Search results for: monitoring stations
2847 Lead in The Blood and Hypertension in Indonesia: A Systematic Review
Authors: Ainia Nurul Aqida
Abstract:
Lead is one of the sources of air pollution. The use of lead on motor vehicle fuels resulted in the increasing contamination of lead in the air. The polluted air that has been inhaled by many people, especially guards and sellers of retail gasoline filling stations. The impact is increased levels of lead in blood. One result is an increase in blood pressure that causes hypertension. This research would like to know the relationship between blood lead levels in the incidence of hypertension in Indonesia. The method used in this study is a systematic review of the three journals have been published in the year 2007 to the year 2010 with the total sample is 312 samples. Odd ratio values obtained in the first article was OR = 6.50 pvalue = 0.000, CI = 95 % (2.89 to 14.60), and the second article was obtained OR 2.619 (95 % CI: 0.944 to 7.625) pvalue = 0.028, and the third article was obtained 0.002 r = 0.324 R2 = 10.5 %. Over all, there is a relationship between blood lead levels with the incidence of hypertension in Indonesia.Keywords: lead, blood, air pollution, hypertension
Procedia PDF Downloads 3232846 A Versatile Data Processing Package for Ground-Based Synthetic Aperture Radar Deformation Monitoring
Authors: Zheng Wang, Zhenhong Li, Jon Mills
Abstract:
Ground-based synthetic aperture radar (GBSAR) represents a powerful remote sensing tool for deformation monitoring towards various geohazards, e.g. landslides, mudflows, avalanches, infrastructure failures, and the subsidence of residential areas. Unlike spaceborne SAR with a fixed revisit period, GBSAR data can be acquired with an adjustable temporal resolution through either continuous or discontinuous operation. However, challenges arise from processing high temporal-resolution continuous GBSAR data, including the extreme cost of computational random-access-memory (RAM), the delay of displacement maps, and the loss of temporal evolution. Moreover, repositioning errors between discontinuous campaigns impede the accurate measurement of surface displacements. Therefore, a versatile package with two complete chains is developed in this study in order to process both continuous and discontinuous GBSAR data and address the aforementioned issues. The first chain is based on a small-baseline subset concept and it processes continuous GBSAR images unit by unit. Images within a window form a basic unit. By taking this strategy, the RAM requirement is reduced to only one unit of images and the chain can theoretically process an infinite number of images. The evolution of surface displacements can be detected as it keeps temporarily-coherent pixels which are present only in some certain units but not in the whole observation period. The chain supports real-time processing of the continuous data and the delay of creating displacement maps can be shortened without waiting for the entire dataset. The other chain aims to measure deformation between discontinuous campaigns. Temporal averaging is carried out on a stack of images in a single campaign in order to improve the signal-to-noise ratio of discontinuous data and minimise the loss of coherence. The temporal-averaged images are then processed by a particular interferometry procedure integrated with advanced interferometric SAR algorithms such as robust coherence estimation, non-local filtering, and selection of partially-coherent pixels. Experiments are conducted using both synthetic and real-world GBSAR data. Displacement time series at the level of a few sub-millimetres are achieved in several applications (e.g. a coastal cliff, a sand dune, a bridge, and a residential area), indicating the feasibility of the developed GBSAR data processing package for deformation monitoring of a wide range of scientific and practical applications.Keywords: ground-based synthetic aperture radar, interferometry, small baseline subset algorithm, deformation monitoring
Procedia PDF Downloads 1612845 Forecasting Model for Rainfall in Thailand: Case Study Nakhon Ratchasima Province
Authors: N. Sopipan
Abstract:
In this paper, we study of rainfall time series of weather stations in Nakhon Ratchasima province in Thailand using various statistical methods enabled to analyse the behaviour of rainfall in the study areas. Time-series analysis is an important tool in modelling and forecasting rainfall. ARIMA and Holt-Winter models based on exponential smoothing were built. All the models proved to be adequate. Therefore, could give information that can help decision makers establish strategies for proper planning of agriculture, drainage system and other water resource applications in Nakhon Ratchasima province. We found the best perform for forecasting is ARIMA(1,0,1)(1,0,1)12.Keywords: ARIMA Models, exponential smoothing, Holt-Winter model
Procedia PDF Downloads 3002844 A Community Solution to Address Extensive Nitrate Contamination in the Lower Yakima Valley Aquifer
Authors: Melanie Redding
Abstract:
Historic widespread nitrate contamination of the Lower Yakima Valley aquifer in Washington State initiated a community-based effort to reduce nitrate concentrations to below-drinking water standards. This group commissioned studies on characterizing local nitrogen sources, deep soil assessments, drinking water, and assessing nitrate concentrations at the water table. Nitrate is the most prevalent groundwater contaminant with common sources from animal and human waste, fertilizers, plants and precipitation. It is challenging to address groundwater contamination when common sources, such as agriculture, on-site sewage systems, and animal production, are widespread. Remediation is not possible, so mitigation is essential. The Lower Yakima Valley is located over 175,000 acres, with a population of 56,000 residents. Approximately 25% of the population do not have access to safe, clean drinking water, and 20% of the population is at or below the poverty level. Agriculture is the primary economic land-use activity. Irrigated agriculture and livestock production make up the largest percentage of acreage and nitrogen load. Commodities include apples, grapes, hops, dairy, silage corn, triticale, alfalfa and cherries. These commodities are important to the economic viability of the residents of the Lower Yakima Valley, as well as Washington State. Mitigation of nitrate in groundwater is challenging. The goal is to ensure everyone has safe drinking water. There are no easy remedies due to the extensive and pervasiveness of the contamination. Monitoring at the water table indicates that 45% of the 30 spatially distributed monitoring wells exceeded the drinking water standard. This indicates that there are multiple sources that are impacting water quality. Washington State has several areas which have extensive groundwater nitrate contamination. The groundwater in these areas continues to degrade over time. However, the Lower Yakima Valley is being successful in addressing this health issue because of the following reasons: the community is engaged and committed; there is one common goal; there has been extensive public education and outreach to citizens; and generating credible data using sound scientific methods. Work in this area is continuing as an ambient groundwater monitoring network is established to assess the condition of the aquifer over time. Nitrate samples are being collected from 170 wells, spatially distributed across the aquifer. This research entails quarterly sampling for two years to characterize seasonal variability and then continue annually afterward. This assessment will provide the data to statistically determine trends in nitrate concentrations across the aquifer, over time. Thirty-three of these wells are monitoring wells that are screened across the aquifer. The water quality from these wells are indicative of activities at the land surface. Additional work is being conducted to identify land use management practices that are effective in limiting nitrate migration through the soil column. Tracking nitrate in the soil column every season is an important component of bridging land-use practices with the fate and transport of nitrate through the subsurface. Patience, tenacity, and the ability to think outside the box are essential for dealing with widespread nitrate contamination of groundwater.Keywords: community, groundwater, monitoring, nitrate
