Search results for: tomato yield prediction
3796 Estimating Cyclone Intensity Using INSAT-3D IR Images Based on Convolution Neural Network Model
Authors: Divvela Vishnu Sai Kumar, Deepak Arora, Sheenu Rizvi
Abstract:
Forecasting a cyclone through satellite images consists of the estimation of the intensity of the cyclone and predicting it before a cyclone comes. This research work can help people to take safety measures before the cyclone comes. The prediction of the intensity of a cyclone is very important to save lives and minimize the damage caused by cyclones. These cyclones are very costliest natural disasters that cause a lot of damage globally due to a lot of hazards. Authors have proposed five different CNN (Convolutional Neural Network) models that estimate the intensity of cyclones through INSAT-3D IR images. There are a lot of techniques that are used to estimate the intensity; the best model proposed by authors estimates intensity with a root mean squared error (RMSE) of 10.02 kts.Keywords: estimating cyclone intensity, deep learning, convolution neural network, prediction models
Procedia PDF Downloads 1273795 Application of EEG Wavelet Power to Prediction of Antidepressant Treatment Response
Authors: Dorota Witkowska, Paweł Gosek, Lukasz Swiecicki, Wojciech Jernajczyk, Bruce J. West, Miroslaw Latka
Abstract:
In clinical practice, the selection of an antidepressant often degrades to lengthy trial-and-error. In this work we employ a normalized wavelet power of alpha waves as a biomarker of antidepressant treatment response. This novel EEG metric takes into account both non-stationarity and intersubject variability of alpha waves. We recorded resting, 19-channel EEG (closed eyes) in 22 inpatients suffering from unipolar (UD, n=10) or bipolar (BD, n=12) depression. The EEG measurement was done at the end of the short washout period which followed previously unsuccessful pharmacotherapy. The normalized alpha wavelet power of 11 responders was markedly different than that of 11 nonresponders at several, mostly temporoparietal sites. Using the prediction of treatment response based on the normalized alpha wavelet power, we achieved 81.8% sensitivity and 81.8% specificity for channel T4.Keywords: alpha waves, antidepressant, treatment outcome, wavelet
Procedia PDF Downloads 3153794 Optimal Dynamic Regime for CO Oxidation Reaction Discovered by Policy-Gradient Reinforcement Learning Algorithm
Authors: Lifar M. S., Tereshchenko A. A., Bulgakov A. N., Guda S. A., Guda A. A., Soldatov A. V.
Abstract:
Metal nanoparticles are widely used as heterogeneous catalysts to activate adsorbed molecules and reduce the energy barrier of the reaction. Reaction product yield depends on the interplay between elementary processes - adsorption, activation, reaction, and desorption. These processes, in turn, depend on the inlet feed concentrations, temperature, and pressure. At stationary conditions, the active surface sites may be poisoned by reaction byproducts or blocked by thermodynamically adsorbed gaseous reagents. Thus, the yield of reaction products can significantly drop. On the contrary, the dynamic control accounts for the changes in the surface properties and adjusts reaction parameters accordingly. Therefore dynamic control may be more efficient than stationary control. In this work, a reinforcement learning algorithm has been applied to control the simulation of CO oxidation on a catalyst. The policy gradient algorithm is learned to maximize the CO₂ production rate based on the CO and O₂ flows at a given time step. Nonstationary solutions were found for the regime with surface deactivation. The maximal product yield was achieved for periodic variations of the gas flows, ensuring a balance between available adsorption sites and the concentration of activated intermediates. This methodology opens a perspective for the optimization of catalytic reactions under nonstationary conditions.Keywords: artificial intelligence, catalyst, co oxidation, reinforcement learning, dynamic control
Procedia PDF Downloads 1313793 MXene Quantum Dots Decorated Double-Shelled Ceo₂ Hollow Spheres for Efficient Electrocatalytic Nitrogen Oxidation
Authors: Quan Li, Dongcai Shen, Zhengting Xiao, Xin Liu Mingrui Wu, Licheng Liu, Qin Li, Xianguo Li, Wentai Wang
Abstract:
Direct electrocatalytic nitrogen oxidation (NOR) provides a promising alternative strategy for synthesizing high-value-added nitric acid from widespread N₂, which overcomes the disadvantages of the Haber-Bosch-Ostwald process. However, the NOR process suffers from the limitation of high N≡N bonding energy (941 kJ mol− ¹), sluggish kinetics, low efficiency and yield. It is a prerequisite to develop more efficient electrocatalysts for NOR. Herein, we synthesized double-shelled CeO₂ hollow spheres (D-CeO₂) and further modified with Ti₃C₂ MXene quantum dots (MQDs) for electrocatalytic N₂ oxidation, which exhibited a NO₃− yield of 71.25 μg h− ¹ mgcat− ¹ and FE of 31.80% at 1.7 V. The unique quantum size effect and abundant edge active sites lead to a more effective capture of nitrogen. Moreover, the double-shelled hollow structure is favorable for N₂ fixation and gathers intermediate products in the interlayer of the core-shell. The in-situ infrared Fourier transform spectroscopy confirmed the formation of *NO and NO₃− species during the NOR reaction, and the kinetics and possible pathways of NOR were calculated by density functional theory (DFT). In addition, a Zn-N₂ reaction device was assembled with D-CeO₂/MQDs as anode and Zn plate as cathode, obtaining an extremely high NO₃− yield of 104.57 μg h− ¹ mgcat− ¹ at 1 mA cm− ².Keywords: electrocatalytic N₂ oxidation, nitrate production, CeO₂, MXene quantum dots, double-shelled hollow spheres
Procedia PDF Downloads 703792 Yield Loss in Maize Due to Stem Borers and Their Integrated Management
Authors: C. P. Mallapur, U. K. Hulihalli, D. N. Kambrekar
Abstract:
