Search results for: learning process
19751 Federated Learning in Healthcare
Authors: Ananya Gangavarapu
Abstract:
Convolutional Neural Networks (CNN) based models are providing diagnostic capabilities on par with the medical specialists in many specialty areas. However, collecting the medical data for training purposes is very challenging because of the increased regulations around data collections and privacy concerns around personal health data. The gathering of the data becomes even more difficult if the capture devices are edge-based mobile devices (like smartphones) with feeble wireless connectivity in rural/remote areas. In this paper, I would like to highlight Federated Learning approach to mitigate data privacy and security issues.Keywords: deep learning in healthcare, data privacy, federated learning, training in distributed environment
Procedia PDF Downloads 14119750 A Discussion on the Design Practice of College Students for Virtual Avatars in Social Media Ecology
Authors: Mei-Chun Chang
Abstract:
Due to digital transformation and social media development in recent years, various real-time interactive digital tools have been developed to meet the design demands for virtual reality avatars, which also promote digital content learners' active participation in the creation process. As a result, new social media design tools have the characteristics of intuitive operation with a simplified interface for fast production, from which works can be simply created. This study carried out observations, records, questionnaire surveys, and interviews on the creation and learning of visual avatars made by students of the National Taiwan University of Science and Technology (NTUST) with the VRoid Studio 3D modeling tool so as to explore their learning effectiveness on the design of visual avatars. According to the results of this study, the VRoid Studio 3D character modeling tool has a positive impact on the learners and helps to improve their learning effectiveness. Students with low academic achievements said that they could complete the conceived modeling with their own thinking by using the design tool, which increased their sense of accomplishment. Conclusions are drawn according to the results, and relevant future suggestions are put forward.Keywords: virtual avatar, character design, social media, vroid studio, creation, digital learning
Procedia PDF Downloads 19019749 A Deep Learning Approach for the Predictive Quality of Directional Valves in the Hydraulic Final Test
Authors: Christian Neunzig, Simon Fahle, Jürgen Schulz, Matthias Möller, Bernd Kuhlenkötter
Abstract:
The increasing use of deep learning applications in production is becoming a competitive advantage. Predictive quality enables the assurance of product quality by using data-driven forecasts via machine learning models as a basis for decisions on test results. The use of real Bosch production data along the value chain of hydraulic valves is a promising approach to classifying the leakage of directional valves.Keywords: artificial neural networks, classification, hydraulics, predictive quality, deep learning
Procedia PDF Downloads 24419748 In-Context Meta Learning for Automatic Designing Pretext Tasks for Self-Supervised Image Analysis
Authors: Toktam Khatibi
Abstract:
Self-supervised learning (SSL) includes machine learning models that are trained on one aspect and/or one part of the input to learn other aspects and/or part of it. SSL models are divided into two different categories, including pre-text task-based models and contrastive learning ones. Pre-text tasks are some auxiliary tasks learning pseudo-labels, and the trained models are further fine-tuned for downstream tasks. However, one important disadvantage of SSL using pre-text task solving is defining an appropriate pre-text task for each image dataset with a variety of image modalities. Therefore, it is required to design an appropriate pretext task automatically for each dataset and each downstream task. To the best of our knowledge, the automatic designing of pretext tasks for image analysis has not been considered yet. In this paper, we present a framework based on In-context learning that describes each task based on its input and output data using a pre-trained image transformer. Our proposed method combines the input image and its learned description for optimizing the pre-text task design and its hyper-parameters using Meta-learning models. The representations learned from the pre-text tasks are fine-tuned for solving the downstream tasks. We demonstrate that our proposed framework outperforms the compared ones on unseen tasks and image modalities in addition to its superior performance for previously known tasks and datasets.Keywords: in-context learning (ICL), meta learning, self-supervised learning (SSL), vision-language domain, transformers
Procedia PDF Downloads 8019747 Pros and Cons of Teaching/Learning Online during COVID-19: English Department at Tahri Muhammed University of Bechar as a Case Study
Authors: Fatiha Guessabi
Abstract:
Students of the Tahri Muhammed University of Bechar shifted to the virtual platform using E-learning platforms when the lockdown started due to the Coronavirus. This paper aims to explore the advantages and inconveniences of online learning and teaching in EFL classes at Tahri Mohammed University. For this investigation, a questionnaire was addressed to EFL students and an interview was arranged with EFL teachers. Data analysis was obtained from 09 teachers and 70 students. After the investigation, the results show that some of the most applied educational technologies and applications are used to turn online EFL classes effectively exciting. Thus, EFL classes became more interactive. Although learners give positive viewpoints about online learning/teaching, they prefer to learn in the classroom.Keywords: advantages, disadvantages, COVID19, EFL, online learning/teaching, university of Bechar
Procedia PDF Downloads 16419746 Self-Reliant and Auto-Directed Learning: Modes, Elements, Fields and Scopes
Authors: Habibollah Mashhady, Behruz Lotfi, Mohammad Doosti, Moslem Fatollahi
Abstract:
