Search results for: multilayer neural networks
2963 Medical Neural Classifier Based on Improved Genetic Algorithm
Authors: Fadzil Ahmad, Noor Ashidi Mat Isa
Abstract:
This study introduces an improved genetic algorithm procedure that focuses search around near optimal solution corresponded to a group of elite chromosome. This is achieved through a novel crossover technique known as Segmented Multi Chromosome Crossover. It preserves the highly important information contained in a gene segment of elite chromosome and allows an offspring to carry information from gene segment of multiple chromosomes. In this way the algorithm has better possibility to effectively explore the solution space. The improved GA is applied for the automatic and simultaneous parameter optimization and feature selection of artificial neural network in pattern recognition of medical problem, the cancer and diabetes disease. The experimental result shows that the average classification accuracy of the cancer and diabetes dataset has improved by 0.1% and 0.3% respectively using the new algorithm.Keywords: genetic algorithm, artificial neural network, pattern clasification, classification accuracy
Procedia PDF Downloads 4722962 Blockchain Security in MANETs
Authors: Nada Mouchfiq, Ahmed Habbani, Chaimae Benjbara
Abstract:
The security aspect of the IoT occupies a place of great importance especially after the evolution that has known this field lastly because it must take into account the transformations and the new applications .Blockchain is a new technology dedicated to the data sharing. However, this does not work the same way in the different systems with different operating principles. This article will discuss network security using the Blockchain to facilitate the sending of messages and information, enabling the use of new processes and enabling autonomous coordination of devices. To do this, we will discuss proposed solutions to ensure a high level of security in these networks in the work of other researchers. Finally, our article will propose a method of security more adapted to our needs as a team working in the ad hoc networks, this method is based on the principle of the Blockchain and that we named ”MPR Blockchain”.Keywords: Ad hocs networks, blockchain, MPR, security
Procedia PDF Downloads 1842961 The Data-Driven Localized Wave Solution of the Fokas-Lenells Equation using PINN
Authors: Gautam Kumar Saharia, Sagardeep Talukdar, Riki Dutta, Sudipta Nandy
Abstract:
The physics informed neural network (PINN) method opens up an approach for numerically solving nonlinear partial differential equations leveraging fast calculating speed and high precession of modern computing systems. We construct the PINN based on strong universal approximation theorem and apply the initial-boundary value data and residual collocation points to weekly impose initial and boundary condition to the neural network and choose the optimization algorithms adaptive moment estimation (ADAM) and Limited-memory Broyden-Fletcher-Golfard-Shanno (L-BFGS) algorithm to optimize learnable parameter of the neural network. Next, we improve the PINN with a weighted loss function to obtain both the bright and dark soliton solutions of Fokas-Lenells equation (FLE). We find the proposed scheme of adjustable weight coefficients into PINN has a better convergence rate and generalizability than the basic PINN algorithm. We believe that the PINN approach to solve the partial differential equation appearing in nonlinear optics would be useful to study various optical phenomena.Keywords: deep learning, optical Soliton, neural network, partial differential equation
Procedia PDF Downloads 1252960 Graphene Based Materials as Novel Membranes for Water Desalination and Boron Separation
Authors: Francesca Risplendi, Li-Chiang Lin, Jeffrey C. Grossman, Giancarlo Cicero
Abstract:
Desalination is one of the most employed approaches to supply water in the context of a rapidly growing global water shortage. However, the most popular water filtration method available is the reverse osmosis (RO) technique, still suffers from important drawbacks, such as a large energy demands and high process costs. In addition some serious limitations have been recently discovered, among them, the boron problem seems to have a critical meaning. Boron has been found to have a dual effect on the living systems on Earth and the difference between boron deficiency and boron toxicity levels is quite small. The aim of this project is to develop a new generation of RO membranes based on porous graphene or reduced graphene oxide (rGO) able to remove salts from seawater and to reduce boron concentrations in the permeate to the level that meets the drinking or process water requirements, by means of a theoretical approach based on density functional theory and classical molecular dynamics. Computer simulations have been employed to investigate the relationship between the atomic structure of nanoporous graphene or rGO monolayer and its membrane properties in RO applications (i.e. water permeability and resilience at RO pressures). In addition, an emphasis has been given to multilayer nanoporous rGO and rGO flakes based membranes. By means of non-equilibrium MD simulations, we investigated the water transport mechanism permeating through such multilayer membrane focusing on the effect of slit widths and sheet geometries. These simulations allowed us to establish the implications of these graphene based materials as promising membrane properties for desalination plants and as boron filtration.Keywords: boron filtration, desalination, graphene membrane, reduced graphene oxide membrane
Procedia PDF Downloads 2992959 Deep Neural Network Approach for Navigation of Autonomous Vehicles
Authors: Mayank Raj, V. G. Narendra
Abstract:
Ever since the DARPA challenge on autonomous vehicles in 2005, there has been a lot of buzz about ‘Autonomous Vehicles’ amongst the major tech giants such as Google, Uber, and Tesla. Numerous approaches have been adopted to solve this problem, which can have a long-lasting impact on mankind. In this paper, we have used Deep Learning techniques and TensorFlow framework with the goal of building a neural network model to predict (speed, acceleration, steering angle, and brake) features needed for navigation of autonomous vehicles. The Deep Neural Network has been trained on images and sensor data obtained from the comma.ai dataset. A heatmap was used to check for correlation among the features, and finally, four important features were selected. This was a multivariate regression problem. The final model had five convolutional layers, followed by five dense layers. Finally, the calculated values were tested against the labeled data, where the mean squared error was used as a performance metric.Keywords: autonomous vehicles, deep learning, computer vision, artificial intelligence
