Search results for: flow visualization techniques
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11415

Search results for: flow visualization techniques

10515 Performance Comparison of Outlier Detection Techniques Based Classification in Wireless Sensor Networks

Authors: Ayadi Aya, Ghorbel Oussama, M. Obeid Abdulfattah, Abid Mohamed

Abstract:

Nowadays, many wireless sensor networks have been distributed in the real world to collect valuable raw sensed data. The challenge is to extract high-level knowledge from this huge amount of data. However, the identification of outliers can lead to the discovery of useful and meaningful knowledge. In the field of wireless sensor networks, an outlier is defined as a measurement that deviates from the normal behavior of sensed data. Many detection techniques of outliers in WSNs have been extensively studied in the past decade and have focused on classic based algorithms. These techniques identify outlier in the real transaction dataset. This survey aims at providing a structured and comprehensive overview of the existing researches on classification based outlier detection techniques as applicable to WSNs. Thus, we have identified key hypotheses, which are used by these approaches to differentiate between normal and outlier behavior. In addition, this paper tries to provide an easier and a succinct understanding of the classification based techniques. Furthermore, we identified the advantages and disadvantages of different classification based techniques and we presented a comparative guide with useful paradigms for promoting outliers detection research in various WSN applications and suggested further opportunities for future research.

Keywords: bayesian networks, classification-based approaches, KPCA, neural networks, one-class SVM, outlier detection, wireless sensor networks

Procedia PDF Downloads 493
10514 Effect of Gaseous Imperfections on the Supersonic Flow Parameters for Air in Nozzles

Authors: Merouane Salhi, Toufik Zebbiche

Abstract:

When the stagnation pressure of perfect gas increases, the specific heat and their ratio do not remain constant anymore and start to vary with this pressure. The gas doesn’t remain perfect. Its state equation change and it becomes for a real gas. In this case, the effects of molecular size and intermolecular attraction forces intervene to correct the state equation. The aim of this work is to show and discuss the effect of stagnation pressure on supersonic thermodynamical, physical and geometrical flow parameters, to find a general case for real gas. With the assumptions that Berthelot’s state equation accounts for the molecular size and intermolecular force effects, expressions are developed for analyzing supersonic flow for thermally and calorically imperfect gas lower than the dissociation molecules threshold. The designs parameters for supersonic nozzle like thrust coefficient depend directly on stagnation parameters of the combustion chamber. The application is for air. A computation of error is made in this case to give a limit of perfect gas model compared to real gas model.

Keywords: supersonic flow, real gas model, Berthelot’s state equation, Simpson’s method, condensation function, stagnation pressure

Procedia PDF Downloads 444
10513 Helical Motions Dynamics and Hydraulics of River Channel Confluences

Authors: Ali Aghazadegan, Ali Shokria, Julia Mullarneya, Jon Tunnicliffe

Abstract:

River channel confluences are dynamic systems with branching structures that exhibit a high degree of complexity both in natural and man-made open channel networks. Recent and past fields and modeling have investigated the river dynamics modeling of confluent based on a series of over-simplified assumptions (i.e. straight tributary channel with a bend with a 90° junction angle). Accurate assessment of such systems is important to the design and management of hydraulic structures and river engineering processes. Despite their importance, there has been little study of the hydrodynamics characteristics of river confluences, and the link between flow hydrodynamics and confluence morphodynamics in the confluence is still incompletely understood. This paper studies flow structures in confluences, morphodynamics and deposition patterns in 30 and 90 degrees confluences with different flow conditions. The results show that the junction angle is primarily the key factor for the determination of the confluence bed morphology and sediment pattern, while the discharge ratio is a secondary factor. It also shows that super elevation created by mixing flows is a key function of the morphodynamics patterns.