An exploration of the related literature reveals that all instruction methods aim at training autonomous learners. After the turn of second language pedagogy toward learner-oriented strategies, learners’ needs were more focused. Yet; the historical, social and political aspects of learning were still neglected. The present study investigates the notion of autonomous learning and explains its various facets from a pedagogical point of view. Furthermore; different elements, fields and scopes of autonomous learning will be explored. After exploring different aspects of autonomy, it is postulated that liberatory autonomy is highlighted since it not only covers social autonomy but also reveals learners’ capabilities and human potentials. It is also recommended that learners consider different elements of autonomy such as motivation, knowledge, confidence, and skills.Keywords: critical pedagogy, social autonomy, academic learning, cultural notions
Procedia PDF Downloads 46119745 Innovative Teaching Learning Techniques and Learning Difficulties of Adult Learners in Literacy Education Programmes in Calabar Metropolis, Cross River State, Nigeria
Authors: Simon Ibor Akpama
Abstract:
The study investigated the extent to which innovative teaching-learning techniques can influence and attenuate learning difficulties among adult learners participating in different literacy education programmes in Calabar Metropolis, Cross River State, Nigeria. A quasi-experimental design was adopted to collect data from a sample size of 150 participants of the programme. The sample was drawn using the simple random sampling method. As an experimental study, the 150 participants were divided into two equal groups –the first was the experimental group while the second was the control. A pre-test was administered to the two groups which were later exposed to a post-test after treatment. Two instruments were used for data collection. The first was the guide for the Literacy Learning Difficulties Inventory (LLDI). Three hypotheses were postulated and tested as .05 level of significance using Analysis of Covariance (ANOVA) test statistics. Results of the analysis firstly showed that the two groups (treatment and control) did not differ in the pre-test regarding their literacy learning difficulties. Secondly, the result showed that for each hypothesis, innovative teaching-learning techniques significantly influenced adult learners’ (participants) literacy learning difficulties. Based on these findings, the study recommends the use of innovative teaching-learning techniques in adult literacy education centres to mitigate the learning difficulties of adult learners in literacy education programmes in Calabar Metropolis.Keywords: teaching, learning, techniques, innovative, difficulties, programme
Procedia PDF Downloads 12219744 Enhancing Nursing Teams' Learning: The Role of Team Accountability and Team Resources
Authors: Sarit Rashkovits, Anat Drach- Zahavy
Abstract:
The research considers the unresolved question regarding the link between nursing team accountability and team learning and the resulted team performance in nursing teams. Empirical findings reveal disappointing evidence regarding improvement in healthcare safety and quality. Therefore, there is a need in advancing managerial knowledge regarding the factors that enhance constant healthcare teams' proactive improvement efforts, meaning team learning. We first aim to identify the organizational resources that are needed for team learning in nursing teams; second, to test the moderating role of nursing teams' learning resources in the team accountability-team learning link; and third, to test the moderated mediation model suggesting that nursing teams' accountability affects team performance by enhancing team learning when relevant resources are available to the team. We point on the intervening role of three team learning resources, namely time availability, team autonomy and performance data on the relation between team accountability and team learning and test the proposed moderated mediation model on 44 nursing teams (462 nurses and 44 nursing managers). The results showed that, as was expected, there was a positive significant link between team accountability and team learning and the subsequent team performance when time availability and team autonomy were high rather than low. Nevertheless, the positive team accountability- team learning link was significant when team performance feedback was low rather than high. Accordingly, there was a positive mediated effect of team accountability on team performance via team learning when either time availability or team autonomy were high and the availability of team performance data was low. Nevertheless, this mediated effect was negative when time availability and team autonomy were low and the availability of team performance data was high. We conclude that nurturing team accountability is not enough for achieving nursing teams' learning and the subsequent improved team performance. Rather there is need to provide nursing teams with adequate time, autonomy, and be cautious with performance feedback, as the latter may motivate nursing teams to repeat routine work strategies rather than explore improved ones.Keywords: nursing teams' accountability, nursing teams' learning, performance feedback, teams' autonomy
Procedia PDF Downloads 26419743 English Learning Strategy and Proficiency Level of the First Year Students, International College, Suan Sunandha Rajabhat University
Authors: Kanokrat Kunasaraphan
Abstract:
The purpose of the study was to identify whether English language learning strategies commonly used by the first year students at International College, Suan Sunandha Rajabhat University include six direct and indirect strategies. The study served to explore whether there was a difference in these students’ use of six direct and indirect English learning strategies between the different levels of their English proficiency. The questionnaire used as a research instrument was comprised of two parts: General information of participants and the Strategy Inventory for Language Learning (SILL). The researcher employed descriptive statistics and one-way ANOVA (F-test) to analyze the data. The results of the analysis revealed that English learning strategies commonly used by the first year students include six direct and indirect strategies, including differences in strategy use of the students with different levels of English proficiency. Recommendations for future research include the study of language learning strategy use with other research methods focusing on other languages, specific language skills, and/or the relationship of language learning strategy use and other factors in other programs and/or institutions.Keywords: English learning strategies, direct strategies, indirect strategies, proficiency level