Procedia PDF Downloads 1562958 Heat Source Temperature for Centered Heat Source on Isotropic Plate with Lower Surface Forced Cooling Using Neural Network and Three Different Materials
Authors: Fadwa Haraka, Ahmad Elouatouati, Mourad Taha Janan
Abstract:
In this study, we propose a neural network based method in order to calculate the heat source temperature of isotropic plate with lower surface forced cooling. To validate the proposed model, the heat source temperatures values will be compared to the analytical method -variables separation- and finite element model. The mathematical simulation is done through 3D numerical simulation by COMSOL software considering three different materials: Aluminum, Copper, and Graphite. The proposed method will lead to a formulation of the heat source temperature based on the thermal and geometric properties of the base plate.Keywords: thermal model, thermal resistance, finite element simulation, neural network
Procedia PDF Downloads 3532957 Optimized Deep Learning-Based Facial Emotion Recognition System
Authors: Erick C. Valverde, Wansu Lim
Abstract:
Facial emotion recognition (FER) system has been recently developed for more advanced computer vision applications. The ability to identify human emotions would enable smart healthcare facility to diagnose mental health illnesses (e.g., depression and stress) as well as better human social interactions with smart technologies. The FER system involves two steps: 1) face detection task and 2) facial emotion recognition task. It classifies the human expression in various categories such as angry, disgust, fear, happy, sad, surprise, and neutral. This system requires intensive research to address issues with human diversity, various unique human expressions, and variety of human facial features due to age differences. These issues generally affect the ability of the FER system to detect human emotions with high accuracy. Early stage of FER systems used simple supervised classification task algorithms like K-nearest neighbors (KNN) and artificial neural networks (ANN). These conventional FER systems have issues with low accuracy due to its inefficiency to extract significant features of several human emotions. To increase the accuracy of FER systems, deep learning (DL)-based methods, like convolutional neural networks (CNN), are proposed. These methods can find more complex features in the human face by means of the deeper connections within its architectures. However, the inference speed and computational costs of a DL-based FER system is often disregarded in exchange for higher accuracy results. To cope with this drawback, an optimized DL-based FER system is proposed in this study.An extreme version of Inception V3, known as Xception model, is leveraged by applying different network optimization methods. Specifically, network pruning and quantization are used to enable lower computational costs and reduce memory usage, respectively. To support low resource requirements, a 68-landmark face detector from Dlib is used in the early step of the FER system.Furthermore, a DL compiler is utilized to incorporate advanced optimization techniques to the Xception model to improve the inference speed of the FER system. In comparison to VGG-Net and ResNet50, the proposed optimized DL-based FER system experimentally demonstrates the objectives of the network optimization methods used. As a result, the proposed approach can be used to create an efficient and real-time FER system.Keywords: deep learning, face detection, facial emotion recognition, network optimization methods
Procedia PDF Downloads 1182956 Source Identification Model Based on Label Propagation and Graph Ordinary Differential Equations
Authors: Fuyuan Ma, Yuhan Wang, Junhe Zhang, Ying Wang
Abstract:
Identifying the sources of information dissemination is a pivotal task in the study of collective behaviors in networks, enabling us to discern and intercept the critical pathways through which information propagates from its origins. This allows for the control of the information’s dissemination impact in its early stages. Numerous methods for source detection rely on pre-existing, underlying propagation models as prior knowledge. Current models that eschew prior knowledge attempt to harness label propagation algorithms to model the statistical characteristics of propagation states or employ Graph Neural Networks (GNNs) for deep reverse modeling of the diffusion process. These approaches are either deficient in modeling the propagation patterns of information or are constrained by the over-smoothing problem inherent in GNNs, which limits the stacking of sufficient model depth to excavate global propagation patterns. Consequently, we introduce the ODESI model. Initially, the model employs a label propagation algorithm to delineate the distribution density of infected states within a graph structure and extends the representation of infected states from integers to state vectors, which serve as the initial states of nodes. Subsequently, the model constructs a deep architecture based on GNNs-coupled Ordinary Differential Equations (ODEs) to model the global propagation patterns of continuous propagation processes. Addressing the challenges associated with solving ODEs on graphs, we approximate the analytical solutions to reduce computational costs. Finally, we conduct simulation experiments on two real-world social network datasets, and the results affirm the efficacy of our proposed ODESI model in source identification tasks.Keywords: source identification, ordinary differential equations, label propagation, complex networks
Procedia PDF Downloads 182955 The Evolutionary Characteristics and Mechanisms and of Multi-scale Intercity Innovation Enclave Networks in China’s Yangtze River Delta Region
Authors: Yuhua Yang, Yingcheng Li
Abstract:
As a new form of intercity economic cooperation, innovation enclaves have received much attention from governments and scholars in China, which are of great significance in promoting the flow of innovation elements and advancing regional integration. Utilizing inter-city linkages of innovation enclaves within and beyond the Yangtze River Delta Region, we construct multi-scalar innovation enclave networks in 2018 and 2022, and analyze the evolutionary characteristics and underlying mechanisms of the networks. Overall, we find that: (1) The intercity innovation enclave networks have the characteristics of preferential connection and are gradually forming a clear multi-scale and hierarchical structure, with Shanghai, Hangzhou and Nanjing as the core and other cities as the general nodes; (2) The intercity innovation enclave networks exhibit local clustering dominated by geographical proximity connections, and are becoming more noticeable in the effect of distance decay and functionally polycentric as the spatial scale decreases; (3) The intercity innovation enclave networks are influenced by both functional distance and multidimensional proximity. While the innovation potential differences caused by urban attributes internally drive the formation of innovation enclave cooperation, geographic proximity, technological proximity and institutional proximity externally affect the selection of cooperation partners.Keywords: economic enclave, intercity cooperation, proximity, yangtze river delta region
Procedia PDF Downloads 232954 Integrating Neural Linguistic Programming with Exergaming
Authors: Shyam Sajan, Kamal Bijlani
Abstract:
The widespread effects of digital media help people to explore the world more and get entertained with no effort. People became fond of these kind of sedentary life style. The increase in sedentary time and a decrease in physical activities has negative impacts on human health. Even though the addiction to video games has been exploited in exergames, to make people exercise and enjoy game challenges, the contribution is restricted only to physical wellness. This paper proposes creation and implementation of a game with the help of digital media in a virtual environment. The game is designed by collaborating ideas from neural linguistic programming and Stroop effect that can also be used to identify a person’s mental state, to improve concentration and to eliminate various phobias. The multiplayer game is played in a virtual environment created with Kinect sensor, to make the game more motivating and interactive.Keywords: exergaming, Kinect Sensor, Neural Linguistic Programming, Stroop Effect
Procedia PDF Downloads 4352953 Forecasting Direct Normal Irradiation at Djibouti Using Artificial Neural Network
Authors: Ahmed Kayad Abdourazak, Abderafi Souad, Zejli Driss, Idriss Abdoulkader Ibrahim
Abstract:
In this paper Artificial Neural Network (ANN) is used to predict the solar irradiation in Djibouti for the first Time that is useful to the integration of Concentrating Solar Power (CSP) and sites selections for new or future solar plants as part of solar energy development. An ANN algorithm was developed to establish a forward/reverse correspondence between the latitude, longitude, altitude and monthly solar irradiation. For this purpose the German Aerospace Centre (DLR) data of eight Djibouti sites were used as training and testing in a standard three layers network with the back propagation algorithm of Lavenber-Marquardt. Results have shown a very good agreement for the solar irradiation prediction in Djibouti and proves that the proposed approach can be well used as an efficient tool for prediction of solar irradiation by providing so helpful information concerning sites selection, design and planning of solar plants.Keywords: artificial neural network, solar irradiation, concentrated solar power, Lavenberg-Marquardt
Procedia PDF Downloads 3522952 Deep Learning Approach for Chronic Kidney Disease Complications
Authors: Mario Isaza-Ruget, Claudia C. Colmenares-Mejia, Nancy Yomayusa, Camilo A. González, Andres Cely, Jossie Murcia
Abstract:
Quantification of risks associated with complications development from chronic kidney disease (CKD) through accurate survival models can help with patient management. A retrospective cohort that included patients diagnosed with CKD from a primary care program and followed up between 2013 and 2018 was carried out. Time-dependent and static covariates associated with demographic, clinical, and laboratory factors were included. Deep Learning (DL) survival analyzes were developed for three CKD outcomes: CKD stage progression, >25% decrease in Estimated Glomerular Filtration Rate (eGFR), and Renal Replacement Therapy (RRT). Models were evaluated and compared with Random Survival Forest (RSF) based on concordance index (C-index) metric. 2.143 patients were included. Two models were developed for each outcome, Deep Neural Network (DNN) model reported C-index=0.9867 for CKD stage progression; C-index=0.9905 for reduction in eGFR; C-index=0.9867 for RRT. Regarding the RSF model, C-index=0.6650 was reached for CKD stage progression; decreased eGFR C-index=0.6759; RRT C-index=0.8926. DNN models applied in survival analysis context with considerations of longitudinal covariates at the start of follow-up can predict renal stage progression, a significant decrease in eGFR and RRT. The success of these survival models lies in the appropriate definition of survival times and the analysis of covariates, especially those that vary over time.Keywords: artificial intelligence, chronic kidney disease, deep neural networks, survival analysis
Procedia PDF Downloads 1332951 Using Probabilistic Neural Network (PNN) for Extracting Acoustic Microwaves (Bulk Acoustic Waves) in Piezoelectric Material
Authors: Hafdaoui Hichem, Mehadjebia Cherifa, Benatia Djamel
Abstract:
In this paper, we propose a new method for Bulk detection of an acoustic microwave signal during the propagation of acoustic microwaves in a piezoelectric substrate (Lithium Niobate LiNbO3). We have used the classification by probabilistic neural network (PNN) as a means of numerical analysis in which we classify all the values of the real part and the imaginary part of the coefficient attenuation with the acoustic velocity in order to build a model from which we note the Bulk waves easily. These singularities inform us of presence of Bulk waves in piezoelectric materials. By which we obtain accurate values for each of the coefficient attenuation and acoustic velocity for Bulk waves. This study will be very interesting in modeling and realization of acoustic microwaves devices (ultrasound) based on the propagation of acoustic microwaves.Keywords: piezoelectric material, probabilistic neural network (PNN), classification, acoustic microwaves, bulk waves, the attenuation coefficient