Procedia PDF Downloads 1772843 Parameter Measurement Systems to Evaluate Performance of Archers
Authors: Muhammad Zikril Hakim Md. Azizi, Norhafizan Ahmad, Raja Ariffin Raja Ghazilla
Abstract:
Postural stability, attention level of the archer and particularly the vibrations of the bow itself plays a prominent role in determining the athletes performance. Many techniques and systems had been developing to monitor the parameters of the archers during training. In Malaysia, archery coaches tend to use non-scientific ways that they are familiar with, to evaluate archer performance. An approach that provides more affordable yet accurate systems to the masses and relatively easy system deployment procedure need to be proposed. Hence, this project will address to fulfil the needs. Three area of the archer parameter were included for data monitoring sensors. Attention level can be measured using EEG sensor, centre of mass linked to the postural stability can be measured by foot pressure sensor, and the bow vibrations in three axis will be relayed by the vibrations sensors placed directly on the bow using wireless sensors. Arduino based microcontroller used to relay all the data back to the interfacing systems. Interface systems will be using Python language and C++ framework for user interface and hardware interfacing systems. All sensor data can be observed in real time using the in-house applications, and each sessions can be saved to common files so that coach and the team can have a further discussion and comparisons.Keywords: archery, graphical user interface, microcontroller, wireless sensor, monitoring system
Procedia PDF Downloads 3002842 Effective Validation Model and Use of Mobile-Health Apps for Elderly People
Authors: Leonardo Ramirez Lopez, Edward Guillen Pinto, Carlos Ramos Linares
Abstract:
The controversy brought about by the increasing use of mHealth apps and their effectiveness for disease prevention and diagnosis calls for immediate control. Although a critical topic in research areas such as medicine, engineering, economics, among others, this issue lacks reliable implementation models. However, projects such as Open Web Application Security Project (OWASP) and various studies have helped to create useful and reliable apps. This research is conducted under a quality model to optimize two mHealth apps for older adults. Results analysis on the use of two physical activity monitoring apps - AcTiv (physical activity) and SMCa (energy expenditure) - is positive and ideal. Through a theoretical and practical analysis, precision calculations and personal information control of older adults for disease prevention and diagnosis were performed. Finally, apps are validated by a physician and, as a result, they may be used as health monitoring tools in physical performance centers or any other physical activity. The results obtained provide an effective validation model for this type of mobile apps, which, in turn, may be applied by other software developers that along with medical staff would offer digital healthcare tools for elderly people.Keywords: model, validation, effective, healthcare, elderly people, mobile app
Procedia PDF Downloads 2182841 Fourier Transform and Machine Learning Techniques for Fault Detection and Diagnosis of Induction Motors
Authors: Duc V. Nguyen
Abstract:
Induction motors are widely used in different industry areas and can experience various kinds of faults in stators and rotors. In general, fault detection and diagnosis techniques for induction motors can be supervised by measuring quantities such as noise, vibration, and temperature. The installation of mechanical sensors in order to assess the health conditions of a machine is typically only done for expensive or load-critical machines, where the high cost of a continuous monitoring system can be Justified. Nevertheless, induced current monitoring can be implemented inexpensively on machines with arbitrary sizes by using current transformers. In this regard, effective and low-cost fault detection techniques can be implemented, hence reducing the maintenance and downtime costs of motors. This work proposes a method for fault detection and diagnosis of induction motors, which combines classical fast Fourier transform and modern/advanced machine learning techniques. The proposed method is validated on real-world data and achieves a precision of 99.7% for fault detection and 100% for fault classification with minimal expert knowledge requirement. In addition, this approach allows users to be able to optimize/balance risks and maintenance costs to achieve the highest benet based on their requirements. These are the key requirements of a robust prognostics and health management system.Keywords: fault detection, FFT, induction motor, predictive maintenance
Procedia PDF Downloads 1702840 Determination of Pesticides Residues in Tissue of Two Freshwater Fish Species by Modified QuEChERS Method
Authors: Iwona Cieślik, Władysław Migdał, Kinga Topolska, Ewa Cieślik
Abstract:
The consumption of fish is recommended as a means of preventing serious diseases, especially cardiovascular problems. Fish is known to be a valuable source of protein (rich in essential amino acids), unsaturated fatty acids, fat-soluble vitamins, macro- and microelements. However, it can also contain several contaminants (e.g. pesticides, heavy metals) that may pose considerable risks for humans. Among others, pesticide are of special concern. Their widespread use has resulted in the contamination of environmental compartments, including water. The occurrence of pesticides in the environment is a serious problem, due to their potential toxicity. Therefore, a systematic monitoring is needed. The aim of the study was to determine the organochlorine and organophosphate pesticide residues in fish muscle tissues of the pike (Esox lucius, L.) and the rainbow trout (Oncorhynchus mykkis, Walbaum) by a modified QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) method, using Gas Chromatography Quadrupole Mass Spectrometry (GC/Q-MS), working in selected-ion monitoring (SIM) mode. The analysis of α-HCH, β-HCH, lindane, diazinon, disulfoton, δ-HCH, methyl parathion, heptachlor, malathion, aldrin, parathion, heptachlor epoxide, γ-chlordane, endosulfan, α-chlordane, o,p'-DDE, dieldrin, endrin, 4,4'-DDD, ethion, endrin aldehyde, endosulfan sulfate, 4,4'-DDT, and metoxychlor was performed in the samples collected in the Carp Valley (Malopolska region, Poland). The age of the pike (n=6) was 3 years and its weight was 2-3 kg, while the age of the rainbow trout (n=6) was 0.5 year and its weight was 0.5-1.0 kg. Detectable pesticide (HCH isomers, endosulfan isomers, DDT and its metabolites as well as metoxychlor) residues were present in fish samples. However, all these compounds were below the limit of quantification (LOQ). The other examined pesticide residues were below the limit of detection (LOD). Therefore, the levels of contamination were - in all cases - below the default Maximum Residue Levels (MRLs), established by Regulation (EC) No 396/2005 of the European Parliament and of the Council. The monitoring of pesticide residues content in fish is required to minimize potential adverse effects on the environment and human exposure to these contaminants.Keywords: contaminants, fish, pesticides residues, QuEChERS method
Procedia PDF Downloads 2202839 Trace Analysis of Genotoxic Impurity Pyridine in Sitagliptin Drug Material Using UHPLC-MS
Authors: Bashar Al-Sabti, Jehad Harbali
Abstract:
Background: Pyridine is a reactive base that might be used in preparing sitagliptin. International Agency for Research on Cancer classifies pyridine in group 2B; this classification means that pyridine is possibly carcinogenic to humans. Therefore, pyridine should be monitored at the allowed limit in sitagliptin pharmaceutical ingredients. Objective: The aim of this study was to develop a novel ultra high performance liquid chromatography mass spectrometry (UHPLC-MS) method to estimate the quantity of pyridine impurity in sitagliptin pharmaceutical ingredients. Methods: The separation was performed on C8 shim-pack (150 mm X 4.6 mm, 5 µm) in reversed phase mode using a mobile phase of water-methanol-acetonitrile containing 4 mM ammonium acetate in gradient mode. Pyridine was detected by mass spectrometer using selected ionization monitoring mode at m/z = 80. The flow rate of the method was 0.75 mL/min. Results: The method showed excellent sensitivity with a quantitation limit of 1.5 ppm of pyridine relative to sitagliptin. The linearity of the method was excellent at the range of 1.5-22.5 ppm with a correlation coefficient of 0.9996. Recoveries values were between 93.59-103.55%. Conclusions: The results showed good linearity, precision, accuracy, sensitivity, selectivity, and robustness. The studied method was applied to test three batches of sitagliptin raw materials. Highlights: This method is useful for monitoring pyridine in sitagliptin during its synthesis and testing sitagliptin raw materials before using them in the production of pharmaceutical products.Keywords: genotoxic impurity, pyridine, sitagliptin, UHPLC -MS
Procedia PDF Downloads 952838 Towards Conservation and Recovery of Species at Risk in Ontario: Progress on Recovery Planning and Implementation and an Overview of Key Research Needs
Authors: Rachel deCatanzaro, Madeline Austen, Ken Tuininga, Kathy St. Laurent, Christina Rohe
Abstract:
In Canada, the federal Species at Risk Act (SARA) provides protection for wildlife species at risk and a national legislative framework for the conservation or recovery of species that are listed as endangered, threatened, or special concern under Schedule 1 of SARA. Key aspects of the federal species at risk program include the development of recovery documents (recovery strategies, action plans, and management plans) outlining threats, objectives, and broad strategies or measures for conservation or recovery of the species; the identification and protection of critical habitat for threatened and endangered species; and working with groups and organizations to implement on-the-ground recovery actions. Environment Canada’s progress on the development of recovery documents and on the identification and protection of critical habitat in Ontario will be presented, along with successes and challenges associated with on-the ground implementation of recovery actions. In Ontario, Environment Canada is currently involved in several recovery and monitoring programs for at-risk bird species such as the Loggerhead Shrike, Piping Plover, Golden-winged Warbler and Cerulean Warbler and has provided funding for a wide variety of recovery actions targeting priority species at risk and geographic areas each year through stewardship programs including the Habitat Stewardship Program, Aboriginal Fund for Species at Risk, and the Interdepartmental Recovery Fund. Key research needs relevant to the recovery of species at risk have been identified, and include: surveys and monitoring of population sizes and threats, population viability analyses, and addressing knowledge gaps identified for individual species (e.g., species biology and habitat needs). The engagement of all levels of government, the local and international conservation communities, and the scientific research community plays an important role in the conservation and recovery of species at risk in Ontario– through surveying and monitoring, filling knowledge gaps, conducting public outreach, and restoring, protecting, or managing habitat – and will be critical to the continued success of the federal species at risk program.Keywords: conservation biology, habitat protection, species at risk, wildlife recovery
Procedia PDF Downloads 4522837 Adaptive Cooperative Scheme Considering the User Location
Authors: Bit-Na Kwon, Hyun-Jee Yang, Dong-Hyun Ha, Hyoung-Kyu Song
Abstract:
In this paper, an adaptive cooperative scheme in the cell edge is proposed. The proposed scheme considers the location of a user and applies the suitable cooperative scheme. In cellular systems, the performance of communication is degraded if the user is located in the cell edge. In conventional scheme, two base stations are used in order to obtain diversity gain. However, the performance of communication is not sufficiently improved since the distance between each base station and a user is still distant. Therefore, we propose a scheme that the relays are used and the cooperative scheme is adaptively applied according to the user location. Through simulation results, it is confirmed that the proposed scheme has better performance than the conventional scheme.Keywords: adaptive transmission, cooperative communication, diversity gain, OFDM
Procedia PDF Downloads 5722836 Comprehensive Multilevel Practical Condition Monitoring Guidelines for Power Cables in Industries: Case Study of Mobarakeh Steel Company in Iran
Authors: S. Mani, M. Kafil, E. Asadi
Abstract:
Condition Monitoring (CM) of electrical equipment has gained remarkable importance during the recent years; due to huge production losses, substantial imposed costs and increases in vulnerability, risk and uncertainty levels. Power cables feed numerous electrical equipment such as transformers, motors, and electric furnaces; thus their condition assessment is of a very great importance. This paper investigates electrical, structural and environmental failure sources, all of which influence cables' performances and limit their uptimes; and provides a comprehensive framework entailing practical CM guidelines for maintenance of cables in industries. The multilevel CM framework presented in this study covers performance indicative features of power cables; with a focus on both online and offline diagnosis and test scenarios, and covers short-term and long-term threats to the operation and longevity of power cables. The study, after concisely overviewing the concept of CM, thoroughly investigates five major areas of power quality, Insulation Quality features of partial discharges, tan delta and voltage withstand capabilities, together with sheath faults, shield currents and environmental features of temperature and humidity; and elaborates interconnections and mutual impacts between those areas; using mathematical formulation and practical guidelines. Detection, location, and severity identification methods for every threat or fault source are also elaborated. Finally, the comprehensive, practical guidelines presented in the study are presented for the specific case of Electric Arc Furnace (EAF) feeder MV power cables in Mobarakeh Steel Company (MSC), the largest steel company in MENA region, in Iran. Specific technical and industrial characteristics and limitations of a harsh industrial environment like MSC EAF feeder cable tunnels are imposed on the presented framework; making the suggested package more practical and tangible.Keywords: condition monitoring, diagnostics, insulation, maintenance, partial discharge, power cables, power quality
Procedia PDF Downloads 2282835 A Soft Computing Approach Monitoring of Heavy Metals in Soil and Vegetables in the Republic of Macedonia
Authors: Vesna Karapetkovska Hristova, M. Ayaz Ahmad, Julijana Tomovska, Biljana Bogdanova Popov, Blagojce Najdovski
Abstract:
The average total concentrations of heavy metals; (cadmium [Cd], copper [Cu], nickel [Ni], lead [Pb], and zinc [Zn]) were analyzed in soil and vegetables samples collected from the different region of Macedonia during the years 2010-2012. Basic soil properties such as pH, organic matter and clay content were also included in the study. The average concentrations of Cd, Cu, Ni, Pb, Zn in the A horizon (0-30 cm) of agricultural soils were as follows, respectively: 0.25, 5.3, 6.9, 15.2, 26.3 mg kg-1 of soil. We have found that neural networking model can be considered as a tool for prediction and spatial analysis of the processes controlling the metal transfer within the soil-and vegetables. The predictive ability of such models is well over 80% as compared to 20% for typical regression models. A radial basic function network reflects good predicting accuracy and correlation coefficients between soil properties and metal content in vegetables much better than the back-propagation method. Neural Networking / soft computing can support the decision-making processes at different levels, including agro ecology, to improve crop management based on monitoring data and risk assessment of metal transfer from soils to vegetables.Keywords: soft computing approach, total concentrations, heavy metals, agricultural soils