Maize (Zea mays L.) an important cereal crop in the world has diversified uses including human consumption, animal feed, and industrial uses. A major constraint in low productivity of maize in India is undoubtedly insect pests particularly two species of stem borers, Chilo partellus (Swinhoe) and Sesamia inferens (Walker). The stem borers cause varying level of yield losses in different agro-climate regions (25.7 to 80.4%) resulting in a huge economic loss to the farmers. Although these pests are rather difficult to manage, efforts have been made to combat the menace by using effective insecticides. However, efforts have been made in the present study to integrate various possible approaches for sustainable management of these borers. Two field experiments were conducted separately during 2016-17 at Main Agricultural Research Station, University of Agricultural Sciences, Dharwad, Karnataka, India. In the first experiment, six treatments were randomized in RBD. The insect eggs at pinhead stage (@ 40 eggs/plant) were stapled to the under surface of leaves covering 15-20 % of plants in each plot after 15 days of sowing. The second experiment was planned with nine treatments replicated thrice. The border crop with NB -21 grass was planted all around the plots in the specific treatments while, cowpea intercrop (@6:1-row proportion) was sown along with the main crop and later, the insecticidal spray with chlorantraniliprole and nimbecidine was taken upon need basis in the specific treatments. The results indicated that the leaf injury and dead heart incidence were relatively more in the treatments T₂ and T₄ wherein, no insect control measures were made after the insect release (58.30 & 40.0 % leaf injury and 33.42 and 25.74% dead heart). On the contrary, these treatments recorded higher stem tunneling (32.4 and 24.8%) and resulted in lower grain yield (17.49 and 26.79 q/ha) compared to 29.04, 32.68, 40.93 and 46.38 q/ha recorded in T₁, T₃, T₅ and T₆ treatments, respectively. A maximum yield loss of 28.89 percent was noticed in T₂ followed by 19.59 percent in T₄ where no sprays were imposed. The data on integrated management trial revealed the lowest stem borer damage (19.28% leaf injury and 1.21% dead heart) in T₅ (seed treatment with thiamethoxam 70FS @ 8ml/kg seed + cow intercrop along with nimbecidine 0.03EC @ 5.0 ml/l and chlorantraniliprole 18.5SC spray @ 0.2 ml/l). The next best treatment was T₆ (ST+ NB-21 borer with nimbecidine and chlorantraniliprole spray) with 21.3 and 1.99 percent leaf injury and dead heart incidence, respectively. These treatments resulted in highest grain yield (77.71 and 75.53 q/ha in T₅ and T₆, respectively) compared to the standard check, T₁ (ST+ chlorantraniliprole spray) wherein, 27.63 percent leaf injury and 3.68 percent dead heart were noticed with 60.14 q/ha grain yield. The stem borers can cause yield loss up to 25-30 percent in maize which can be well tackled by seed treatment with thiamethoxam 70FS @ 8ml/kg seed and sowing the crop along with cowpea as intercrop (6:1 row proportion) or NB-21 grass as border crop followed by application of nimbecidine 0.03EC @ 5.0 ml/l and chlorantraniliprole 18.5SC @ 0.2 ml/l on need basis.Keywords: Maize stem borers, Chilo partellus, Sesamia inferens, crop loss, integrated management
Procedia PDF Downloads 1793791 Reliability Assessment of Various Empirical Formulas for Prediction of Scour Hole Depth (Plunge Pool) Using a Comprehensive Physical Model
Authors: Majid Galoie, Khodadad Safavi, Abdolreza Karami Nejad, Reza Roshan
Abstract:
In this study, a comprehensive scouring model has been developed in order to evaluate the accuracy of various empirical relationships which were suggested for prediction of scour hole depth in plunge pools by Martins, Mason, Chian and Veronese. For this reason, scour hole depths caused by free falling jets from a flip bucket to a plunge pool were investigated. In this study various discharges, angles, scouring times, etc. have been considered. The final results demonstrated that the all mentioned empirical formulas, except Mason formula, were reasonably agreement with the experimental data.Keywords: scour hole depth, plunge pool, physical model, reliability assessment
Procedia PDF Downloads 5353790 Neural Network Based Path Loss Prediction for Global System for Mobile Communication in an Urban Environment
Authors: Danladi Ali
Abstract:
In this paper, we measured GSM signal strength in the Dnepropetrovsk city in order to predict path loss in study area using nonlinear autoregressive neural network prediction and we also, used neural network clustering to determine average GSM signal strength receive at the study area. The nonlinear auto-regressive neural network predicted that the GSM signal is attenuated with the mean square error (MSE) of 2.6748dB, this attenuation value is used to modify the COST 231 Hata and the Okumura-Hata models. The neural network clustering revealed that -75dB to -95dB is received more frequently. This means that the signal strength received at the study is mostly weak signalKeywords: one-dimensional multilevel wavelets, path loss, GSM signal strength, propagation, urban environment and model
Procedia PDF Downloads 3823789 Movie Genre Preference Prediction Using Machine Learning for Customer-Based Information
Authors: Haifeng Wang, Haili Zhang
Abstract:
Most movie recommendation systems have been developed for customers to find items of interest. This work introduces a predictive model usable by small and medium-sized enterprises (SMEs) who are in need of a data-based and analytical approach to stock proper movies for local audiences and retain more customers. We used classification models to extract features from thousands of customers’ demographic, behavioral and social information to predict their movie genre preference. In the implementation, a Gaussian kernel support vector machine (SVM) classification model and a logistic regression model were established to extract features from sample data and their test error-in-sample were compared. Comparison of error-out-sample was also made under different Vapnik–Chervonenkis (VC) dimensions in the machine learning algorithm to find and prevent overfitting. Gaussian kernel SVM prediction model can correctly predict movie genre preferences in 85% of positive cases. The accuracy of the algorithm increased to 93% with a smaller VC dimension and less overfitting. These findings advance our understanding of how to use machine learning approach to predict customers’ preferences with a small data set and design prediction tools for these enterprises.Keywords: computational social science, movie preference, machine learning, SVM
Procedia PDF Downloads 2603788 Hybrid Renewable Energy System Development Towards Autonomous Operation: The Deployment Potential in Greece
Authors: Afroditi Zamanidou, Dionysios Giannakopoulos, Konstantinos Manolitsis
Abstract:
A notable amount of electrical energy demand in many countries worldwide is used to cover public energy demand for road, square and other public spaces’ lighting. Renewable energy can contribute in a significant way to the electrical energy demand coverage for public lighting. This paper focuses on the sizing and design of a hybrid energy system (HES) exploiting the solar-wind energy potential to meet the electrical energy needs of lighting roads, squares and other public spaces. Moreover, the proposed HES provides coverage of the electrical energy demand for a Wi-Fi hotspot and a charging hotspot for the end-users. Alongside the sizing of the energy production system of the proposed HES, in order to ensure a reliable supply without interruptions, a storage system is added and sized. Multiple scenarios of energy consumption are assumed and applied in order to optimize the sizing of the energy production system and the energy storage system. A database with meteorological prediction data for 51 areas in Greece is developed in order to assess the possible deployment of the proposed HES. Since there are detailed meteorological prediction data for all 51 areas under investigation, the use of these data is evaluated, comparing them to real meteorological data. The meteorological prediction data are exploited to form three hourly production profiles for each area for every month of the year; minimum, average and maximum energy production. The energy production profiles are combined with the energy consumption scenarios and the sizing results of the energy production system and the energy storage system are extracted and presented for every area. Finally, the economic performance of the proposed HES in terms of Levelized cost of energy is estimated by calculating and assessing construction, operation and maintenance costs.Keywords: energy production system sizing, Greece’s deployment potential, meteorological prediction data, wind-solar hybrid energy system, levelized cost of energy