Procedia PDF Downloads 4302950 Forecasting Thermal Energy Demand in District Heating and Cooling Systems Using Long Short-Term Memory Neural Networks
Authors: Kostas Kouvaris, Anastasia Eleftheriou, Georgios A. Sarantitis, Apostolos Chondronasios
Abstract:
To achieve the objective of almost zero carbon energy solutions by 2050, the EU needs to accelerate the development of integrated, highly efficient and environmentally friendly solutions. In this direction, district heating and cooling (DHC) emerges as a viable and more efficient alternative to conventional, decentralized heating and cooling systems, enabling a combination of more efficient renewable and competitive energy supplies. In this paper, we develop a forecasting tool for near real-time local weather and thermal energy demand predictions for an entire DHC network. In this fashion, we are able to extend the functionality and to improve the energy efficiency of the DHC network by predicting and adjusting the heat load that is distributed from the heat generation plant to the connected buildings by the heat pipe network. Two case-studies are considered; one for Vransko, Slovenia and one for Montpellier, France. The data consists of i) local weather data, such as humidity, temperature, and precipitation, ii) weather forecast data, such as the outdoor temperature and iii) DHC operational parameters, such as the mass flow rate, supply and return temperature. The external temperature is found to be the most important energy-related variable for space conditioning, and thus it is used as an external parameter for the energy demand models. For the development of the forecasting tool, we use state-of-the-art deep neural networks and more specifically, recurrent networks with long-short-term memory cells, which are able to capture complex non-linear relations among temporal variables. Firstly, we develop models to forecast outdoor temperatures for the next 24 hours using local weather data for each case-study. Subsequently, we develop models to forecast thermal demand for the same period, taking under consideration past energy demand values as well as the predicted temperature values from the weather forecasting models. The contributions to the scientific and industrial community are three-fold, and the empirical results are highly encouraging. First, we are able to predict future thermal demand levels for the two locations under consideration with minimal errors. Second, we examine the impact of the outdoor temperature on the predictive ability of the models and how the accuracy of the energy demand forecasts decreases with the forecast horizon. Third, we extend the relevant literature with a new dataset of thermal demand and examine the performance and applicability of machine learning techniques to solve real-world problems. Overall, the solution proposed in this paper is in accordance with EU targets, providing an automated smart energy management system, decreasing human errors and reducing excessive energy production.Keywords: machine learning, LSTMs, district heating and cooling system, thermal demand
Procedia PDF Downloads 1412949 Distributed System Computing Resource Scheduling Algorithm Based on Deep Reinforcement Learning
Authors: Yitao Lei, Xingxiang Zhai, Burra Venkata Durga Kumar
Abstract:
As the quantity and complexity of computing in large-scale software systems increase, distributed system computing becomes increasingly important. The distributed system realizes high-performance computing by collaboration between different computing resources. If there are no efficient resource scheduling resources, the abuse of distributed computing may cause resource waste and high costs. However, resource scheduling is usually an NP-hard problem, so we cannot find a general solution. However, some optimization algorithms exist like genetic algorithm, ant colony optimization, etc. The large scale of distributed systems makes this traditional optimization algorithm challenging to work with. Heuristic and machine learning algorithms are usually applied in this situation to ease the computing load. As a result, we do a review of traditional resource scheduling optimization algorithms and try to introduce a deep reinforcement learning method that utilizes the perceptual ability of neural networks and the decision-making ability of reinforcement learning. Using the machine learning method, we try to find important factors that influence the performance of distributed system computing and help the distributed system do an efficient computing resource scheduling. This paper surveys the application of deep reinforcement learning on distributed system computing resource scheduling proposes a deep reinforcement learning method that uses a recurrent neural network to optimize the resource scheduling, and proposes the challenges and improvement directions for DRL-based resource scheduling algorithms.Keywords: resource scheduling, deep reinforcement learning, distributed system, artificial intelligence
Procedia PDF Downloads 1102948 Optimal Tracking Control of a Hydroelectric Power Plant Incorporating Neural Forecasting for Uncertain Input Disturbances
Authors: Marlene Perez Villalpando, Kelly Joel Gurubel Tun
Abstract:
In this paper, we propose an optimal control strategy for a hydroelectric power plant subject to input disturbances like meteorological phenomena. The engineering characteristics of the system are described by a nonlinear model. The random availability of renewable sources is predicted by a high-order neural network trained with an extended Kalman filter, whereas the power generation is regulated by the optimal control law. The main advantage of the system is the stabilization of the amount of power generated in the plant. A control supervisor maintains stability and availability in hydropower reservoirs water levels for power generation. The proposed approach demonstrated a good performance to stabilize the reservoir level and the power generation along their desired trajectories in the presence of disturbances.Keywords: hydropower, high order neural network, Kalman filter, optimal control