Procedia PDF Downloads 3682834 ADA Tool for Satellite InSAR-Based Ground Displacement Analysis: The Granada Region
Authors: M. Cuevas-González, O. Monserrat, A. Barra, C. Reyes-Carmona, R.M. Mateos, J. P. Galve, R. Sarro, M. Cantalejo, E. Peña, M. Martínez-Corbella, J. A. Luque, J. M. Azañón, A. Millares, M. Béjar, J. A. Navarro, L. Solari
Abstract:
Geohazard prone areas require continuous monitoring to detect risks, understand the phenomena occurring in those regions and prevent disasters. Satellite interferometry (InSAR) has come to be a trustworthy technique for ground movement detection and monitoring in the last few years. InSAR based techniques allow to process large areas providing high number of displacement measurements at low cost. However, the results provided by such techniques are usually not easy to interpret by non-experienced users hampering its use for decision makers. This work presents a set of tools developed in the framework of different projects (Momit, Safety, U-Geohaz, Riskcoast) and an example of their use in the Granada Coastal area (Spain) is shown. The ADA (Active Displacement Areas) tool have been developed with the aim of easing the management, use and interpretation of InSAR based results. It provides a semi-automatic extraction of the most significant ADAs through the application ADAFinder tool. This tool aims to support the exploitation of the European Ground Motion Service (EU-GMS), which will provide consistent, regular and reliable information regarding natural and anthropogenic ground motion phenomena all over Europe.Keywords: ground displacements, InSAR, natural hazards, satellite imagery
Procedia PDF Downloads 2202833 Application of the Hit or Miss Transform to Detect Dams Monitored for Water Quality Using Remote Sensing in South Africa
Authors: Brighton Chamunorwa
Abstract:
The current remote sensing of water quality procedures does not provide a step representing physical visualisation of the monitored dam. The application of the remote sensing of water quality techniques may benefit from use of mathematical morphology operators for shape identification. Given an input of dam outline, morphological operators such as the hit or miss transform identifies if the water body is present on input remotely sensed images. This study seeks to determine the accuracy of the hit or miss transform to identify dams monitored by the water resources authorities in South Africa on satellite images. To achieve this objective the study download a Landsat image acquired in winter and tested the capability of the hit or miss transform using shapefile boundaries of dams in the crocodile marico catchment. The results of the experiment show that it is possible to detect most dams on the Landsat image after the adjusting the erosion operator to detect pixel matching a percentage similarity of 80% and above. Successfully implementation of the current study contributes towards optimisation of mathematical morphology image operators. Additionally, the effort helps develop remote sensing of water quality monitoring with improved simulation of the conventional procedures.Keywords: hit or miss transform, mathematical morphology, remote sensing, water quality monitoring
Procedia PDF Downloads 1532832 Troubleshooting Petroleum Equipment Based on Wireless Sensors Based on Bayesian Algorithm
Authors: Vahid Bayrami Rad
Abstract:
In this research, common methods and techniques have been investigated with a focus on intelligent fault finding and monitoring systems in the oil industry. In fact, remote and intelligent control methods are considered a necessity for implementing various operations in the oil industry, but benefiting from the knowledge extracted from countless data generated with the help of data mining algorithms. It is a avoid way to speed up the operational process for monitoring and troubleshooting in today's big oil companies. Therefore, by comparing data mining algorithms and checking the efficiency and structure and how these algorithms respond in different conditions, The proposed (Bayesian) algorithm using data clustering and their analysis and data evaluation using a colored Petri net has provided an applicable and dynamic model from the point of view of reliability and response time. Therefore, by using this method, it is possible to achieve a dynamic and consistent model of the remote control system and prevent the occurrence of leakage in oil pipelines and refineries and reduce costs and human and financial errors. Statistical data The data obtained from the evaluation process shows an increase in reliability, availability and high speed compared to other previous methods in this proposed method.Keywords: wireless sensors, petroleum equipment troubleshooting, Bayesian algorithm, colored Petri net, rapid miner, data mining-reliability
Procedia PDF Downloads 662831 Multi-Source Data Fusion for Urban Comprehensive Management
Authors: Bolin Hua
Abstract:
In city governance, various data are involved, including city component data, demographic data, housing data and all kinds of business data. These data reflects different aspects of people, events and activities. Data generated from various systems are different in form and data source are different because they may come from different sectors. In order to reflect one or several facets of an event or rule, data from multiple sources need fusion together. Data from different sources using different ways of collection raised several issues which need to be resolved. Problem of data fusion include data update and synchronization, data exchange and sharing, file parsing and entry, duplicate data and its comparison, resource catalogue construction. Governments adopt statistical analysis, time series analysis, extrapolation, monitoring analysis, value mining, scenario prediction in order to achieve pattern discovery, law verification, root cause analysis and public opinion monitoring. The result of Multi-source data fusion is to form a uniform central database, which includes people data, location data, object data, and institution data, business data and space data. We need to use meta data to be referred to and read when application needs to access, manipulate and display the data. A uniform meta data management ensures effectiveness and consistency of data in the process of data exchange, data modeling, data cleansing, data loading, data storing, data analysis, data search and data delivery.Keywords: multi-source data fusion, urban comprehensive management, information fusion, government data
Procedia PDF Downloads 3932830 Hygro-Thermal Modelling of Timber Decks
Authors: Stefania Fortino, Petr Hradil, Timo Avikainen
Abstract:
Timber bridges have an excellent environmental performance, are economical, relatively easy to build and can have a long service life. However, the durability of these bridges is the main problem because of their exposure to outdoor climate conditions. The moisture content accumulated in wood for long periods, in combination with certain temperatures, may cause conditions suitable for timber decay. In addition, moisture content variations affect the structural integrity, serviceability and loading capacity of timber bridges. Therefore, the monitoring of the moisture content in wood is important for the durability of the material but also for the whole superstructure. The measurements obtained by the usual sensor-based techniques provide hygro-thermal data only in specific locations of the wood components. In this context, the monitoring can be assisted by numerical modelling to get more information on the hygro-thermal response of the bridges. This work presents a hygro-thermal model based on a multi-phase moisture transport theory to predict the distribution of moisture content, relative humidity and temperature in wood. Below the fibre saturation point, the multi-phase theory simulates three phenomena in cellular wood during