Procedia PDF Downloads 1543787 Evaluation of Different High Tunnel Protection Methods for Quality Banana Production in Bangladesh
Authors: Shormin Choudhury, Nazrul Islam, Atiqur Rahman Shaon
Abstract:
High tunnels can provide several benefits to horticultural crops, including environmental stress protection such as hail, frost, excessive rainfall, and high wind. In hot and sunny areas, high tunnel is one of the cooling ways for modifying the microclimate and maximizing crop development. Present study was carried out to assess the effect of different type of high tunnels on banana growth, yield, and fruit quality characteristics. Net houses, poly net houses, UV poly shed houses, and open field (control) conditions are among the experimental treatments. The results revealed that the plants produced in the poly net house condition had maximum pseudo stem height (171.00cm), stem girth (68.66 cm), chlorophyll content (57.63), number of fruits (140), number of hands (9.66), individual fruit weight (125.00) and pulp: peel ratio (3.35) of bananas as compared to the other treatments. Quality parameters like total soluble solid (21.78°Brix), ascorbic acid (10.24 mg/100g), total sugar (25.44%), and reducing sugar (15.75%) were higher in fruits grown in poly net house. The study revealed that the poly net house is the best growing environment for bananas in terms of growth, yield, and quality attributes.Keywords: shed houses, banana, chlorophyll content, fruit yield, quality
Procedia PDF Downloads 863786 Prediction Factor of Recurrence Supraventricular Tachycardia After Adenosine Treatment in the Emergency Department
Authors: Chaiyaporn Yuksen
Abstract:
Backgroud: Supraventricular tachycardia (SVT) is an abnormally fast atrial tachycardia characterized by narrow (≤ 120 ms) and constant QRS. Adenosine was the drug of choice; the first dose was 6 mg. It can be repeated with the second and third doses of 12 mg, with greater than 90% success. The study found that patients observed at 4 hours after normal sinus rhythm was no recurrence within 24 hours. The objective of this study was to investigate the factors that influence the recurrence of SVT after adenosine in the emergency department (ED). Method: The study was conducted retrospectively exploratory model, prognostic study at the Emergency Department (ED) in Faculty of Medicine, Ramathibodi Hospital, a university-affiliated super tertiary care hospital in Bangkok, Thailand. The study was conducted for ten years period between 2010 and 2020. The inclusion criteria were age > 15 years, visiting the ED with SVT, and treating with adenosine. Those patients were recorded with the recurrence SVT in ED. The multivariable logistic regression model developed the predictive model and prediction score for recurrence PSVT. Result: 264 patients met the study criteria. Of those, 24 patients (10%) had recurrence PSVT. Five independent factors were predictive of recurrence PSVT. There was age>65 years, heart rate (after adenosine) > 100 per min, structural heart disease, and dose of adenosine. The clinical risk score to predict recurrence PSVT is developed accuracy 74.41%. The score of >6 had the likelihood ratio of recurrence PSVT by 5.71 times Conclusion: The clinical predictive score of > 6 was associated with recurrence PSVT in ED.Keywords: clinical prediction score, SVT, recurrence, emergency department
Procedia PDF Downloads 1553785 The Effect of Different Extraction Techniques on the Yield and the Composition of Oil (Laurus Nobilis L.) Fruits Widespread in Syria
Authors: Khaled Mawardi
Abstract:
Bay laurel (Laurus nobilis L.) is an evergreen of the Laurus genus of the Lauraceae Family. It is a plant native to the southern Mediterranean and widespread in Syria. It is a plant with enormous industrial applications. For instance, they are used as platform chemicals in food, pharmaceutical and cosmetic applications. Herein, we report an efficient extraction of Bay laurel oil from Bay laurel fruits via a comparative investigation of boiled water conventional extraction technique and microwave-assisted extraction (MAE) by microwave heating at atmospheric pressure. In order to optimize the extraction efficiency, we investigated several extraction parameters, such as extraction time and microwave power. In addition, to demonstrate the feasibility of the method, oil obtained under optimal conditions by method (MAE) was compared quantitatively and qualitatively with that obtained by the conventional method. After 1h of microwave-assisted extraction (power of 600W), an oil yield of 9.8% with identified lauric acid content of 22.7%. In comparison, an extended extraction of up to 4h was required to obtain a 9.7% yield of oil extraction with 21.2% of lauric acid content. The change in microwave power impacts the fatty acids profile and also the quality parameters of Laurel Oil. It was found that the profile of fatty acids changed with the power, where the lauric acid content increased from 22.7% at 600W to 30.5% at 1200W owing to a decrease of oleic acid content from 32.8% at 600W to 28.3% at 1200W and linoleic acid content from 22.3% at 600W to 20.6% at 1200W. In addition, we observed a decrease in oil yield from 9.8% at 600W to 5.1% at 1200W. Summarily, the overall results indicated that the extraction of laurel fruit oils could be successfully performed using (MAE) at a short extraction time and lower energy compared with the fixed oil obtained by conventional processes of extraction. Microwave heating exerted more aggressive effects on the oil. Indeed, microwave heating inflicted changes in the fatty acids profile of oil; the most affected fraction was the unsaturated fatty acids, with higher susceptibility to oxidation.Keywords: microwaves, extraction, Laurel oil, solvent-free
Procedia PDF Downloads 673784 Bio–efficacy of Selected Plant extracts and Cypermethrin on Growth and Yield of Cowpea (Vigna unguiculata L.).
