division is not ensured. Second option was to integrate tiny colliders to all unique items for mouse interaction. However, outside colliders which cover inner trigger colliders cause overlapping, and these colliders repel each other. Third option is using raycasting. However, due to its own view-based nature, raycasting has some inherent problems. As the model rotate, view direction changes very frequently, and directional computations become even harder. This is why, finally, we studied on the local coordinate system. By taking the pivot point of the model into consideration (back of the nose), each sub-structure is marked with its own local coordinate with respect to the pivot. After converting the mouse position to the world position and checking its relation with the corresponding structure’s local coordinate, we were able to mark all points correctly. The advantage of this method is its applicability and accuracy for all types of monolithic anatomical structures.

Keywords: anatomy, e-learning, virtual reality, 3D model marking

Procedia PDF Downloads 67
334 Characterization of Carbazole-Based Host Material for Highly Efficient Thermally Activated Delayed Fluorescence Emitter

Authors: Malek Mahmoudi, Jonas Keruckas, Dmytro Volyniuk, Jurate Simokaitiene, Juozas V. Grazulevicius

Abstract:

Host materials have been discovered as one of the most appealing methods for harvesting triplet states in organic materials for application in organic light-emitting diodes (OLEDs). The ideal host-guest system for emission in thermally delayed fluorescence OLEDs with 20% guest concentration for efficient energy transfer has been demonstrated in the present investigation. In this work, 3,3'-bis[9-(4-fluorophenyl) carbazole] (bFPC) has been used as the host, which induces balanced charge carrier transport for high-efficiency OLEDs.For providing a complete characterization of the synthesized compound, photophysical, photoelectrical, charge-transporting, and electrochemical properties of the compound have been examined. Excited-state lifetimes and singlet-triplet energy gaps were measured for characterization of photophysical properties, while thermogravimetric analysis, as well as differential scanning calorimetry measurements, were performed for probing of electrochemical and thermal properties of the compound. The electrochemical properties of this compound were investigated by cyclic voltammetry (CV) method, and ionization potential (IPCV) value of 5.68 eV was observed. UV–Vis absorption and photoluminescence spectrum of a solution of the compound in toluene (10-5 M) showed maxima at 302 and 405 nm, respectively. Photoelectron emission spectrometry was used for the characterization of charge-injection properties of the studied compound in solid. The ionization potential of this material was found to be 5.78 eV, and time-of-flight measurement was used for testing charge-transporting properties and hole mobility estimated using this technique in a vacuum-deposited layer reached 4×10-4 cm2 V-1s-1. Since the compound with high charge mobilities was tested as a host in an organic light-emitting diode. The device was fabricated by successive deposition onto a pre-cleaned indium tin oxide (ITO) coated glass substrate under a vacuum of 10-6 Torr and consisting of an indium-tin-oxide anode, hole injection and transporting layer(MoO3, NPB), emitting layer with bFPC as a host and 4CzIPN (2,4,5,6-tetra(9-carbazolyl)isophthalonitrile) which is a new highly efficient green thermally activated delayed fluorescence (TADF) material as an emitter, an electron transporting layer(TPBi) and lithium fluoride layer topped with aluminum layer as a cathode exhibited the highest maximum current efficiency and power efficiency of 33.9 cd/A and 23.5 lm/W, respectively and the electroluminescence spectrum showed only a peak at 512nm. Furthermore, the new bicarbazole-based compound was tested as a host in thermally activated delayed fluorescence organic light-emitting diodes are reaching luminance of 25300 cd m-2 and external quantum efficiency of 10.1%. Interestingly, the turn-on voltage was low enough (3.8 V), and such a device can be used for highly efficient light sources.