moisture transfer, i.e., the diffusion of water vapour in the pores, the sorption of bound water and the diffusion of bound water in the cell walls. In the multi-phase model, the two water phases are separated, and the coupling between them is defined through a sorption rate. Furthermore, an average between the temperature-dependent adsorption and desorption isotherms is used. In previous works by some of the authors, this approach was found very suitable to study the moisture transport in uncoated and coated stress-laminated timber decks. Compared to previous works, the hygro-thermal fluxes on the external surfaces include the influence of the absorbed solar radiation during the time and consequently, the temperatures on the surfaces exposed to the sun are higher. This affects the whole hygro-thermal response of the timber component. The multi-phase model, implemented in a user subroutine of Abaqus FEM code, provides the distribution of the moisture content, the temperature and the relative humidity in a volume of the timber deck. As a case study, the hygro-thermal data in wood are collected from the ongoing monitoring of the stress-laminated timber deck of Tapiola Bridge in Finland, based on integrated humidity-temperature sensors and the numerical results are found in good agreement with the measurements. The proposed model, used to assist the monitoring, can contribute to reducing the maintenance costs of bridges, as well as the cost of instrumentation, and increase safety.Keywords: moisture content, multi-phase models, solar radiation, timber decks, FEM
Procedia PDF Downloads 1752829 Design of a Mhealth Therapy Management to Maintain Therapy Outcomes after Bariatric Surgery
Authors: A. Dudek, P. Tylec, G. Torbicz, P. Duda, K. Proniewska, P. Major, M. Pedziwiatr
Abstract:
Background: Conservative treatments of obesity, based only on a proper diet and physical activity, without the support of an interdisciplinary team of specialist does not bring satisfactory bariatric results. Long-term maintenance of a proper metabolic results after rapid weight loss due to bariatric surgery requires engagement from patients. Mobile health tool may offer alternative model that enhance participant engagement in keeping the therapy. Objective: We aimed to assess the influence of constant monitoring and subsequent motivational alerts in perioperative period and on post-operative effects in the bariatric patients. As well as the study was designed to identify factors conductive urge to change lifestyle after surgery. Methods: This prospective clinical control study was based on a usage of a designed prototype of bariatric mHealth system. The prepared application comprises central data management with a comprehensible interface dedicated for patients and data transfer module as a physician’s platform. Motivation system of a platform consist of motivational alerts, graphic outcome presentation, and patient communication center. Generated list of patients requiring urgent consultation and possibility of a constant contact with a specialist provide safety zone. 31 patients were enrolled in continuous monitoring program during a 6-month period along with typical follow-up visits. After one year follow-up, all patients were examined. Results: There were 20 active users of the proposed monitoring system during the entire duration of the study. After six months, 24 patients took a part in a control by telephone questionnaires. Among them, 75% confirmed that the application concept was an important element in the treatment. Active users of the application indicated as the most valuable features: motivation to continue treatment (11 users), graphical presentation of weight loss, and other parameters (7 users), the ability to contact a doctor (3 users). The three main drawbacks are technical errors (9 users), tedious questionnaires inside the application (5 users), and time-consuming tasks inside the system (2 users). Conclusions: Constant monitoring and successive motivational alerts to continue treatment is an appropriate tool in the treatment after bariatric surgery, mainly in the early post-operative period. Graphic presentation of data and continuous connection with a clinical staff seemed to be an element of motivation to continue treatment and a sense of security.Keywords: bariatric surgery, mHealth, mobile health tool, obesity
Procedia PDF Downloads 1132828 Smart Sensor Data to Predict Machine Performance with IoT-Based Machine Learning and Artificial Intelligence
Authors: C. J. Rossouw, T. I. van Niekerk
Abstract:
The global manufacturing industry is utilizing the internet and cloud-based services to further explore the anatomy and optimize manufacturing processes in support of the movement into the Fourth Industrial Revolution (4IR). The 4IR from a third world and African perspective is hindered by the fact that many manufacturing systems that were developed in the third industrial revolution are not inherently equipped to utilize the internet and services of the 4IR, hindering the progression of third world manufacturing industries into the 4IR. This research focuses on the development of a non-invasive and cost-effective cyber-physical IoT system that will exploit a machine’s vibration to expose semantic characteristics in the manufacturing process and utilize these results through a real-time cloud-based machine condition monitoring system with the intention to optimize the system. A microcontroller-based IoT sensor was designed to acquire a machine’s mechanical vibration data, process it in real-time, and transmit it to a cloud-based platform via Wi-Fi and the internet. Time-frequency Fourier analysis was applied to the vibration data to form an image representation of the machine’s behaviour. This data was used to train a Convolutional Neural Network (CNN) to learn semantic characteristics in the machine’s behaviour and relate them to a state of operation. The same data was also used to train a Convolutional Autoencoder (CAE) to detect anomalies in the data. Real-time edge-based artificial intelligence was achieved by deploying the CNN and CAE on the sensor to analyse the vibration. A cloud platform was deployed to visualize the vibration data and the results of the CNN and CAE in real-time. The cyber-physical IoT system was deployed on a semi-automated metal granulation machine with a set of trained machine learning models. Using a single sensor, the system was able to accurately visualize three states of the machine’s operation in real-time. The system was also able to detect a variance in the material being granulated. The research demonstrates how non-IoT manufacturing systems can be equipped with edge-based artificial intelligence to establish a remote machine condition monitoring system.Keywords: IoT, cyber-physical systems, artificial intelligence, manufacturing, vibration analytics, continuous machine condition monitoring
Procedia PDF Downloads 882827 Comparison of On-Site Stormwater Detention Real Performance and Theoretical Simulations
Authors: Pedro P. Drumond, Priscilla M. Moura, Marcia M. L. P. Coelho
Abstract:
The purpose of On-site Stormwater Detention (OSD) system is to promote the detention of addition stormwater runoff caused by impervious areas, in order to maintain the peak flow the same as the pre-urbanization condition. In recent decades, these systems have been built in many cities around the world. However, its real efficiency continues to be unknown due to the lack of research, especially with regard to monitoring its real performance. Thus, this study aims to compare the water level monitoring data of an OSD built in Belo Horizonte/Brazil with the results of theoretical methods simulations, usually adopted in OSD design. There were made two theoretical simulations, one using the Rational Method and Modified Puls method and another using the Soil Conservation Service (SCS) method and Modified Puls method. The monitoring data were obtained with a water level sensor, installed inside the reservoir and connected to a data logger. The comparison of OSD performance was made for 48 rainfall events recorded from April/2015 to March/2017. The comparison of maximum water levels in the OSD showed that the results of the simulations with Rational/Puls and SCS/Puls methods were, on average 33% and 73%, respectively, lower than those monitored. The Rational/Puls results were significantly higher than the SCS/Puls results, only in the events with greater frequency. In the events with average recurrence interval of 5, 10 and 200 years, the maximum water heights were similar in both simulations. Also, the results showed that the duration of rainfall events was close to the duration of monitored hydrograph. The rising time and recession time of the hydrographs calculated with the Rational Method represented better the monitored hydrograph than SCS Method. The comparison indicates that the real discharge coefficient value could be higher than 0.61, adopted in Puls simulations. New researches evaluating OSD real performance should be developed. In order to verify the peak flow damping efficiency and the value of the discharge coefficient is necessary to monitor the inflow and outflow of an OSD, in addition to monitor the water level inside it.Keywords: best management practices, on-site stormwater detention, source control, urban drainage