Authors: Akanji Kayode Ayanwusi., Akanji Elizabeth Nike, Bidmos Fuad Adetunji, Oladapo Olufemi Stephen
Abstract:
This experiment was conducted in Igboora, southwest Nigeria during the year 2022 planting season to determine the bio-efficacy of plant extracts (Jatropha curcas and Petiveria alliacea) and synthetic (Cypermethrin) insecticides against the insect pest of cowpea (Vigna unguiculata L.) and to determine its effect on the growth and yield of cowpea in the study area. Cowpea is one of the most important food and forage legumes in the semi-arid tropics. It is grown in 45 countries worldwide, including parts of Africa, Asia, Southern Europe, the Southern United States, and Central and South America. Cowpea production is considered too risky an enterprise by many growers because of its numerous pest problems. The treatments for the experiment consisted of two aqueous plant extracts (J.curcas and P. alliacea) at 50 /0 w/v and Cypermethrin 400 EC replicated three times including control in a randomized complete block design. Each plot measured 2.0 m by 2.0 m with 1.0 m inter-spaced per adjacent plot. The results from the study showed that different insect pests attack cowpea at different stages of growth. The insects observed were Bemisa tabaci, Callosobruchus maculatus, Megalurothrips sjostedti, and Maruca vitrata. High yields were obtained from plots treated with P. alliacea and synthetic insecticide (cypermethrin). J. curcas also produced optimum yield but lower than P. alliacea also P. alliacea treated plots had the least damaged pods while the untreated plots had the highest damaged pods, the plants extracts exhibited high insecticidal activities in this study, therefore P. alliacea leaves formulated as an insecticide is recommended for the control of insect pests of cowpea in the study area.Keywords: plant extracts, yield, cypermethrin., cowpea
Procedia PDF Downloads 943783 An Experimental Study on Service Life Prediction of Self: Compacting Concrete Using Sorptivity as a Durability Index
Abstract:
Permeation properties have been widely used to quantify durability characteristics of concrete for assessing long term performance and sustainability. The processes of deterioration in concrete are mediated largely by water. There is a strong interest in finding a better way of assessing the material properties of concrete in terms of durability. Water sorptivity is a useful single material property which can be one of the measures of durability useful in service life planning and prediction, especially in severe environmental conditions. This paper presents the results of the comparative study of sorptivity of Self-Compacting Concrete (SCC) with conventionally vibrated concrete. SCC is a new, special type of concrete mixture, characterized by high resistance to segregation that can flow through intricate geometrical configuration in the presence of reinforcement, under its own mass, without vibration and compaction. SCC mixes were developed for the paste contents of 0.38, 0.41 and 0.43 with fly ash as the filler for different cement contents ranging from 300 to 450 kg/m3. The study shows better performance by SCC in terms of capillary absorption. The sorptivity value decreased as the volume of paste increased. The use of higher paste content in SCC can make the concrete robust with better densification of the micro-structure, improving the durability and making the concrete more sustainable with improved long term performance. The sorptivity based on secondary absorption can be effectively used as a durability index to predict the time duration required for the ingress of water to penetrate the concrete, which has practical significance.Keywords: self-compacting concrete, service life prediction, sorptivity, volume of paste
Procedia PDF Downloads 3213782 Use of Silicate or Chicken Compost in Calacarious Soil on Productivity and Mineral Status of Wheat Plants under Different Levels of Phosphorus
Authors: Hanan, S. Siam, Safaa A. Mahmoud, A. S. Taalab
Abstract:
A pot experiment was conducted in greenhouse of NRC, Dokki, Cairo, Egypt to study the response of wheat plants to different levels of superphosphate at (60kg P2O5 or 30 kg P2O5) with or without potassium silicate or chicken compost (2.5 ton/fed.) on growth yield and nutrients status especially, and phosphorus and silica availability. Data reveal that the addition either chicken or compost increased significantly affected on all the growth and yield parameters as well as nutrients status and protein of the different parts of wheat plants if compared with control (60kg P2O5 or 30 kg P2O5). Data also reveal that the highest mean values were obtained when potassium silicate with was added to 60 kg P2O5, while the lowest values of the previous parameters were obtained when 30 kg P2O5 alone was added to plants. Furthermore, data indicated that the highest mean values of all mentioned parameters were obtained when chicken compost was applied with any rate of P as compared with silica addition at the same rates of P. According to the results, the highest values of all mentioned parameters were obtained when addition of chicken compost and potassium silicate including the high rate of P at (60 kg P2O5) while the lowest values of the previous parameters were obtained when plants received of phosphorus (30 kg P2O5) alone.Keywords: wheat, yield, chicken compost, potassium, phosphorus, silicate, nutrients status
Procedia PDF Downloads 2753781 'CardioCare': A Cutting-Edge Fusion of IoT and Machine Learning to Bridge the Gap in Cardiovascular Risk Management
Authors: Arpit Patil, Atharav Bhagwat, Rajas Bhope, Pramod Bide
Abstract:
This research integrates IoT and ML to predict heart failure risks, utilizing the Framingham dataset. IoT devices gather real-time physiological data, focusing on heart rate dynamics, while ML, specifically Random Forest, predicts heart failure. Rigorous feature selection enhances accuracy, achieving over 90% prediction rate. This amalgamation marks a transformative step in proactive healthcare, highlighting early detection's critical role in cardiovascular risk mitigation. Challenges persist, necessitating continual refinement for improved predictive capabilities.Keywords: cardiovascular diseases, internet of things, machine learning, cardiac risk assessment, heart failure prediction, early detection, cardio data analysis
Procedia PDF Downloads 113780 Is the Addition of Computed Tomography with Angiography Superior to a Non-Contrast Neuroimaging Only Strategy for Patients with Suspected Stroke or Transient Ischemic Attack Presenting to the Emergency Department?