Procedia PDF Downloads 30319742 Teacher Education: Teacher Development and Support
Authors: Khadem Hichem
Abstract:
With the new technology challenges, dynamics and challenges of the contemporary world, most teachers are struggling to maintain effective and successful teaching /learning environment for learners. Teachers as a key to the success of reforms in the educational setting, they must improve their competencies to teach effectively. Many researchers emphasis on the ongoing professional development of the teacher by enhancing their experiences and encouraging their responsibility for learning, and thus promoting self-reliance, collaboration, and reflection. In short, teachers are considered as learners and they need to learn together. The educational system must support, both conceptually and financially, the teachers’ development as lifelong learners Teachers need opportunities to grow in language proficiency and in knowledge. Changing nature of language and culture in the world, all teachers must have opportunities to update their knowledge and practices. Many researchers in the field of foreign or additional languages indicate that teachers keep side by side of effective instructional practices and they need special support with the challenging task of developing and administering proficiency tests to their students. For significant change to occur, each individual teacher’s needs must be addressed. The teacher must be involved experientially in the process of development, since, by itself, knowledge of how to change does not mean change will be initiated. For improvement to occur, new skills have to be guided, practiced, and reflected upon in collaboration with colleagues. Clearly, teachers are at different places developmentally; therefore, allowances for various entry levels and individual differences need to be built into the professional development structure. Objectives must be meaningful to the participant and teacher improvement must be stated terms of student knowledge, student performance, and motivation. The most successful professional development process acknowledges the student-centered nature of good teaching. This paper highlights the importance of teacher professional development process and institutional supports as way to enhance good teaching and learning environment.Keywords: teacher professional development, teacher competencies, institutional support, teacher education
Procedia PDF Downloads 35419741 Review on Rainfall Prediction Using Machine Learning Technique
Authors: Prachi Desai, Ankita Gandhi, Mitali Acharya
Abstract:
Rainfall forecast is mainly used for predictions of rainfall in a specified area and determining their future rainfall conditions. Rainfall is always a global issue as it affects all major aspects of one's life. Agricultural, fisheries, forestry, tourism industry and other industries are widely affected by these conditions. The studies have resulted in insufficient availability of water resources and an increase in water demand in the near future. We already have a new forecast system that uses the deep Convolutional Neural Network (CNN) to forecast monthly rainfall and climate changes. We have also compared CNN against Artificial Neural Networks (ANN). Machine Learning techniques that are used in rainfall predictions include ARIMA Model, ANN, LR, SVM etc. The dataset on which we are experimenting is gathered online over the year 1901 to 20118. Test results have suggested more realistic improvements than conventional rainfall forecasts.Keywords: ANN, CNN, supervised learning, machine learning, deep learning
Procedia PDF Downloads 20219740 Comprehensive Machine Learning-Based Glucose Sensing from Near-Infrared Spectra
Authors: Bitewulign Mekonnen
Abstract:
Context: This scientific paper focuses on the use of near-infrared (NIR) spectroscopy to determine glucose concentration in aqueous solutions accurately and rapidly. The study compares six different machine learning methods for predicting glucose concentration and also explores the development of a deep learning model for classifying NIR spectra. The objective is to optimize the detection model and improve the accuracy of glucose prediction. This research is important because it provides a comprehensive analysis of various machine-learning techniques for estimating aqueous glucose concentrations. Research Aim: The aim of this study is to compare and evaluate different machine-learning methods for predicting glucose concentration from NIR spectra. Additionally, the study aims to develop and assess a deep-learning model for classifying NIR spectra. Methodology: The research methodology involves the use of machine learning and deep learning techniques. Six machine learning regression models, including support vector machine regression, partial least squares regression, extra tree regression, random forest regression, extreme gradient boosting, and principal component analysis-neural network, are employed to predict glucose concentration. The NIR spectra data is randomly divided into train and test sets, and the process is repeated ten times to increase generalization ability. In addition, a convolutional neural network is developed for classifying NIR spectra. Findings: The study reveals that the SVMR, ETR, and PCA-NN models exhibit excellent performance in predicting glucose concentration, with correlation coefficients (R) > 0.99 and determination coefficients (R²)> 0.985. The deep learning model achieves high macro-averaging scores for precision, recall, and F1-measure. These findings demonstrate the effectiveness of machine learning and deep learning methods in optimizing the detection model and improving glucose prediction accuracy. Theoretical Importance: This research contributes to the field by providing a comprehensive analysis of various machine-learning techniques for estimating glucose concentrations from NIR spectra. It also explores the use of deep learning for the classification of indistinguishable NIR spectra. The findings highlight the potential of machine learning and deep learning in enhancing the prediction accuracy of glucose-relevant features. Data Collection and Analysis Procedures: The NIR spectra and corresponding references for glucose concentration are measured in increments of 20 mg/dl. The data is randomly divided into train and test sets, and the models are evaluated using regression analysis and classification metrics. The performance of each model is assessed based on correlation coefficients, determination coefficients, precision, recall, and F1-measure. Question Addressed: The study addresses the question of whether machine learning and deep learning methods can optimize the detection model and improve the accuracy of glucose prediction from NIR spectra. Conclusion: The research demonstrates that machine learning and deep learning methods can effectively predict glucose concentration from NIR spectra. The SVMR, ETR, and PCA-NN models exhibit superior performance, while the deep learning model achieves high classification scores. These findings suggest that machine learning and deep learning techniques can be used to improve the prediction accuracy of glucose-relevant features. Further research is needed to explore their clinical utility in analyzing complex matrices, such as blood glucose levels.Keywords: machine learning, signal processing, near-infrared spectroscopy, support vector machine, neural network