Procedia PDF Downloads 1882826 Detection of Hepatitis B by the Use of Artifical Intelegence
Authors: Shizra Waris, Bilal Shoaib, Munib Ahmad
Abstract:
Background; The using of clinical decision support systems (CDSSs) may recover unceasing disease organization, which requires regular visits to multiple health professionals, treatment monitoring, disease control, and patient behavior modification. The objective of this survey is to determine if these CDSSs improve the processes of unceasing care including diagnosis, treatment, and monitoring of diseases. Though artificial intelligence is not a new idea it has been widely documented as a new technology in computer science. Numerous areas such as education business, medical and developed have made use of artificial intelligence Methods: The survey covers articles extracted from relevant databases. It uses search terms related to information technology and viral hepatitis which are published between 2000 and 2016. Results: Overall, 80% of studies asserted the profit provided by information technology (IT); 75% of learning asserted the benefits concerned with medical domain;25% of studies do not clearly define the added benefits due IT. The CDSS current state requires many improvements to hold up the management of liver diseases such as HCV, liver fibrosis, and cirrhosis. Conclusion: We concluded that the planned model gives earlier and more correct calculation of hepatitis B and it works as promising tool for calculating of custom hepatitis B from the clinical laboratory data.Keywords: detection, hapataties, observation, disesese
Procedia PDF Downloads 1572825 Monitoring Large-Coverage Forest Canopy Height by Integrating LiDAR and Sentinel-2 Images
Authors: Xiaobo Liu, Rakesh Mishra, Yun Zhang
Abstract:
Continuous monitoring of forest canopy height with large coverage is essential for obtaining forest carbon stocks and emissions, quantifying biomass estimation, analyzing vegetation coverage, and determining biodiversity. LiDAR can be used to collect accurate woody vegetation structure such as canopy height. However, LiDAR’s coverage is usually limited because of its high cost and limited maneuverability, which constrains its use for dynamic and large area forest canopy monitoring. On the other hand, optical satellite images, like Sentinel-2, have the ability to cover large forest areas with a high repeat rate, but they do not have height information. Hence, exploring the solution of integrating LiDAR data and Sentinel-2 images to enlarge the coverage of forest canopy height prediction and increase the prediction repeat rate has been an active research topic in the environmental remote sensing community. In this study, we explore the potential of training a Random Forest Regression (RFR) model and a Convolutional Neural Network (CNN) model, respectively, to develop two predictive models for predicting and validating the forest canopy height of the Acadia Forest in New Brunswick, Canada, with a 10m ground sampling distance (GSD), for the year 2018 and 2021. Two 10m airborne LiDAR-derived canopy height models, one for 2018 and one for 2021, are used as ground truth to train and validate the RFR and CNN predictive models. To evaluate the prediction performance of the trained RFR and CNN models, two new predicted canopy height maps (CHMs), one for 2018 and one for 2021, are generated using the trained RFR and CNN models and 10m Sentinel-2 images of 2018 and 2021, respectively. The two 10m predicted CHMs from Sentinel-2 images are then compared with the two 10m airborne LiDAR-derived canopy height models for accuracy assessment. The validation results show that the mean absolute error (MAE) for year 2018 of the RFR model is 2.93m, CNN model is 1.71m; while the MAE for year 2021 of the RFR model is 3.35m, and the CNN model is 3.78m. These demonstrate the feasibility of using the RFR and CNN models developed in this research for predicting large-coverage forest canopy height at 10m spatial resolution and a high revisit rate.Keywords: remote sensing, forest canopy height, LiDAR, Sentinel-2, artificial intelligence, random forest regression, convolutional neural network
Procedia PDF Downloads 922824 Hybrid Solutions in Physicochemical Processes for the Removal of Turbidity in Andean Reservoirs
Authors: María Cárdenas Gaudry, Gonzalo Ramces Fano Miranda
Abstract:
Sediment removal is very important in the purification of water, not only for reasons of visual perception but also because of its association with odor and taste problems. The Cuchoquesera reservoir, which is in the Andean region of Ayacucho (Peru) at an altitude of 3,740 meters above sea level, visually presents suspended particles and organic impurities indicating that it contains water of dubious quality to deduce that it is suitable for direct consumption of human beings. In order to quantitatively know the degree of impurities, water quality monitoring was carried out from February to August 2018, in which four sampling stations were established in the reservoir. The selected measured parameters were electrical conductivity, total dissolved solids, pH, color, turbidity, and sludge volume. The indicators of the studied parameters exceed the permissible limits except for electrical conductivity (190 μS/cm) and total dissolved solids (255 mg/L). In this investigation, the best combination and the optimal doses of reagents were determined that allowed the removal of sediments from the waters of the Cuchoquesera reservoir, through the physicochemical process of coagulation-flocculation. In order to improve this process during the rainy season, six combinations of reagents were evaluated, made up of three coagulants (ferric chloride, ferrous sulfate, and aluminum sulfate) and two natural flocculants: prickly pear powder (Opuntia ficus-indica) and tara gum (Caesalpinia spinoza). For each combination of reagents, jar tests were developed following the central composite experimental design (CCED), where the design factors were the doses of coagulant and flocculant and the initial turbidity. The results of the jar tests were adjusted to mathematical models, obtaining that to treat the water from the Cuchoquesera reservoir, with a turbidity of 150 UTN and a color of 137 U Pt-Co, 27.9 mg/L of the coagulant aluminum sulfate with 3 mg/L of the natural tara gum flocculant to produce a purified water quality of 1.7 UTN of turbidity and 3.2 U Pt-Co of apparent color. The estimated cost of the dose of coagulant and flocculant found was 0.22 USD/m³. This is how “grey-green” technologies can be used as a combination in nature-based solutions in water treatment, in this case, to achieve potability, making it more sustainable, especially economically, if green technology is available at the site of application of the nature-based hybrid solution. This research is a demonstration of the compatibility of natural coagulants/flocculants with other treatment technologies in the integrated/hybrid treatment process, such as the possibility of hybridizing natural coagulants with other types of coagulants.Keywords: prickly pear powder, tara gum, nature-based solutions, aluminum sulfate, jar test, turbidity, coagulation, flocculation