Authors: Alisha M. Ebrahim, Bijoy K. Menon, Eddy Lang, Shelagh B. Coutts, Katie Lin
Abstract:
Introduction: Frontline emergency physicians require clear and evidence-based approaches to guide neuroimaging investigations for patients presenting with suspected acute stroke or transient ischemic attack (TIA). Various forms of computed tomography (CT) are currently available for initial investigation, including non-contrast CT (NCCT), CT angiography head and neck (CTA), and CT perfusion (CTP). However, there is uncertainty around optimal imaging choice for cost-effectiveness, particularly for minor or resolved neurological symptoms. In addition to the cost of CTA and CTP testing, there is also a concern for increased incidental findings, which may contribute to the burden of overdiagnosis. Methods: In this cross-sectional observational study, analysis was conducted on 586 anonymized triage and diagnostic imaging (DI) reports for neuroimaging orders completed on patients presenting to adult emergency departments (EDs) with a suspected stroke or TIA from January-December 2019. The primary outcome of interest is the diagnostic yield of NCCT+CTA compared to NCCT alone for patients presenting to urban academic EDs with Canadian Emergency Department Information System (CEDIS) complaints of “symptoms of stroke” (specifically acute stroke and TIA indications). DI reports were coded into 4 pre-specified categories (endorsed by a panel of stroke experts): no abnormalities, clinically significant findings (requiring immediate or follow-up clinical action), incidental findings (not meeting prespecified criteria for clinical significance), and both significant and incidental findings. Standard descriptive statistics were performed. A two-sided p-value <0.05 was considered significant. Results: 75% of patients received NCCT+CTA imaging, 21% received NCCT alone, and 4% received NCCT+CTA+CTP. The diagnostic yield of NCCT+CTA imaging for prespecified clinically significant findings was 24%, compared to only 9% in those who received NCCT alone. The proportion of incidental findings was 30% in the NCCT only group and 32% in the NCCT+CTA group. CTP did not significantly increase the yield of significant or incidental findings. Conclusion: In this cohort of patients presenting with suspected stroke or TIA, an NCCT+CTA neuroimaging strategy had a higher diagnostic yield for clinically significant findings than NCCT alone without significantly increasing the number of incidental findings identified.Keywords: stroke, diagnostic yield, neuroimaging, emergency department, CT
Procedia PDF Downloads 1003779 Learning to Recommend with Negative Ratings Based on Factorization Machine
Authors: Caihong Sun, Xizi Zhang
Abstract:
Rating prediction is an important problem for recommender systems. The task is to predict the rating for an item that a user would give. Most of the existing algorithms for the task ignore the effect of negative ratings rated by users on items, but the negative ratings have a significant impact on users’ purchasing decisions in practice. In this paper, we present a rating prediction algorithm based on factorization machines that consider the effect of negative ratings inspired by Loss Aversion theory. The aim of this paper is to develop a concave and a convex negative disgust function to evaluate the negative ratings respectively. Experiments are conducted on MovieLens dataset. The experimental results demonstrate the effectiveness of the proposed methods by comparing with other four the state-of-the-art approaches. The negative ratings showed much importance in the accuracy of ratings predictions.Keywords: factorization machines, feature engineering, negative ratings, recommendation systems
Procedia PDF Downloads 2423778 Isolation, Preparation and Biological Properties of Soybean-Flaxseed Protein Co-Precipitates
Authors: Muhammad H. Alu’datt, Inteaz Alli
Abstract:
This study was conducted to prepare and evaluate the biological properties of protein co-precipitates from flaxseed and soybean. Protein was prepared by NaOH extraction through the mixing of soybean flour (Sf) and flaxseed flour (Ff) or mixtures of soybean extract (Se) and flaxseed extract (Fe). The protein co-precipitates were precipitated by isoelectric (IEP) and isoelectric-heating (IEPH) co-precipitation techniques. Effects of extraction and co-precipitation techniques on co-precipitate yield were investigated. Native-PAGE, SDS-PAGE were used to study the molecular characterization. Content and antioxidant activity of extracted free and bound phenolic compounds were evaluated for protein co-precipitates. Removal of free and bound phenolic compounds from protein co-precipitates showed little effects on the electrophoretic behavior of the proteins or the protein subunits of protein co-precipitates. Results showed that he highest protein contents and yield were obtained in for Sf-Ff/IEP co-precipitate with values of 53.28 and 25.58% respectively as compared to protein isolates and other co-precipitates. Results revealed that the Sf-Ff/IEP showed a higher content of bound phenolic compounds (53.49% from total phenolic content) as compared to free phenolic compounds (46.51% from total phenolic content). Antioxidant activities of extracted bound phenolic compounds with and without heat treatment from Sf-Ff/IEHP were higher as compared to free phenolic compounds extracted from other protein co-precipitates (29.68 and 22.84%, respectively).Keywords: antioxidant, phenol, protein co-precipitate, yield
Procedia PDF Downloads 2403777 Optimization of Hepatitis B Surface Antigen Purifications to Improving the Production of Hepatitis B Vaccines on Pichia pastoris
Authors: Rizky Kusuma Cahyani
Abstract:
Hepatitis B is a liver inflammatory disease caused by hepatitis B virus (HBV). This infection can be prevented by vaccination which contains HBV surface protein (sHBsAg). However, vaccine supply is limited. Several attempts have been conducted to produce local sHBsAg. However, the purity degree and protein yield are still inadequate. Therefore optimization of HBsAg purification steps is required to obtain high yield with better purification fold. In this study, optimization of purification was done in 2 steps, precipitation using variation of NaCl concentration (0,3 M; 0,5 M; 0,7 M) and PEG (3%, 5%, 7%); ion exchange chromatography (IEC) using NaCl 300-500 mM elution buffer concentration.To determine HBsAg protein, bicinchoninic acid assay (BCA) and enzyme-linked immunosorbent assay (ELISA) was used in this study. Visualization of HBsAg protein was done by SDS-PAGE analysis. Based on quantitative analysis, optimal condition at precipitation step was given 0,3 M NaCl and PEG 3%, while in ion exchange chromatography step, the optimum condition when protein eluted with NaCl 500 mM. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis indicates that the presence of protein HBsAg with a molecular weight of 25 kDa (monomer) and 50 kDa (dimer). The optimum condition for purification of sHBsAg produced in Pichia pastoris gave a yield of 47% and purification fold 17x so that it would increase the production of hepatitis B vaccine to be more optimal.Keywords: hepatitis B virus, HBsAg, hepatitis B surface antigen, Pichia pastoris, purification