Procedia PDF Downloads 9419739 Developed CNN Model with Various Input Scale Data Evaluation for Bearing Faults Prognostics
Authors: Anas H. Aljemely, Jianping Xuan
Abstract:
Rolling bearing fault diagnosis plays a pivotal issue in the rotating machinery of modern manufacturing. In this research, a raw vibration signal and improved deep learning method for bearing fault diagnosis are proposed. The multi-dimensional scales of raw vibration signals are selected for evaluation condition monitoring system, and the deep learning process has shown its effectiveness in fault diagnosis. In the proposed method, employing an Exponential linear unit (ELU) layer in a convolutional neural network (CNN) that conducts the identical function on positive data, an exponential nonlinearity on negative inputs, and a particular convolutional operation to extract valuable features. The identification results show the improved method has achieved the highest accuracy with a 100-dimensional scale and increase the training and testing speed.Keywords: bearing fault prognostics, developed CNN model, multiple-scale evaluation, deep learning features
Procedia PDF Downloads 21019738 Online Classroom Instruction and Collaborative Learning: Problems and Prospects Among Undergraduate Students of Obafemi Awolowo University, Ile-Ife, Nigeria
Authors: Bello Theodora O., Animola Odunayo V., Owoade Johnson T.
Abstract:
With the advent of Covid-19, online classroom instruction became a very important mode of instruction delivery during which learners were engaged in both collaborative and online interactive learning process, but along with it are challenges as well as its deliverables. This study therefore investigated the various online platform used by the students for learning among fresh undergraduate students of Obafemi Awolowo University, Ile-Ife, Osun Sate. It also assessed the student’s perception towards online learning in the university and examined the influence of collaborative learning among the students. Lastly, it examined the problems that are associated with collaborative online learning instruction in the university. These were with a view to providing empirical information on problems and prospects of online classroom instruction among fresh undergraduate physical science students of Obafemi Awolowo University, Ile-Ife. The study employed a descriptive survey research technique. The population comprised all the fresh undergraduates in physical science departments of Obafemi Awolowo University, Ile-Ife. The sample consisted two hundred freshmen in physical science departments of Obafemi Awolowo University, Ile-Ife, who were selected using simple random techniques. During the selection, a questionnaire was used to collect data from the respondents. The data were analyzed using appropriate descriptive of frequency, simple percentage, and mean. Results showed that Google Meet 149(74.5%), Telegram 120(60.0%), and Google Classroom 143(71.5%), are the prominent online classroom instruction used by the students in Obafemi Awolowo University, Ile-Ife. The results also showed that the freshmen’s perception towards online classroom instruction in Obafemi Awolowo University, Ile-Ife is low with cluster mean of 2.97. It further revealed that collaborative learning enhances the learning ability of below average learners more than that of the above average and average students (73.6%). Finally, the result showed that they are affirmative of the problems associated with online classroom instruction in Obafemi Awolowo University, Ile-Ife with cluster mean of 3.01. The result concluded that most Online platform used by the fresher’s students in Obafemi Awolowo University, Ile-Ife are Google Meet, Telegram and Google Classroom. The students have negatives perception towards online classroom instruction and the students are affirmative of the problems associated with online classroom instruction among physical science freshmen in Obafemi Awolowo University, Ile-Ife.Keywords: online, instruction, freshmen, physical science, collaborative
Procedia PDF Downloads 6519737 Comparative Study of Learning Achievement via Jigsaw I and IV Techniques
Authors: Phongkon Weerpiput
Abstract:
This research study aimed to compare learning achievement between Jigsaw I and jigsaw IV techniques. The target group was 70 Thai major sophomores enrolled in a course entitled Foreign Language in Thai at the Faculty of Education, Suan Sunandha Rajabhat University. The research methodology was quasi-experimental design. A control group was given the Jigsaw I technique while an experimental group experienced the Jigsaw IV technique. The treatment content focused on Khmer loanwords in Thai language executed for a period of 3 hours per week for total of 3 weeks. The instruments included learning management plans and multiple-choice test items. The result yields no significant difference at level .05 between learning achievement of both techniques.Keywords: Jigsaw I technique, Jigsaw IV technique, learning achievement, major sophomores
Procedia PDF Downloads 28819736 Enhancing the Resilience of Combat System-Of-Systems Under Certainty and Uncertainty: Two-Phase Resilience Optimization Model and Deep Reinforcement Learning-Based Recovery Optimization Method
Authors: Xueming Xu, Jiahao Liu, Jichao Li, Kewei Yang, Minghao Li, Bingfeng Ge
Abstract:
A combat system-of-systems (CSoS) comprises various types of functional combat entities that interact to meet corresponding task requirements in the present and future. Enhancing the resilience of CSoS holds significant military value in optimizing the operational planning process, improving military survivability, and ensuring the successful completion of operational tasks. Accordingly, this research proposes an integrated framework called CSoS resilience enhancement (CSoSRE) to enhance the resilience of CSoS from a recovery perspective. Specifically, this research presents a two-phase resilience optimization model to define a resilience optimization objective for CSoS. This model considers not only task baseline, recovery cost, and recovery time limit but also the characteristics of emergency recovery and comprehensive recovery. Moreover, the research extends it from the deterministic case to the stochastic case to describe the uncertainty in the recovery process. Based on this, a resilience-oriented recovery optimization method based on deep reinforcement learning (RRODRL) is proposed to determine a set of entities requiring restoration and their recovery sequence, thereby enhancing the resilience of CSoS. This method improves the deep Q-learning algorithm by designing a discount factor that adapts to changes in CSoS state at different phases, simultaneously considering the network’s structural and functional characteristics within CSoS. Finally, extensive experiments are conducted to test the feasibility, effectiveness and superiority of the proposed framework. The obtained results offer useful insights for guiding operational recovery activity and designing a more resilient CSoS.Keywords: combat system-of-systems, resilience optimization model, recovery optimization method, deep reinforcement learning, certainty and uncertainty
Procedia PDF Downloads 1619735 Challenges of Online Education and Emerging E-Learning Technologies in Nigerian Tertiary Institutions Using Adeyemi College of Education as a Case Study
Authors: Oluwatofunmi Otobo
Abstract:
This paper presents a review of the challenges of e-learning and e-learning technologies in tertiary institutions. This review is based on the researchers observations of the challenges of making use of ICT for learning in Nigeria using Adeyemi College of Education as a case study; this is in comparison to tertiary institutions in the UK, US and other more developed countries. In Nigeria and probably Africa as a whole, power is the major challenge. Its inconsistency and fluctuations pose the greatest challenge to making use of online education inside and outside the classroom. Internet and its supporting infrastructures in many places in Nigeria are slow and unreliable. This, in turn, could frustrate any attempt at making use of online education and e-learning technologies. Lack of basic knowledge of computer, its technologies and facilities could also prove to be a challenge as many young people up until now are yet to be computer literate. Personal interest on both the parts of lecturers and students is also a challenge. Many people are not interested in learning how to make use of technologies. This makes them resistant to changing from the ancient methods of doing things. These and others were reviewed by this paper, suggestions, and recommendations were proffered.Keywords: education, e-learning, Nigeria, tertiary institutions
Procedia PDF Downloads 19819734 The English Classroom: Scope and Space for Motivation
Authors: Madhavi Godavarthy
Abstract:
The globalized world has been witnessing the ubiquity of the English language and has made it mandatory that students be equipped with the required Communication and soft skills. For students and especially for students studying in technical streams, gaining command over the English language is only a part of the bigger challenges they will face in the future. Linguistic capabilities if blended with the right attitude and a positive personality would deliver better results in the present environment of the digitalized world. An English classroom has that ‘space’; a space if utilized well by the teacher can pay rich dividends. The prescribed syllabus for English in the process of adapting itself to the challenges of a more and more technical world has meted out an indifferent treatment in including ‘literary’ material in their curriculum. A debate has always existed regarding the same and diversified opinions have been given. When the student is motivated to reach Literature through intrinsic motivation, it may contribute to his/her personality-development. In the present paper, the element of focus is on the scope and space to motivate students by creating a specific space for herself/himself amidst the schedules of the teaching-learning processes by taking into consideration a few literary excerpts for the purpose.Keywords: English language, teaching and learning process, reader response theory, intrinsic motivation, literary texts
Procedia PDF Downloads 61419733 Literature Review of Instructor Perceptions of the Blended Learning Approach
Authors: Syed Ahmed Hasnain
Abstract:
Instructors’ perception of blended learning plays an important role in the field of education. The literature review shows that there is a gap in research. Instructor perception of the blended learning approach has an impact on the motivation of the instructor to use technology in the classroom. The role of the student's perspective on the instructor’s perception is also important. Research also shows that instructor perceptions can be changed based on their past and present experiences with technology and blended learning. This paper draws the attention of the readers to the need for further research and contributions to studying instructor perceptions globally. Instructor perception affects the implementation of technology in the classroom, instructor-student relationship, and the class environment. Various publications, literature reviews, and articles are studied to show the importance of instructor perceptions. A lot of work has been published on student perceptions of the blended learning approach but there is a gap in research on instructor perceptions. The paper also makes recommendations for further research in the area of instructor perceptions of the blended learning approach. Institutions, administrators, senior management, and instructors can benefit from this paper.Keywords: blended learning, education, literature review, instructor perceptions
Procedia PDF Downloads 10419732 Convolutional Neural Networks versus Radiomic Analysis for Classification of Breast Mammogram
Authors: Mehwish Asghar
Abstract:
Breast Cancer (BC) is a common type of cancer among women. Its screening is usually performed using different imaging modalities such as magnetic resonance imaging, mammogram, X-ray, CT, etc. Among these modalities’ mammogram is considered a powerful tool for diagnosis and screening of breast cancer. Sophisticated machine learning approaches have shown promising results in complementing human diagnosis. Generally, machine learning methods can be divided into two major classes: one is Radiomics analysis (RA), where image features are extracted manually; and the other one is the concept of convolutional neural networks (CNN), in which the computer learns to recognize image features on its own. This research aims to improve the incidence of early detection, thus reducing the mortality rate caused by breast cancer through the latest advancements in computer science, in general, and machine learning, in particular. It has also been aimed to ease the burden of doctors by improving and automating the process of breast cancer detection. This research is related to a relative analysis of different techniques for the implementation of different models for detecting and classifying breast cancer. The main goal of this research is to provide a detailed view of results and performances between different techniques. The purpose of this paper is to explore the potential of a convolutional neural network (CNN) w.r.t feature extractor and as a classifier. Also, in this research, it has been aimed to add the module of Radiomics for comparison of its results with deep learning techniques.Keywords: breast cancer (BC), machine learning (ML), convolutional neural network (CNN), radionics, magnetic resonance imaging, artificial intelligence
Procedia PDF Downloads 22519731 Determination of Water Pollution and Water Quality with Decision Trees
Authors: Çiğdem Bakır, Mecit Yüzkat
Abstract:
With the increasing emphasis on water quality worldwide, the search for and expanding the market for new and intelligent monitoring systems has increased. The current method is the laboratory process, where samples are taken from bodies of water, and tests are carried out in laboratories. This method is time-consuming, a waste of manpower, and uneconomical. To solve this problem, we used machine learning methods to detect water pollution in our study. We created decision trees with the Orange3 software we used in our study and tried to determine all the factors that cause water pollution. An automatic prediction model based on water quality was developed by taking many model inputs such as water temperature, pH, transparency, conductivity, dissolved oxygen, and ammonia nitrogen with machine learning methods. The proposed approach consists of three stages: preprocessing of the data used, feature detection, and classification. We tried to determine the success of our study with different accuracy metrics and the results. We presented it comparatively. In addition, we achieved approximately 98% success with the decision tree.Keywords: decision tree, water quality, water pollution, machine learning
Procedia PDF Downloads 8319730 The Potential of Cloud Computing in Overcoming the Problems of Collective Learning
Authors: Hussah M. AlShayea
Abstract:
This study aimed to identify the potential of cloud computing, "Google Drive" in overcoming the problems of collective learning from the viewpoint of Princess Noura University students. The study included (92) students from the College of Education. To achieve the goal of the study, several steps have been taken. First, the most important problems of collective learning were identified from the viewpoint of the students. After that, a survey identifying the potential of cloud computing "Google Drive" in overcoming the problems of collective learning was distributed among the students. The study results showed that the students believe that the use of Google Drive contributed to overcoming these problems. In the light of those results, the researcher presented a set of recommendations and proposals, including: encouraging teachers and learners to employ cloud computing to overcome the problems and constraints of collective learning.Keywords: cloud computing, collective learning, Google drive, Princess Noura University
Procedia PDF Downloads 49219729 Information and Communication Technology (ICT) Education Improvement for Enhancing Learning Performance and Social Equality
Authors: Heichia Wang, Yalan Chao
Abstract:
Social inequality is a persistent problem. One of the ways to solve this problem is through education. At present, vulnerable groups are often less geographically accessible to educational resources. However, compared with educational resources, communication equipment is easier for vulnerable groups. Now that information and communication technology (ICT) has entered the field of education, today we can accept the convenience that ICT provides in education, and the mobility that it brings makes learning independent of time and place. With mobile learning, teachers and students can start discussions in an online chat room without the limitations of time or place. However, because liquidity learning is quite convenient, people tend to solve problems in short online texts with lack of detailed information in a lack of convenient online environment to express ideas. Therefore, the ICT education environment may cause misunderstanding between teachers and students. Therefore, in order to better understand each other's views between teachers and students, this study aims to clarify the essays of the analysts and classify the students into several types of learning questions to clarify the views of teachers and students. In addition, this study attempts to extend the description of possible omissions in short texts by using external resources prior to classification. In short, by applying a short text classification, this study can point out each student's learning problems and inform the instructor where the main focus of the future course is, thus improving the ICT education environment. In order to achieve the goals, this research uses convolutional neural network (CNN) method to analyze short discussion content between teachers and students in an ICT education environment. Divide students into several main types of learning problem groups to facilitate answering student problems. In addition, this study will further cluster sub-categories of each major learning type to indicate specific problems for each student. Unlike most neural network programs, this study attempts to extend short texts with external resources before