Procedia PDF Downloads 1082823 Open Source Cloud Managed Enterprise WiFi
Authors: James Skon, Irina Beshentseva, Michelle Polak
Abstract:
Wifi solutions come in two major classes. Small Office/Home Office (SOHO) WiFi, characterized by inexpensive WiFi routers, with one or two service set identifiers (SSIDs), and a single shared passphrase. These access points provide no significant user management or monitoring, and no aggregation of monitoring and control for multiple routers. The other solution class is managed enterprise WiFi solutions, which involve expensive Access Points (APs), along with (also costly) local or cloud based management components. These solutions typically provide portal based login, per user virtual local area networks (VLANs), and sophisticated monitoring and control across a large group of APs. The cost for deploying and managing such managed enterprise solutions is typically about 10 fold that of inexpensive consumer APs. Low revenue organizations, such as schools, non-profits, non-government organizations (NGO's), small businesses, and even homes cannot easily afford quality enterprise WiFi solutions, though they may need to provide quality WiFi access to their population. Using available lower cost Wifi solutions can significantly reduce their ability to provide reliable, secure network access. This project explored and created a new approach for providing secured managed enterprise WiFi based on low cost hardware combined with both new and existing (but modified) open source software. The solution provides a cloud based management interface which allows organizations to aggregate the configuration and management of small, medium and large WiFi solutions. It utilizes a novel approach for user management, giving each user a unique passphrase. It provides unlimited SSID's across an unlimited number of WiFI zones, and the ability to place each user (and all their devices) on their own VLAN. With proper configuration it can even provide user local services. It also allows for users' usage and quality of service to be monitored, and for users to be added, enabled, and disabled at will. As inferred above, the ultimate goal is to free organizations with limited resources from the expense of a commercial enterprise WiFi, while providing them with most of the qualities of such a more expensive managed solution at a fraction of the cost.Keywords: wifi, enterprise, cloud, managed
Procedia PDF Downloads 972822 Assessment of Urban Environmental Noise in Urban Habitat: A Spatial Temporal Study
Authors: Neha Pranav Kolhe, Harithapriya Vijaye, Arushi Kamle
Abstract:
The economic growth engines are urban regions. As the economy expands, so does the need for peace and quiet, and noise pollution is one of the important social and environmental issue. Health and wellbeing are at risk from environmental noise pollution. Because of urbanisation, population growth, and the consequent rise in the usage of increasingly potent, diverse, and highly mobile sources of noise, it is now more severe and pervasive than ever before, and it will only become worse. Additionally, it will expand as long as there is an increase in air, train, and highway traffic, which continue to be the main contributors of noise pollution. The current study will be conducted in two zones of class I city of central India (population range: 1 million–4 million). Total 56 measuring points were chosen to assess noise pollution. The first objective evaluates the noise pollution in various urban habitats determined as formal and informal settlement. It identifies the comparison of noise pollution within the settlements using T- Test analysis. The second objective assess the noise pollution in silent zones (as stated in Central Pollution Control Board) in a hierarchical way. It also assesses the noise pollution in the settlements and compares with prescribed permissible limits using class I sound level equipment. As appropriate indices, equivalent noise level on the (A) frequency weighting network, minimum sound pressure level and maximum sound pressure level were computed. The survey is conducted for a period of 1 week. Arc GIS is used to plot and map the temporal and spatial variability in urban settings. It is discovered that noise levels at most stations, particularly at heavily trafficked crossroads and subway stations, were significantly different and higher than acceptable limits and squares. The study highlights the vulnerable areas that should be considered while city planning. The study demands area level planning while preparing a development plan. It also demands attention to noise pollution from the perspective of residential and silent zones. The city planning in urban areas neglects the noise pollution assessment at city level. This contributes to that, irrespective of noise pollution guidelines, the ground reality is far away from its applicability. The result produces incompatible land use on a neighbourhood scale with respect to noise pollution. The study's final results will be useful to policymakers, architects and administrators in developing countries. This will be useful for noise pollution in urban habitat governance by efficient decision making and policy formulation to increase the profitability of these systems.Keywords: noise pollution, formal settlements, informal settlements, built environment, silent zone, residential area
Procedia PDF Downloads 1182821 Contactless Heart Rate Measurement System based on FMCW Radar and LSTM for Automotive Applications
Authors: Asma Omri, Iheb Sifaoui, Sofiane Sayahi, Hichem Besbes
Abstract:
Future vehicle systems demand advanced capabilities, notably in-cabin life detection and driver monitoring systems, with a particular emphasis on drowsiness detection. To meet these requirements, several techniques employ artificial intelligence methods based on real-time vital sign measurements. In parallel, Frequency-Modulated Continuous-Wave (FMCW) radar technology has garnered considerable attention in the domains of healthcare and biomedical engineering for non-invasive vital sign monitoring. FMCW radar offers a multitude of advantages, including its non-intrusive nature, continuous monitoring capacity, and its ability to penetrate through clothing. In this paper, we propose a system utilizing the AWR6843AOP radar from Texas Instruments (TI) to extract precise vital sign information. The radar allows us to estimate Ballistocardiogram (BCG) signals, which capture the mechanical movements of the body, particularly the ballistic forces generated by heartbeats and respiration. These signals are rich sources of information about the cardiac cycle, rendering them suitable for heart rate estimation. The process begins with real-time subject positioning, followed by clutter removal, computation of Doppler phase differences, and the use of various filtering methods to accurately capture subtle physiological movements. To address the challenges associated with FMCW radar-based vital sign monitoring, including motion artifacts due to subjects' movement or radar micro-vibrations, Long Short-Term Memory (LSTM) networks are implemented. LSTM's adaptability to different heart rate patterns and ability to handle real-time data make it suitable for continuous monitoring applications. Several crucial steps were taken, including feature extraction (involving amplitude, time intervals, and signal morphology), sequence modeling, heart rate estimation through the analysis of detected cardiac cycles and their temporal relationships, and performance evaluation using metrics such as Root Mean Square Error (RMSE) and correlation with reference heart rate measurements. For dataset construction and LSTM training, a comprehensive data collection system was established, integrating the AWR6843AOP radar, a Heart Rate Belt, and a smart watch for ground truth measurements. Rigorous synchronization of these devices ensured data accuracy. Twenty participants engaged in various scenarios, encompassing indoor and real-world conditions within a moving vehicle equipped with the radar system. Static and dynamic subject’s conditions were considered. The heart rate estimation through LSTM outperforms traditional signal processing techniques that rely on filtering, Fast Fourier Transform (FFT), and thresholding. It delivers an average accuracy of approximately 91% with an RMSE of 1.01 beat per minute (bpm). In conclusion, this paper underscores the promising potential of FMCW radar technology integrated with artificial intelligence algorithms in the context of automotive applications. This innovation not only enhances road safety but also paves the way for its integration into the automotive ecosystem to improve driver well-being and overall vehicular safety.Keywords: ballistocardiogram, FMCW Radar, vital sign monitoring, LSTM