Procedia PDF Downloads 1513776 Effect of Different Spacings on Growth Yield and Fruit Quality of Peach in the Sub-Tropics of India
Authors: Harminder Singh, Rupinder Kaur
Abstract:
Peach is primarily a temperate fruit, but its low chilling cultivars are grown quite successfully in the sub-tropical climate as well. The area under peach cultivation is picking up rapidly in the sub tropics of northern India due to higher return on a unit area basis, availability of suitable peach cultivar and their production technology. Information on the use of different training systems on peach in the sub tropics is inadequate. In this investigation, conducted at Punjab Agricultural University, Ludhiana (Punjab), India, the trees of the Shan-i-Punjab peach were planted at four different spacings i.e. 6.0x3.0m, 6.0x2.5m, 4.5x3.0m and 4.5x2.5m and were trained to central leader system. The total radiation interception and penetration in the upper and lower canopy parts were higher in 6x3.0m and 6x2.5m planted trees as compared to other spacings. Average radiation interception was maximum in the upper part of the tree canopy, and it decreased significantly with the depth of the canopy in all the spacings. Tree planted at wider spacings produced more vegetative (tree height, tree girth, tree spread and canopy volume) and reproductive growth (flower bud density, number of fruits and fruit yield) per tree but productivity was maximum in the closely planted trees. Fruits harvested from the wider spaced trees were superior in fruit quality (size, weight, colour, TSS and acidity) and matured earlier than those harvested from closed spaced trees.Keywords: quality, radiation, spacings, yield
Procedia PDF Downloads 1883775 Improvement Anaerobic Digestion Performance of Sewage Sludge by Co-Digestion with Cattle Manure
Authors: Raouf Hassan
Abstract:
Biogas energy production from sewage sludge is an economically feasible and eco-friendly in nature. Sewage sludge is considered nutrient-rich substrates, but had lower values of carbone which consider an energy source for anaerobic bacteria. The lack or lower values of carbone-to-nitrogen ratio (C/N) reduced biogas yield and fermentation rate. Anaerobic co-digestion of sewage sludge offers several benefits over mono-digestion such as optimize nutrient balance, increased cost-efficiency and increased degradation rate. The high produced amounts of animal manures, which reach up to 90% of the total collected organic wastes, are recommended for the co-digestion with sewage sludge, especially with the limitations of industrial substrates. Moreover, cattle manures had high methane production potential (500 m3/t vsadded). When mixed with sewage sludge the potential methane production increased with increasing cattle manure content. In this paper, the effect of cattle manure (CM) addition as co-substrates on the sewage sludge (SS) anaerobic digestion performance was investigated under mesophilic conditions (35°C) using anaerobic batch reactors. The batch reactors were operated with a working volume 0.8 liter, and a hydraulic retention time of 30 days. The research work focus on studying two main parameters; the biogas yield (expressed as VSS) and pH values inside the reactors.Keywords: anaerobic digestion, sewage sludge, cattle manure, mesophilic, biogas yield, pH
Procedia PDF Downloads 3153774 Prediction of Cutting Tool Life in Drilling of Reinforced Aluminum Alloy Composite Using a Fuzzy Method
Authors: Mohammed T. Hayajneh
Abstract:
Machining of Metal Matrix Composites (MMCs) is very significant process and has been a main problem that draws many researchers to investigate the characteristics of MMCs during different machining process. The poor machining properties of hard particles reinforced MMCs make drilling process a rather interesting task. Unlike drilling of conventional materials, many problems can be seriously encountered during drilling of MMCs, such as tool wear and cutting forces. Cutting tool wear is a very significant concern in industries. Cutting tool wear not only influences the quality of the drilled hole, but also affects the cutting tool life. Prediction the cutting tool life during drilling is essential for optimizing the cutting conditions. However, the relationship between tool life and cutting conditions, tool geometrical factors and workpiece material properties has not yet been established by any machining theory. In this research work, fuzzy subtractive clustering system has been used to model the cutting tool life in drilling of Al2O3 particle reinforced aluminum alloy composite to investigate of the effect of cutting conditions on cutting tool life. This investigation can help in controlling and optimizing of cutting conditions when the process parameters are adjusted. The built model for prediction the tool life is identified by using drill diameter, cutting speed, and cutting feed rate as input data. The validity of the model was confirmed by the examinations under various cutting conditions. Experimental results have shown the efficiency of the model to predict cutting tool life.Keywords: composite, fuzzy, tool life, wear
Procedia PDF Downloads 2953773 Developing a Machine Learning-based Cost Prediction Model for Construction Projects using Particle Swarm Optimization
Authors: Soheila Sadeghi
Abstract:
Accurate cost prediction is essential for effective project management and decision-making in the construction industry. This study aims to develop a cost prediction model for construction projects using Machine Learning techniques and Particle Swarm Optimization (PSO). The research utilizes a comprehensive dataset containing project cost estimates, actual costs, resource details, and project performance metrics from a road reconstruction project. The methodology involves data preprocessing, feature selection, and the development of an Artificial Neural Network (ANN) model optimized using PSO. The study investigates the impact of various input features, including cost estimates, resource allocation, and project progress, on the accuracy of cost predictions. The performance of the optimized ANN model is evaluated using metrics such as Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and R-squared. The results demonstrate the effectiveness of the proposed approach in predicting project costs, outperforming traditional benchmark models. The feature selection process identifies the most influential variables contributing to cost variations, providing valuable insights for project managers. However, this study has several limitations. Firstly, the model's performance may be influenced by the quality and quantity of the dataset used. A larger and more diverse dataset covering different types of construction projects would enhance the model's generalizability. Secondly, the study focuses on a specific optimization technique (PSO) and a single Machine Learning algorithm (ANN). Exploring other optimization methods and comparing the performance of various ML algorithms could provide a more comprehensive understanding of the cost prediction problem. Future research should focus on several key areas. Firstly, expanding the dataset to include a wider range of construction projects, such as residential buildings, commercial complexes, and infrastructure projects, would improve the model's applicability. Secondly, investigating the integration of additional data sources, such as economic indicators, weather data, and supplier information, could enhance the predictive power of the model. Thirdly, exploring the potential of ensemble learning techniques, which combine multiple ML algorithms, may further improve cost prediction accuracy. Additionally, developing user-friendly interfaces and tools to facilitate the adoption of the proposed cost prediction model in real-world construction projects would be a valuable contribution to the industry. The findings of this study have significant implications for construction project management, enabling proactive cost estimation, resource allocation, budget planning, and risk assessment, ultimately leading to improved project performance and cost control. This research contributes to the advancement of cost prediction techniques in the construction industry and highlights the potential of Machine Learning and PSO in addressing this critical challenge. However, further research is needed to address the limitations and explore the identified future research directions to fully realize the potential of ML-based cost prediction models in the construction domain.Keywords: cost prediction, construction projects, machine learning, artificial neural networks, particle swarm optimization, project management, feature selection, road reconstruction
Procedia PDF Downloads 593772 Real Time Detection, Prediction and Reconstitution of Rain Drops
Authors: R. Burahee, B. Chassinat, T. de Laclos, A. Dépée, A. Sastim
Abstract:
The purpose of this paper is to propose a solution to detect, predict and reconstitute rain drops in real time – during the night – using an embedded material with an infrared camera. To prevent the system from needing too high hardware resources, simple models are considered in a powerful image treatment algorithm reducing considerably calculation time in OpenCV software. Using a smart model – drops will be matched thanks to a process running through two consecutive pictures for implementing a sophisticated tracking system. With this system drops computed trajectory gives information for predicting their future location. Thanks to this technique, treatment part can be reduced. The hardware system composed by a Raspberry Pi is optimized to host efficiently this code for real time execution.Keywords: reconstitution, prediction, detection, rain drop, real time, raspberry, infrared
Procedia PDF Downloads 4193771 Performance Analysis of Artificial Neural Network with Decision Tree in Prediction of Diabetes Mellitus
Authors: J. K. Alhassan, B. Attah, S. Misra
Abstract:
Human beings have the ability to make logical decisions. Although human decision - making is often optimal, it is insufficient when huge amount of data is to be classified. medical dataset is a vital ingredient used in predicting patients health condition. In other to have the best prediction, there calls for most suitable machine learning algorithms. This work compared the performance of Artificial Neural Network (ANN) and Decision Tree Algorithms (DTA) as regards to some performance metrics using diabetes data. The evaluations was done using weka software and found out that DTA performed better than ANN. Multilayer Perceptron (MLP) and Radial Basis Function (RBF) were the two algorithms used for ANN, while RegTree and LADTree algorithms were the DTA models used. The Root Mean Squared Error (RMSE) of MLP is 0.3913,that of RBF is 0.3625, that of RepTree is 0.3174 and that of LADTree is 0.3206 respectively.Keywords: artificial neural network, classification, decision tree algorithms, diabetes mellitus
Procedia PDF Downloads 4083770 Comparison of Machine Learning Models for the Prediction of System Marginal Price of Greek Energy Market
Authors: Ioannis P. Panapakidis, Marios N. Moschakis
Abstract:
The Greek Energy Market is structured as a mandatory pool where the producers make their bid offers in day-ahead basis. The System Operator solves an optimization routine aiming at the minimization of the cost of produced electricity. The solution of the optimization problem leads to the calculation of the System Marginal Price (SMP). Accurate forecasts of the SMP can lead to increased profits and more efficient portfolio management from the producer`s perspective. Aim of this study is to provide a comparative analysis of various machine learning models such as artificial neural networks and neuro-fuzzy models for the prediction of the SMP of the Greek market. Machine learning algorithms are favored in predictions problems since they can capture and simulate the volatilities of complex time series.Keywords: deregulated energy market, forecasting, machine learning, system marginal price
Procedia PDF Downloads 2153769 Effect of Crown Gall and Phylloxera Resistant Rootstocks on Grafted Vitis Vinifera CV. Sultana Grapevine
Authors: Hassan Mahmoudzadeh
Abstract:
The bacterium of Agrobacterium vitis causes crown and root gall disease, an important disease of grapevine, Vitis vinifera L. Also, Phylloxera is one of the most important pests in viticulture. Grapevine rootstocks were developed to provide increased resistance to soil-borne pests and diseases, but rootstock effects on some traits remain unclear. The interaction between rootstock, scion and environment can induce different responses to the grapevine physiology. 'Sultsna' (Vitis vinifera L.) is one of the most valuable raisin grape cultivars in Iran. Thus, the aim of this study was to determine the rootstock effect on the growth characteristics and yield components and quality of 'Sultana' grapevine grown in the Urmia viticulture region. The experimental design was completely randomized blocks, with four treatments, four replicates and 10 vines per plot. The results show that all variables evaluated were significantly affected by the rootstock. The Sultana/110R and Sultana/Nazmieh were among other combinations influenced by the year and had a higher significant yield/vine (13.25 and 12.14, respectively). Indeed, they were higher than that of Sultana/5BB (10.56 kg/vine) and Sultana/Spota (10.25 kg/vine). The number of clusters per burst bud and per vine and the weight of clusters were affected by the rootstock as well. Pruning weight/vine, yield/pruning weight, leaf area/vine and leaf area index are variables related to the physiology of grapevine, which was also affected by the rootstocks. In general, rootstocks had adapted well to the environment where the experiment was carried out, giving vigor and high yield to Sultana grapevine, which means that they may be used by grape growers in this region. In sum, the study found the best rootstocks for 'Sultana' to be Nazmieh and 110R in terms of root and shoot growth. However, the choice of the right rootstock depends on various aspects, such as those related to soil characteristics, climate conditions, grape varieties, and even clones, and production purposes.Keywords: grafting, vineyards, grapevine, succeptability
Procedia PDF Downloads 1263768 Investigation of Drought Resistance in Iranian Sesamum Germpelasm
Authors: Fatemeh Najafi
Abstract:
The major stress factor limiting crop growth and development of sesame (Sesamum indicum L.) is drought stress in arid and semiarid regions of the world. For this study the effects of water stress on some qualitative and quantitative traits in sesame germplasm was conducted in the Research Farm of Seed and Plant Improvement Institute, Karaj, in the crop year. Genotypes in a randomized complete block design with three replications in two environments (moisture stress and normal) were studied in regard of the seed weight, capsule weight, grain yield, biomass, plant height, number of capsules per plant, etc. The characteristics were evaluated based on the combined analysis. Irrigation was based on first class evaporation basin. After flowering stage drought stress was applied. The water deficit reduced growth period. Days to reach full ripening decreased so that the reduction was significant at the five percent level. Drought stress reduces yield and plant biomass. Genotypes based on combined analysis of these two traits were significant at the one percent level. Genotypes differ in terms of yield stress in terms of density plots, grain yield, days to first flowering and days to the half of the cap on the confidence level of five percent and traits of days to emergence of the first capsule and days to reach full ripening at the one percent level were significant. Other traits were not significant. The correlation of traits in circumstances of stress the number of seeds per capsule has the greatest impact on performance. The sensitivity and stress tolerance index was calculated. Based on the indicators, (Fars variety) and variety Karaj were identified as the most tolerant genotypes among the studied genotypes to drought stress. The highest sensitivity indicator of stress was related to genotype (FARS).Keywords: sesamum, drought, stress, germplasm, resistance
Procedia PDF Downloads 723767 Applying Organic Natural Fertilizer to 'Orange Rubis' and 'Farbaly' Apricot Growth, Yield and Fruit Quality
Authors: A. Tarantino, F. Lops, G. Lopriore, G. Disciglio
Abstract:
Biostimulants are known as the organic fertilizers that can be applied in agriculture in order to increase nutrient uptake, growth and development of plants and improve quality, productivity and the environmental positive impacts. The aim of this study was to test the effects of some commercial biostimulants products (Bion® 50 WG, Hendophyt ® PS, Ergostim® XL and Radicon®) on vegeto-productive behavior and qualitative characteristics of fruits of two emerging apricot cultivars (Orange Rubis® and Farbaly®). The study was conducted during the spring-summer season 2015, in a commercial orchard located in the agricultural area of Cerignola (Foggia district, Apulian region, Southern Italy). Eight years old apricot trees, cv ‘Orange Rubis’ and ‘Farbaly®’, were used. The experimental data recorded during the experimental trial were: shoot length, total number of flower buds, flower buds drop and time of flowering and fruit set. Total yield of fruits per tree and quality parameters were determined. Experimental data showed some specific differences among the biostimulant treatments. Concerning the yield of ‘Orange Rubis’, except for the Bion treatment, the other three biostimulant treatments showed a tendentially lower values than the control. The yield of ‘Farbaly’ was lower for the Bion and Hendophyt treatments, higher for the Ergostim treatment, when compared with the yield of the control untreated. Concerning the soluble solids content, the juice of ‘Farbaly’ fruits had always higher content than that of ‘Orange Rubis’. Particularly, the Bion and the Hendophyt treatments showed in both harvest values tendentially higher than the control. Differently, the four biostimulant treatments did not affect significantly this parameter in ‘Orange Rubis’. With regard to the fruit firmness, some differences were observed between the two harvest dates and among the four biostimulant treatments. At the first harvest date, ‘Orange Rubis’ treated with Bion and Hendophyt biostimulants showed texture values tendentially lower than the control. Instead, ‘Farbaly’ for all the biostimulant treatments showed fruit firmness values significantly lower than the control. At the second harvest, almost all the biostimulants treatments in both ‘Orange Rubis’ and ‘Farbaly’ cultivar showed values lower than the control. Only ‘Farbaly’ treated with Radicon showed higher value in comparison to the control.Keywords: apricot, fruit quality, growth, organic natural fertilizer
Procedia PDF Downloads 326