classifying them to improve classification performance. In short, by applying the classification of short texts, we can point out the learning problems of each student and inform the instructors where the main focus of future courses will improve the ICT education environment. The data of the empirical process will be used to pre-process the chat records between teachers and students and the course materials. An action system will be set up to compare the most similar parts of the teaching material with each student's chat history to improve future classification performance. Later, the function of short text classification uses CNN to classify rich chat records into several major learning problems based on theory-driven titles. By applying these modules, this research hopes to clarify the main learning problems of students and inform teachers that they should focus on future teaching.Keywords: ICT education improvement, social equality, short text analysis, convolutional neural network
Procedia PDF Downloads 12819728 Applied Complement of Probability and Information Entropy for Prediction in Student Learning
Authors: Kennedy Efosa Ehimwenma, Sujatha Krishnamoorthy, Safiya Al‑Sharji
Abstract:
The probability computation of events is in the interval of [0, 1], which are values that are determined by the number of outcomes of events in a sample space S. The probability Pr(A) that an event A will never occur is 0. The probability Pr(B) that event B will certainly occur is 1. This makes both events A and B a certainty. Furthermore, the sum of probabilities Pr(E₁) + Pr(E₂) + … + Pr(Eₙ) of a finite set of events in a given sample space S equals 1. Conversely, the difference of the sum of two probabilities that will certainly occur is 0. This paper first discusses Bayes, the complement of probability, and the difference of probability for occurrences of learning-events before applying them in the prediction of learning objects in student learning. Given the sum of 1; to make a recommendation for student learning, this paper proposes that the difference of argMaxPr(S) and the probability of student-performance quantifies the weight of learning objects for students. Using a dataset of skill-set, the computational procedure demonstrates i) the probability of skill-set events that have occurred that would lead to higher-level learning; ii) the probability of the events that have not occurred that requires subject-matter relearning; iii) accuracy of the decision tree in the prediction of student performance into class labels and iv) information entropy about skill-set data and its implication on student cognitive performance and recommendation of learning.Keywords: complement of probability, Bayes’ rule, prediction, pre-assessments, computational education, information theory
Procedia PDF Downloads 16119727 Using iPads and Tablets in Language Teaching and Learning Process
Authors: Ece Sarigul
Abstract:
It is an undeniable fact that, teachers need new strategies to communicate with students of the next generation and to shape enticing educational experiences for them. Many schools have launched iPad/ Tablets initiatives in an effort to enhance student learning. Despite their rapid adoption, the extent to which iPads / Tablets increase student engagement and learning is not well understood. This presentation aims to examine the use of iPads and Tablets in primary and high schools in Turkey as well as in the world to increase academic achievement through promotion of higher order thinking skills. In addition to explaining the ideas of school teachers and students who use the specific iPads or Tablets , various applications in schools and their use will be discussed and demonstrated in this study. The specific” iPads or Tablets” applications discussed in this presentation can be incorporated into the curriculum to assist in developing transformative practices and programs to meet the needs of a diverse student population. In the conclusion section of the presentation, there will be some suggestions for teachers about the effective use of technological devices in the classroom. This study can help educators understand better how students are currently using iPads and Tablets and shape future use.Keywords: ipads, language teaching, tablets, technology
Procedia PDF Downloads 25419726 Enhancing Students’ Language Competencies through Cooperative Learning
Authors: Raziel Felix-Aguelo
Abstract:
Language competencies refer to the knowledge and abilities to use English in four inter-related skills: Speaking, listening, reading, and writing. Cooperative learning is a type of instruction where learners are grouped together to work on an assignment, project, or task. To become competent in second language, one needs to actively use English in each of four modalities. Learning English is challenging to second language learners. Sometimes, some students feel demotivated and scared to use English during class discussions and recitations. This paper explores the students’ attitude and perception towards cooperative learning in enhancing their language competencies. The primary method for this research is case study. Thirty-two grade 9 students within a single selected class are used as sample. The instruments used in data collection were questionnaire and semi-structured interviews. The finding shows that collaborative learning activities enhance the four skills of the students. The participants consider this approach motivational as they engage and interact with others. This indicates that students develop their language competencies as they rely to one another in doing meaningful language activities.Keywords: language competencies, collaborative learning, motivation, language activities
Procedia PDF Downloads 34419725 Educators’ Adherence to Learning Theories and Their Perceptions on the Advantages and Disadvantages of E-Learning
Authors: Samson T. Obafemi, Seraphin D. Eyono-Obono
Abstract:
Information and Communication Technologies (ICTs) are pervasive nowadays, including in education where they are expected to improve the performance of learners. However, the hope placed in ICTs to find viable solutions to the problem of poor academic performance in schools in the developing world has not yet yielded the expected benefits. This problem serves as a motivation to this study whose aim is to examine the perceptions of educators on the advantages and disadvantages of e-learning. This aim will be subdivided into two types of research objectives. Objectives on the identification and design of theories and models will be achieved using content analysis and literature review. However, the objective on the empirical testing of such theories and models will be achieved through the survey of educators from different schools in the Pinetown District of the South African Kwazulu-Natal province. SPSS is used to quantitatively analyse the data collected by the questionnaire of this survey using descriptive statistics and Pearson correlations after assessing the validity and the reliability of the data. The main hypothesis driving this study is that there is a relationship between the demographics of educators’ and their adherence to learning theories on one side, and their perceptions on the advantages and disadvantages of e-learning on the other side, as argued by existing research; but this research views these learning theories under three perspectives: educators’ adherence to self-regulated learning, to constructivism, and to progressivism. This hypothesis was fully confirmed by the empirical study except for the demographic factor where teachers’ level of education was found to be the only demographic factor affecting the perceptions of educators on the advantages and disadvantages of e-learning.Keywords: academic performance, e-learning, learning theories, teaching and learning
Procedia PDF Downloads 27319724 Automatic Lead Qualification with Opinion Mining in Customer Relationship Management Projects
Authors: Victor Radich, Tania Basso, Regina Moraes
Abstract:
Lead qualification is one of the main procedures in Customer Relationship Management (CRM) projects. Its main goal is to identify potential consumers who have the ideal characteristics to establish a profitable and long-term relationship with a certain organization. Social networks can be an important source of data for identifying and qualifying leads since interest in specific products or services can be identified from the users’ expressed feelings of (dis)satisfaction. In this context, this work proposes the use of machine learning techniques and sentiment analysis as an extra step in the lead qualification process in order to improve it. In addition to machine learning models, sentiment analysis or opinion mining can be used to understand the evaluation that the user makes of a particular service, product, or brand. The results obtained so far have shown that it is possible to extract data from social networks and combine the techniques for a more complete classification.Keywords: lead qualification, sentiment analysis, opinion mining, machine learning, CRM, lead scoring
Procedia PDF Downloads 8519723 Building in Language Support in a Hong Kong Chemistry Classroom with English as a Medium of Instruction: An Exploratory Study
Authors: Kai Yip Michael Tsang
Abstract:
Science writing has played a crucial part in science assessments. This paper reports a study in an area that has received little research attention – how Language across the Curriculum (LAC, i.e. science language and literacy) learning activities in science lessons can increase the science knowledge development of English as a foreign language (EFL) students in Hong Kong. The data comes from a school-based interventional study in chemistry classrooms, with written data from questionnaires, assessments and teachers’ logs and verbal data from interviews and classroom observations. The effectiveness of the LAC teaching and learning activities in various chemistry classrooms were compared and evaluated, with discussion of some implications. Students in the treatment group with lower achieving students received LAC learning and teaching activities while students in the control group with higher achieving students received conventional learning and teaching activities. After the study, they performed better in control group in formative assessments. Moreover, they had a better attitude to learning chemistry content with a richer language support. The paper concludes that LAC teaching and learning activities yielded positive learning outcomes among chemistry learners with low English ability.Keywords: science learning and teaching, content and language integrated learning, language across the curriculum, English as a foreign language
Procedia PDF Downloads 19019722 Circle Work as a Relational Praxis to Facilitate Collaborative Learning within Higher Education: A Decolonial Pedagogical Framework for Teaching and Learning in the Virtual Classroom
Authors: Jennifer Nutton, Gayle Ployer, Ky Scott, Jenny Morgan
Abstract:
Working in a circle within higher education creates a decolonial space of mutual respect, responsibility, and reciprocity that facilitates collaborative learning and deep connections among learners and instructors. This approach is beyond simply facilitating a group in a circle but opens the door to creating a sacred space connecting each member to the land, to the Indigenous peoples who have taken care of the lands since time immemorial, to one another, and to one’s own positionality. These deep connections not only center human knowledges and relationships but also acknowledges responsibilities to land. Working in a circle as a relational pedagogical praxis also disrupts institutional power dynamics by creating a space of collaborative learning and deep connections in the classroom. Inherent within circle work is to facilitate connections not just academically but emotionally, physically, culturally, and spiritually. Recent literature supports the use of online talking circles, finding that it can offer a more relational and experiential learning environment, which is often absent in the virtual world and has been made more evident and necessary since the pandemic. These deeper experiences of learning and connection, rooted in both knowledge and the land, can then be shared with openness and vulnerability with one another, facilitating growth and change. This process of beginning with the land is critical to ensure we have the grounding to obstruct the ongoing realities of colonialism. The authors, who identify as both Indigenous and non-Indigenous, as both educators and learners, reflect on their teaching and learning experiences in circle. They share a relational pedagogical praxis framework that has been successful in educating future social workers, environmental activists, and leaders in social and human services, health, legal and political fields.Keywords: circle work, relational pedagogies, decolonization, distance education
Procedia PDF Downloads 76