Procedia PDF Downloads 722820 The Data Quality Model for the IoT based Real-time Water Quality Monitoring Sensors
Authors: Rabbia Idrees, Ananda Maiti, Saurabh Garg, Muhammad Bilal Amin
Abstract:
IoT devices are the basic building blocks of IoT network that generate enormous volume of real-time and high-speed data to help organizations and companies to take intelligent decisions. To integrate this enormous data from multisource and transfer it to the appropriate client is the fundamental of IoT development. The handling of this huge quantity of devices along with the huge volume of data is very challenging. The IoT devices are battery-powered and resource-constrained and to provide energy efficient communication, these IoT devices go sleep or online/wakeup periodically and a-periodically depending on the traffic loads to reduce energy consumption. Sometime these devices get disconnected due to device battery depletion. If the node is not available in the network, then the IoT network provides incomplete, missing, and inaccurate data. Moreover, many IoT applications, like vehicle tracking and patient tracking require the IoT devices to be mobile. Due to this mobility, If the distance of the device from the sink node become greater than required, the connection is lost. Due to this disconnection other devices join the network for replacing the broken-down and left devices. This make IoT devices dynamic in nature which brings uncertainty and unreliability in the IoT network and hence produce bad quality of data. Due to this dynamic nature of IoT devices we do not know the actual reason of abnormal data. If data are of poor-quality decisions are likely to be unsound. It is highly important to process data and estimate data quality before bringing it to use in IoT applications. In the past many researchers tried to estimate data quality and provided several Machine Learning (ML), stochastic and statistical methods to perform analysis on stored data in the data processing layer, without focusing the challenges and issues arises from the dynamic nature of IoT devices and how it is impacting data quality. A comprehensive review on determining the impact of dynamic nature of IoT devices on data quality is done in this research and presented a data quality model that can deal with this challenge and produce good quality of data. This research presents the data quality model for the sensors monitoring water quality. DBSCAN clustering and weather sensors are used in this research to make data quality model for the sensors monitoring water quality. An extensive study has been done in this research on finding the relationship between the data of weather sensors and sensors monitoring water quality of the lakes and beaches. The detailed theoretical analysis has been presented in this research mentioning correlation between independent data streams of the two sets of sensors. With the help of the analysis and DBSCAN, a data quality model is prepared. This model encompasses five dimensions of data quality: outliers’ detection and removal, completeness, patterns of missing values and checks the accuracy of the data with the help of cluster’s position. At the end, the statistical analysis has been done on the clusters formed as the result of DBSCAN, and consistency is evaluated through Coefficient of Variation (CoV).Keywords: clustering, data quality, DBSCAN, and Internet of things (IoT)
Procedia PDF Downloads 1392819 Peculiarities of Snow Cover in Belarus
Authors: Aleh Meshyk, Anastasiya Vouchak
Abstract:
On the average snow covers Belarus for 75 days in the south-west and 125 days in the north-east. During the cold season snowpack often destroys due to thaws, especially at the beginning and end of winter. Over 50% of thawing days have a positive mean daily temperature, which results in complete snow melting. For instance, in December 10% of thaws occur at 4 С mean daily temperature. Stable snowpack lying for over a month forms in the north-east in the first decade of December but in the south-west in the third decade of December. The cover disappears in March: in the north-east in the last decade but in the south-west in the first decade. This research takes into account that precipitation falling during a cold season could be not only liquid and solid but also a mixed type (about 10-15 % a year). Another important feature of snow cover is its density. In Belarus, the density of freshly fallen snow ranges from 0.08-0.12 g/cm³ in the north-east to 0.12-0.17 g/cm³ in the south-west. Over time, snow settles under its weight and after melting and refreezing. Averaged annual density of snow at the end of January is 0.23-0.28 g/сm³, in February – 0.25-0.30 g/сm³, in March – 0.29-0.36 g/сm³. Sometimes it can be over 0.50 g/сm³ if the snow melts too fast. The density of melting snow saturated with water can reach 0.80 g/сm³. Average maximum of snow depth is 15-33 cm: minimum is in Brest, maximum is in Lyntupy. Maximum registered snow depth ranges within 40-72 cm. The water content in snowpack, as well as its depth and density, reaches its maximum in the second half of February – beginning of March. Spatial distribution of the amount of liquid in snow corresponds to the trend described above, i.e. it increases in the direction from south-west to north-east and on the highlands. Average annual value of maximum water content in snow ranges from 35 mm in the south-west to 80-100 mm in the north-east. The water content in snow is over 80 mm on the central Belarusian highland. In certain years it exceeds 2-3 times the average annual values. Moderate water content in snow (80-95 mm) is characteristic of western highlands. Maximum water content in snow varies over the country from 107 mm (Brest) to 207 mm (Novogrudok). Maximum water content in snow varies significantly in time (in years), which is confirmed by high variation coefficient (Cv). Maximums (0.62-0.69) are in the south and south-west of Belarus. Minimums (0.42-0.46) are in central and north-eastern Belarus where snow cover is more stable. Since 1987 most gauge stations in Belarus have observed a trend to a decrease in water content in snow. It is confirmed by the research. The biggest snow cover forms on the highlands in central and north-eastern Belarus. Novogrudok, Minsk, Volkovysk, and Sventayny highlands are a natural orographic barrier which prevents snow-bringing air masses from penetrating inside the country. The research is based on data from gauge stations in Belarus registered from 1944 to 2014.Keywords: density, depth, snow, water content in snow
Procedia PDF Downloads 1612818 Stability of Canola Varieties for Oil Percent in Four Regions of Iran
Authors: Seyed Mohammad Nasir Mousavi, Amir Mashayekh, Pasha Hejazi, Sanaz Kanani Zadeh Khalkhali
Abstract:
To determine the stability of the oil percent canola varieties, an experiment was done in a randomized complete block design with four replications in four research stations of the country Shahrood, Esfahan, Kermanshah, Varamin. Analysis of variance showed that there is cultivars considerable variability in the percentage of oil. The results showed that the coefficient of variation of oil Hyola 401 and Hyola308 stability and flexibility are high. Cultivars Cooper and Likord are minimum variance Shukla that stable for the percentage of oil Based on the chart AMMI 1, cultivars Zarfam and Hyola 401 are of oil percentage than other varieties had higher stability. On the chart AMMI2, cultivars Karun and Hyola 308 are identified as stable, also location Isfahan is stableKeywords: canola, stability, AMMI, variance Shukla
Procedia PDF Downloads 378