Keywords: thermally-activated delayed fluorescence, host material, ionization energy, charge mobility, electroluminescence

Procedia PDF Downloads 120
333 Accuracy of Fitbit Charge 4 for Measuring Heart Rate in Parkinson’s Patients During Intense Exercise

Authors: Giulia Colonna, Jocelyn Hoye, Bart de Laat, Gelsina Stanley, Jose Key, Alaaddin Ibrahimy, Sule Tinaz, Evan D. Morris

Abstract:

Parkinson’s disease (PD) is the second most common neurodegenerative disease and affects approximately 1% of the world’s population. Increasing evidence suggests that aerobic physical exercise can be beneficial in mitigating both motor and non-motor symptoms of the disease. In a recent pilot study of the role of exercise on PD, we sought to confirm exercise intensity by monitoring heart rate (HR). For this purpose, we asked participants to wear a chest strap heart rate monitor (Polar Electro Oy, Kempele). The device sometimes proved uncomfortable. Looking forward to larger clinical trials, it would be convenient to employ a more comfortable and user friendly device. The Fitbit Charge 4 (Fitbit Inc) is a potentially comfortable, user-friendly solution since it is a wrist-worn heart rate monitor. Polar H10 has been used in large trials, and for our purposes, we treated it as the gold standard for the beat-to-beat period (R-R interval) assessment. In previous literature, it has been shown that Fitbit Charge 4 has comparable accuracy to Polar H10 in healthy subjects. It has yet to be determined if the Fitbit is as accurate as the Polar H10 in subjects with PD or in clinical populations, generally. Goal: To compare the Fitbit Charge 4 to the Polar H10 for monitoring HR in PD subjects engaging in an intensive exercise program. Methods: A total of 596 exercise sessions from 11 subjects (6 males) were collected simultaneously by both devices. Subjects with early-stage PD (Hoehn & Yahr <=2) were enrolled in a 6 months exercise training program designed for PD patients. Subjects participated in 3 one-hour exercise sessions per week. They wore both Fitbit and Polar H10 during each session. Sessions included rest, warm-up, intensive exercise, and cool-down periods. We calculated the bias in the HR via Fitbit under rest (5min) and intensive exercise (20min) by comparing the mean HR during each of the periods to the respective means measured by the Polar (HRFitbit – HRPolar). We also measured the sensitivity and specificity of Fitbit for detecting HRs that exceed the threshold for intensive exercise, defined as 70% of an individual’s theoretical maximum HR. Different types of correlation between the two devices were investigated. Results: The mean bias was 1.68 bpm at rest and 6.29 bpm during high intensity exercise, with an overestimation by Fitbit in both conditions. The mean bias of Fitbit across both rest and intensive exercise periods was 3.98 bpm. The sensitivity of the device in identifying high intensity exercise sessions was 97.14 %. The correlation between the two devices was non-linear, suggesting a saturation tendency of Fitbit to saturate at high values of HR. Conclusion: The performance of Fitbit Charge 4 is comparable to Polar H10 for assessing exercise intensity in a cohort of PD subjects. The device should be considered a reasonable replacement for the more cumbersome chest strap technology in future similar studies of clinical populations.

Keywords: fitbit, heart rate measurements, parkinson’s disease, wrist-wearable devices

Procedia PDF Downloads 73
332 Coupled Field Formulation – A Unified Method for Formulating Structural Mechanics Problems

Authors: Ramprasad Srinivasan

Abstract:

Engineers create inventions and put their ideas in concrete terms to design new products. Design drivers must be established, which requires, among other things, a complete understanding of the product design, load paths, etc. For Aerospace Vehicles, weight/strength ratio, strength, stiffness and stability are the important design drivers. A complex built-up structure is made up of an assemblage of primitive structural forms of arbitrary shape, which include 1D structures like beams and frames, 2D structures like membranes, plate and shell structures, and 3D solid structures. Justification through simulation involves a check for all the quantities of interest, namely stresses, deformation, frequencies, and buckling loads and is normally achieved through the finite element (FE) method. Over the past few decades, Fiber-reinforced composites are fast replacing the traditional metallic structures in the weight-sensitive aerospace and aircraft industries due to their high specific strength, high specific stiffness, anisotropic properties, design freedom for tailoring etc. Composite panel constructions are used in aircraft to design primary structure components like wings, empennage, ailerons, etc., while thin-walled composite beams (TWCB) are used to model slender structures like stiffened panels, helicopter, and wind turbine rotor blades, etc. The TWCB demonstrates many non-classical effects like torsional and constrained warping, transverse shear, coupling effects, heterogeneity, etc., which makes the analysis of composite structures far more complex. Conventional FE formulations to model 1D structures suffer from many limitations like shear locking, particularly in slender beams, lower convergence rates due to material coupling in composites, inability to satisfy, equilibrium in the domain and natural boundary conditions (NBC) etc. For 2D structures, the limitations of conventional displacement-based FE formulations include the inability to satisfy NBC explicitly and many pathological problems such as shear and membrane locking, spurious modes, stress oscillations, lower convergence due to mesh distortion etc. This mandates frequent re-meshing to even achieve an acceptable mesh (satisfy stringent quality metrics) for analysis leading to significant cycle time. Besides, currently, there is a need for separate formulations (u/p) to model incompressible materials, and a single unified formulation is missing in the literature. Hence coupled field formulation (CFF) is a unified formulation proposed by the author for the solution of complex 1D and 2D structures addressing the gaps in the literature mentioned above. The salient features of CFF and its many advantages over other conventional methods shall be presented in this paper.

Keywords: coupled field formulation, kinematic and material coupling, natural boundary condition, locking free formulation

Procedia PDF Downloads 49
331 Top-Down, Middle-Out, Bottom-Up: A Design Approach to Transforming Prison

Authors: Roland F. Karthaus, Rachel S. O'Brien

Abstract:

Over the past decade, the authors have undertaken applied research aimed at enabling transformation within the prison service to improve conditions and outcomes for those living, working and visiting in prisons in the UK and the communities they serve. The research has taken place against a context of reducing resources and public discontent at increasing levels of violence, deteriorating conditions and persistently high levels of re-offending. Top-down governmental policies have mainly been ineffectual and in some cases counter-productive. The prison service is characterised by hierarchical organisation, and the research has applied design thinking at multiple levels to challenge and precipitate change: top-down, middle-out and bottom-up. The research employs three distinct but related approaches, system design (top-down): working at the national policy level to analyse the changing policy context, identifying opportunities and challenges; engaging with the Ministry of Justice commissioners and sector organisations to facilitate debate, introducing new evidence and provoking creative thinking, place-based design (middle-out): working with individual prison establishments as pilots to illustrate and test the potential for local empowerment, creative change, and improved architecture within place-specific contexts and organisational hierarchies, everyday design (bottom-up): working with individuals in the system to explore the potential for localised, significant, demonstrator changes; including collaborative design, capacity building and empowerment in skills, employment, communication, training, and other activities. The research spans a series of projects, through which the methodological approach has developed responsively. The projects include a place-based model for the re-purposing of Ministry of Justice land assets for the purposes of rehabilitation; an evidence-based guide to improve prison design for health and well-being; capacity-based employment, skills and self-build project as a template for future open prisons. The overarching research has enabled knowledge to be developed and disseminated through policy and academic networks. Whilst the research remains live and continuing; key findings are emerging as a basis for a new methodological approach to effecting change in the UK prison service. An interdisciplinary approach is necessary to overcome the barriers between distinct areas of the prison service. Sometimes referred to as total environments, prisons encompass entire social and physical environments which themselves are orchestrated by institutional arms of government, resulting in complex systems that cannot be meaningfully engaged through narrow disciplinary lenses. A scalar approach is necessary to connect strategic policies with individual experiences and potential, through the medium of individual prison establishments, operating as discrete entities within the system. A reflexive process is necessary to connect research with action in a responsive mode, learning to adapt as the system itself is changing. The role of individuals in the system, their latent knowledge and experience and their ability to engage and become agents of change are essential. Whilst the specific characteristics of the UK prison system are unique, the approach is internationally applicable.

Keywords: architecture, design, policy, prison, system, transformation

Procedia PDF Downloads 108