Procedia PDF Downloads 2952947 The Role of Social Networks in Promoting Ethics in Iranian Sports
Authors: Tayebeh Jameh-Bozorgi, M. Soleymani
Abstract:
In this research, the role of social networks in promoting ethics in Iranian sports was investigated. The research adopted a descriptive-analytic method, and the survey’s population consisted of all the athletes invited to the national football, volleyball, wrestling and taekwondo teams. Considering the limited population, the size of the society was considered as the sample size. After the distribution of the questionnaires, 167 respondents answered the questionnaires correctly. The data collection tool was chosen according to Hamid Ghasemi`s, standard questionnaire for social networking and mass media, which has 28 questions. Reliability of the questionnaire was calculated using Cronbach's alpha coefficient (94%). The content validity of the questionnaire was also approved by the professors. In this study, descriptive statistics and inferential statistical methods were used to analyze the data using statistical software. The benchmark tests used in this research included the following: Binomial test, Friedman test, Spearman correlation coefficient, Vermont Creamers, Good fit test and comparative prototypes. The results showed that athletes believed that social network has a significant role in promoting sport ethics in the community. Telegram has been known to play a big role than other social networks. Moreover, the respondents' view on the role of social networks in promoting sport ethics was significantly different in both men and women groups. In fact, women had a more positive attitude towards the role of social networks in promoting sport ethics than men. The respondents' view of the role of social networks in promoting the ethics of sports in the study groups also had a significant difference. Additionally, there was a significant and reverse relationship between the sports experience and the attitude of national athletes regarding the role of social networks in promoting ethics in sports.Keywords: ethics, social networks, mass media, Iranian sports, internet
Procedia PDF Downloads 2882946 Modeling of Global Solar Radiation on a Horizontal Surface Using Artificial Neural Network: A Case Study
Authors: Laidi Maamar, Hanini Salah
Abstract:
The present work investigates the potential of artificial neural network (ANN) model to predict the horizontal global solar radiation (HGSR). The ANN is developed and optimized using three years meteorological database from 2011 to 2013 available at the meteorological station of Blida (Blida 1 university, Algeria, Latitude 36.5°, Longitude 2.81° and 163 m above mean sea level). Optimal configuration of the ANN model has been determined by minimizing the Root Means Square Error (RMSE) and maximizing the correlation coefficient (R2) between observed and predicted data with the ANN model. To select the best ANN architecture, we have conducted several tests by using different combinations of parameters. A two-layer ANN model with six hidden neurons has been found as an optimal topology with (RMSE=4.036 W/m²) and (R²=0.999). A graphical user interface (GUI), was designed based on the best network structure and training algorithm, to enhance the users’ friendliness application of the model.Keywords: artificial neural network, global solar radiation, solar energy, prediction, Algeria
Procedia PDF Downloads 4982945 Gender Equality in Brazil: Advances and Retreats in Times of Social Networks
Authors: Lara Góes Da Costa
Abstract:
This paper analyzes the social dimension of the empowerment of women in Brazil, following the principles of human development of the UN WOMEN, in particular the sixth principle, which establishes the promotion of gender equality through social policy initiatives and activism in general aimed at community. In Brazil, women's empowerment has taken social networks through the creation of avatars and pages of dissemination and promotion of gender equality, as well as denunciations and educational posts such as 'Observe Gender', 'Empower Two Women', 'Black Intellectual Women', among others. At the same time, women's social inclusion bills in various sectors are trailing in the legislative apparatus, with little or no relation to the current discussion of gender diversity and intersectionality. In this sense, this article establishes an analytical parallel between the media manifestations of social networks and the social distance of the representatives of the legislative power. This parallelly shows the political failing to meet the social demands of inclusion, as to multiply the creation of laws and the effectiveness of the principle of promoting gender equality.Keywords: gender, rights, justice, social networks
Procedia PDF Downloads 3942944 Gesture-Controlled Interface Using Computer Vision and Python
Authors: Vedant Vardhan Rathour, Anant Agrawal
Abstract:
The project aims to provide a touchless, intuitive interface for human-computer interaction, enabling users to control their computer using hand gestures and voice commands. The system leverages advanced computer vision techniques using the MediaPipe framework and OpenCV to detect and interpret real time hand gestures, transforming them into mouse actions such as clicking, dragging, and scrolling. Additionally, the integration of a voice assistant powered by the Speech Recognition library allows for seamless execution of tasks like web searches, location navigation and gesture control on the system through voice commands.Keywords: gesture recognition, hand tracking, machine learning, convolutional neural networks
Procedia PDF Downloads 102943 Application of Signature Verification Models for Document Recognition
Authors: Boris M. Fedorov, Liudmila P. Goncharenko, Sergey A. Sybachin, Natalia A. Mamedova, Ekaterina V. Makarenkova, Saule Rakhimova
Abstract:
In modern economic conditions, the question of the possibility of correct recognition of a signature on digital documents in order to verify the expression of will or confirm a certain operation is relevant. The additional complexity of processing lies in the dynamic variability of the signature for each individual, as well as in the way information is processed because the signature refers to biometric data. The article discusses the issues of using artificial intelligence models in order to improve the quality of signature confirmation in document recognition. The analysis of several possible options for using the model is carried out. The results of the study are given, in which it is possible to correctly determine the authenticity of the signature on small samples.Keywords: signature recognition, biometric data, artificial intelligence, neural networks
Procedia PDF Downloads 1472942 A Unified Approach for Naval Telecommunication Architectures
Authors: Y. Lacroix, J.-F. Malbranque
Abstract:
We present a chronological evolution for naval telecommunication networks. We distinguish periods: with or without multiplexers, with switch systems, with federative systems, with medium switching, and with medium switching with wireless networks. This highlights the introduction of new layers and technology in the architecture. These architectures are presented using layer models of transmission, in a unified way, which enables us to integrate pre-existing models. A ship of a naval fleet has internal communications (i.e. applications' networks of the edge) and external communications (i.e. the use of the means of transmission between edges). We propose architectures, deduced from the layer model, which are the point of convergence between the networks on board and the HF, UHF radio, and satellite resources. This modelling allows to consider end-to-end naval communications, and in a more global way, that is from the user on board towards the user on shore, including transmission and networks on the shore side. The new architectures need take care of quality of services for end-to-end communications, the more remote control develops a lot and will do so in the future. Naval telecommunications will be more and more complex and will use more and more advanced technologies, it will thus be necessary to establish clear global communication schemes to grant consistency of the architectures. Our latest model has been implemented in a military naval situation, and serves as the basic architecture for the RIFAN2 network.Keywords: equilibrium beach profile, eastern tombolo of Giens, potential function, erosion
Procedia PDF Downloads 2912941 Optimized Processing of Neural Sensory Information with Unwanted Artifacts
Authors: John Lachapelle
Abstract:
Introduction: Neural stimulation is increasingly targeted toward treatment of back pain, PTSD, Parkinson’s disease, and for sensory perception. Sensory recording during stimulation is important in order to examine neural response to stimulation. Most neural amplifiers (headstages) focus on noise efficiency factor (NEF). Conversely, neural headstages need to handle artifacts from several sources including power lines, movement (EMG), and neural stimulation itself. In this work a layered approach to artifact rejection is used to reduce corruption of the neural ENG signal by 60dBv, resulting in recovery of sensory signals in rats and primates that would previously not be possible. Methods: The approach combines analog techniques to reduce and handle unwanted signal amplitudes. The methods include optimized (1) sensory electrode placement, (2) amplifier configuration, and (3) artifact blanking when necessary. The techniques together are like concentric moats protecting a castle; only the wanted neural signal can penetrate. There are two conditions in which the headstage operates: unwanted artifact < 50mV, linear operation, and artifact > 50mV, fast-settle gain reduction signal limiting (covered in more detail in a separate paper). Unwanted Signals at the headstage input: Consider: (a) EMG signals are by nature < 10mV. (b) 60 Hz power line signals may be > 50mV with poor electrode cable conditions; with careful routing much of the signal is common to both reference and active electrode and rejected in the differential amplifier with <50mV remaining. (c) An unwanted (to the neural recorder) stimulation signal is attenuated from stimulation to sensory electrode. The voltage seen at the sensory electrode can be modeled Φ_m=I_o/4πσr. For a 1 mA stimulation signal, with 1 cm spacing between electrodes, the signal is <20mV at the headstage. Headstage ASIC design: The front end ASIC design is designed to produce < 1% THD at 50mV input; 50 times higher than typical headstage ASICs, with no increase in noise floor. This requires careful balance of amplifier stages in the headstage ASIC, as well as consideration of the electrodes effect on noise. The ASIC is designed to allow extremely small signal extraction on low impedance (< 10kohm) electrodes with configuration of the headstage ASIC noise floor to < 700nV/rt-Hz. Smaller high impedance electrodes (> 100kohm) are typically located closer to neural sources and transduce higher amplitude signals (> 10uV); the ASIC low-power mode conserves power with 2uV/rt-Hz noise. Findings: The enhanced neural processing ASIC has been compared with a commercial neural recording amplifier IC. Chronically implanted primates at MGH demonstrated the presence of commercial neural amplifier saturation as a result of large environmental artifacts. The enhanced artifact suppression headstage ASIC, in the same setup, was able to recover and process the wanted neural signal separately from the suppressed unwanted artifacts. Separately, the enhanced artifact suppression headstage ASIC was able to separate sensory neural signals from unwanted artifacts in mouse-implanted peripheral intrafascicular electrodes. Conclusion: Optimizing headstage ASICs allow observation of neural signals in the presence of large artifacts that will be present in real-life implanted applications, and are targeted toward human implantation in the DARPA HAPTIX program.Keywords: ASIC, biosensors, biomedical signal processing, biomedical sensors
Procedia PDF Downloads 3282940 Success Factors for Innovations in SME Networks
Authors: J. Gochermann
Abstract:
Due to complex markets and products, and increasing need to innovate, cooperation between small and medium size enterprises arose during the last decades, which are not prior driven by process optimization or sales enhancement. Especially small and medium sized enterprises (SME) collaborate increasingly in innovation and knowledge networks to enhance their knowledge and innovation potential, and to find strategic partners for product and market development. These networks are characterized by dual objectives, the superordinate goal of the total network, and the specific objectives of the network members, which can cause target conflicts. Moreover, most SMEs do not have structured innovation processes and they are not accustomed to collaborate in complex innovation projects in an open network structure. On the other hand, SMEs have suitable characteristics for promising networking. They are flexible and spontaneous, they have flat hierarchies, and the acting people are not anonymous. These characteristics indeed distinguish them from bigger concerns. Investigation of German SME networks have been done to identify success factors for SME innovation networks. The fundamental network principles, donation-return and confidence, could be confirmed and identified as basic success factors. Further factors are voluntariness, adequate number of network members, quality of communication, neutrality and competence of the network management, as well as reliability and obligingness of the network services. Innovation and knowledge networks with an appreciable number of members from science and technology institutions need also active sense-making to bring different disciplines into successful collaboration. It has also been investigated, whether and how the involvement in an innovation network impacts the innovation structure and culture inside the member companies. The degree of reaction grows with time and intensity of commitment.Keywords: innovation and knowledge networks, SME, success factors, innovation structure and culture
Procedia PDF Downloads 2822939 Deep Learning for Qualitative and Quantitative Grain Quality Analysis Using Hyperspectral Imaging
Authors: Ole-Christian Galbo Engstrøm, Erik Schou Dreier, Birthe Møller Jespersen, Kim Steenstrup Pedersen
Abstract:
Grain quality analysis is a multi-parameterized problem that includes a variety of qualitative and quantitative parameters such as grain type classification, damage type classification, and nutrient regression. Currently, these parameters require human inspection, a multitude of instruments employing a variety of sensor technologies, and predictive model types or destructive and slow chemical analysis. This paper investigates the feasibility of applying near-infrared hyperspectral imaging (NIR-HSI) to grain quality analysis. For this study two datasets of NIR hyperspectral images in the wavelength range of 900 nm - 1700 nm have been used. Both datasets contain images of sparsely and densely packed grain kernels. The first dataset contains ~87,000 image crops of bulk wheat samples from 63 harvests where protein value has been determined by the FOSS Infratec NOVA which is the golden industry standard for protein content estimation in bulk samples of cereal grain. The second dataset consists of ~28,000 image crops of bulk grain kernels from seven different wheat varieties and a single rye variety. In the first dataset, protein regression analysis is the problem to solve while variety classification analysis is the problem to solve in the second dataset. Deep convolutional neural networks (CNNs) have the potential to utilize spatio-spectral correlations within a hyperspectral image to simultaneously estimate the qualitative and quantitative parameters. CNNs can autonomously derive meaningful representations of the input data reducing the need for advanced preprocessing techniques required for classical chemometric model types such as artificial neural networks (ANNs) and partial least-squares regression (PLS-R). A comparison between different CNN architectures utilizing 2D and 3D convolution is conducted. These results are compared to the performance of ANNs and PLS-R. Additionally, a variety of preprocessing techniques from image analysis and chemometrics are tested. These include centering, scaling, standard normal variate (SNV), Savitzky-Golay (SG) filtering, and detrending. The results indicate that the combination of NIR-HSI and CNNs has the potential to be the foundation for an automatic system unifying qualitative and quantitative grain quality analysis within a single sensor technology and predictive model type.Keywords: deep learning, grain analysis, hyperspectral imaging, preprocessing techniques
Procedia PDF Downloads 982938 Stimulus-Dependent Polyrhythms of Central Pattern Generator Hardware
Authors: Le Zhao, Alain Nogaret
Abstract:
We have built universal Central Pattern Generator (CPG) hardware by interconnecting Hodgkin-Huxley neurons with reciprocally inhibitory synapses. We investigate the dynamics of neuron oscillations as a function of the time delay between current steps applied to individual neurons. We demonstrate stimulus dependent switching between spiking polyrhythms and map the phase portraits of the neuron oscillations to reveal the basins of attraction of the system. We experimentally study the dependence of the attraction basins on the network parameters: the neuron response time and the strength of inhibitory connections.Keywords: central pattern generator, winnerless competition principle, artificial neural networks, synapses
Procedia PDF Downloads 4722937 A Comparative Study of Deep Learning Methods for COVID-19 Detection
Authors: Aishrith Rao
Abstract:
COVID 19 is a pandemic which has resulted in thousands of deaths around the world and a huge impact on the global economy. Testing is a huge issue as the test kits have limited availability and are expensive to manufacture. Using deep learning methods on radiology images in the detection of the coronavirus as these images contain information about the spread of the virus in the lungs is extremely economical and time-saving as it can be used in areas with a lack of testing facilities. This paper focuses on binary classification and multi-class classification of COVID 19 and other diseases such as pneumonia, tuberculosis, etc. Different deep learning methods such as VGG-19, COVID-Net, ResNET+ SVM, Deep CNN, DarkCovidnet, etc., have been used, and their accuracy has been compared using the Chest X-Ray dataset.Keywords: deep learning, computer vision, radiology, COVID-19, ResNet, VGG-19, deep neural networks
Procedia PDF Downloads 1592936 A TiO₂-Based Memristor Reliable for Neuromorphic Computing
Authors: X. S. Wu, H. Jia, P. H. Qian, Z. Zhang, H. L. Cai, F. M. Zhang
Abstract:
A bipolar resistance switching behaviour is detected for a Ti/TiO2-x/Au memristor device, which is fabricated by a masked designed magnetic sputtering. The current dependence of voltage indicates the curve changes slowly and continuously. When voltage pulses are applied to the device, the set and reset processes maintains linearity, which is used to simulate the synapses. We argue that the conduction mechanism of the device is from the oxygen vacancy channel model, and the resistance of the device change slowly due to the reaction between the titanium electrode and the intermediate layer and the existence of a large number of oxygen vacancies in the intermediate layer. Then, Hopfield neural network is constructed to simulate the behaviour of neural network in image processing, and the accuracy rate is more than 98%. This shows that titanium dioxide memristor has a broad application prospect in high performance neural network simulation.Keywords: memristor fabrication, neuromorphic computing, bionic synaptic application, TiO₂-based
Procedia PDF Downloads 872935 Italian Speech Vowels Landmark Detection through the Legacy Tool 'xkl' with Integration of Combined CNNs and RNNs
Authors: Kaleem Kashif, Tayyaba Anam, Yizhi Wu
Abstract:
This paper introduces a methodology for advancing Italian speech vowels landmark detection within the distinctive feature-based speech recognition domain. Leveraging the legacy tool 'xkl' by integrating combined convolutional neural networks (CNNs) and recurrent neural networks (RNNs), the study presents a comprehensive enhancement to the 'xkl' legacy software. This integration incorporates re-assigned spectrogram methodologies, enabling meticulous acoustic analysis. Simultaneously, our proposed model, integrating combined CNNs and RNNs, demonstrates unprecedented precision and robustness in landmark detection. The augmentation of re-assigned spectrogram fusion within the 'xkl' software signifies a meticulous advancement, particularly enhancing precision related to vowel formant estimation. This augmentation catalyzes unparalleled accuracy in landmark detection, resulting in a substantial performance leap compared to conventional methods. The proposed model emerges as a state-of-the-art solution in the distinctive feature-based speech recognition systems domain. In the realm of deep learning, a synergistic integration of combined CNNs and RNNs is introduced, endowed with specialized temporal embeddings, harnessing self-attention mechanisms, and positional embeddings. The proposed model allows it to excel in capturing intricate dependencies within Italian speech vowels, rendering it highly adaptable and sophisticated in the distinctive feature domain. Furthermore, our advanced temporal modeling approach employs Bayesian temporal encoding, refining the measurement of inter-landmark intervals. Comparative analysis against state-of-the-art models reveals a substantial improvement in accuracy, highlighting the robustness and efficacy of the proposed methodology. Upon rigorous testing on a database (LaMIT) speech recorded in a silent room by four Italian native speakers, the landmark detector demonstrates exceptional performance, achieving a 95% true detection rate and a 10% false detection rate. A majority of missed landmarks were observed in proximity to reduced vowels. These promising results underscore the robust identifiability of landmarks within the speech waveform, establishing the feasibility of employing a landmark detector as a front end in a speech recognition system. The synergistic integration of re-assigned spectrogram fusion, CNNs, RNNs, and Bayesian temporal encoding not only signifies a significant advancement in Italian speech vowels landmark detection but also positions the proposed model as a leader in the field. The model offers distinct advantages, including unparalleled accuracy, adaptability, and sophistication, marking a milestone in the intersection of deep learning and distinctive feature-based speech recognition. This work contributes to the broader scientific community by presenting a methodologically rigorous framework for enhancing landmark detection accuracy in Italian speech vowels. The integration of cutting-edge techniques establishes a foundation for future advancements in speech signal processing, emphasizing the potential of the proposed model in practical applications across various domains requiring robust speech recognition systems.Keywords: landmark detection, acoustic analysis, convolutional neural network, recurrent neural network
Procedia PDF Downloads 622934 Time Series Simulation by Conditional Generative Adversarial Net
Authors: Rao Fu, Jie Chen, Shutian Zeng, Yiping Zhuang, Agus Sudjianto
Abstract:
Generative Adversarial Net (GAN) has proved to be a powerful machine learning tool in image data analysis and generation. In this paper, we propose to use Conditional Generative Adversarial Net (CGAN) to learn and simulate time series data. The conditions include both categorical and continuous variables with different auxiliary information. Our simulation studies show that CGAN has the capability to learn different types of normal and heavy-tailed distributions, as well as dependent structures of different time series. It also has the capability to generate conditional predictive distributions consistent with training data distributions. We also provide an in-depth discussion on the rationale behind GAN and the neural networks as hierarchical splines to establish a clear connection with existing statistical methods of distribution generation. In practice, CGAN has a wide range of applications in market risk and counterparty risk analysis: it can be applied to learn historical data and generate scenarios for the calculation of Value-at-Risk (VaR) and Expected Shortfall (ES), and it can also predict the movement of the market risk factors. We present a real data analysis including a backtesting to demonstrate that CGAN can outperform Historical Simulation (HS), a popular method in market risk analysis to calculate VaR. CGAN can also be applied in economic time series modeling and forecasting. In this regard, we have included an example of hypothetical shock analysis for economic models and the generation of potential CCAR scenarios by CGAN at the end of the paper.Keywords: conditional generative adversarial net, market and credit risk management, neural network, time series
Procedia PDF Downloads 143