Keywords: helical flow, river confluence, bed morphology , secondary flows, shear layer

Procedia PDF Downloads 142
10512 Numerical Simulation of Air Flow, Exhaust and Their Mixture in a Helicopter Exhaust Injective Cooler

Authors: Mateusz Paszko, Konrad Pietrykowski, Krzysztof Skiba

Abstract:

Due to low-altitude and relatively low flight speed, today’s combat assets like missile weapons equipped with infrared guidance systems are one of the most important threats to the helicopters performing combat missions. Especially meaningful in helicopter aviation is infrared emission by exhaust gases, regressed to the surroundings. Due to high temperature, exhaust gases are a major factor in detectability of a helicopter performing air combat operations. This study presents the results of simulating the flow of the mixture of exhaust and air in the flow duct of an injective exhaust cooler, adapted to cooperate with the PZL 10W turbine engine. The simulation was performed using a numerical model and the ANSYS Fluent software. Simulation computations were conducted for set flight conditions of the PZL W-3 Falcon helicopter. The conclusions resulting from the conducted numerical computations should allow for optimisation of the flow duct geometry in the cooler, in order to achieve the greatest possible temperature reduction of exhaust exiting into the surroundings. It is expected that the obtained results should be useful for further works related to the development of the final version of exhaust cooler for the PZL W-3 Falcon helicopter.

Keywords: exhaust cooler, helicopter, numerical simulation, stealth

Procedia PDF Downloads 144
10511 Total Organic Carbon, Porosity and Permeability Correlation: A Tool for Carbon Dioxide Storage Potential Evaluation in Irati Formation of the Parana Basin, Brazil

Authors: Richardson M. Abraham-A., Colombo Celso Gaeta Tassinari

Abstract:

The correlation between Total Organic Carbon (TOC) and flow units have been carried out to predict and compare the carbon dioxide (CO2) storage potential of the shale and carbonate rocks in Irati Formation of the Parana Basin. The equations for permeability (K), reservoir quality index (RQI) and flow zone indicator (FZI) are redefined and engaged to evaluate the flow units in both potential reservoir rocks. Shales show higher values of TOC compared to carbonates, as such,  porosity (Ф) is most likely to be higher in shales compared to carbonates. The increase in Ф corresponds to the increase in K (in both rocks). Nonetheless, at lower values of Ф, K is higher in carbonates compared to shales. This shows that at lower values of TOC in carbonates, Ф is low, yet, K is likely to be high compared to shale. In the same vein, at higher values of TOC in shales, Ф is high, yet, K is expected to be low compared to carbonates.  Overall, the flow unit factors (RQI and FZI) are better in the carbonates compared to the shales. Moreso, within the study location,  there are some portions where the thicknesses of the carbonate units are higher compared to the shale units. Most parts of the carbonate strata in the study location are fractured in situ, hence,  this could provide easy access for the storage of CO2. Therefore, based on these points and the disparities between the flow units in the evaluated rock types, the carbonate units are expected to show better potentials for the storage of CO2. The shale units may be considered as potential cap rocks or seals.

Keywords: total organic content, flow units, carbon dioxide storage, geologic structures

Procedia PDF Downloads 158
10510 Influence of the Flow Rate Ratio in a Jet Pump on the Size of Air Bubbles

Authors: L. Grinis, N. Lubashevsky, Y. Ostrovski

Abstract:

In waste water treatment processes, aeration introduces air into a liquid. In these systems, air is introduced by different devices submerged in the waste water. Smaller bubbles result in more bubble surface area per unit of volume and higher oxygen transfer efficiency. Jet pumps are devices that use air bubbles and are widely used in waste water treatment processes. The principle of jet pumps is their ability to transfer energy of one fluid, called primary or motive, into a secondary fluid or gas. These pumps have no moving parts and are able to work in remote areas under extreme conditions. The objective of this work is to study experimentally the characteristics of the jet pump and the size of air bubbles in the laboratory water tank. The effect of flow rate ratio on pump performance is investigated in order to have a better understanding about pump behavior under various conditions, in order to determine the efficiency of receiving air bubbles different sizes. The experiments show that we should take care when increasing the flow rate ratio while seeking to decrease bubble size in the outlet flow. This study will help improve and extend the use of the jet pump in many practical applications.

Keywords: jet pump, air bubbles size, retention time, waste water

Procedia PDF Downloads 302
10509 Numerical Simulation of Two-Dimensional Flow over a Stationary Circular Cylinder Using Feedback Forcing Scheme Based Immersed Boundary Finite Volume Method

Authors: Ranjith Maniyeri, Ahamed C. Saleel

Abstract:

Two-dimensional fluid flow over a stationary circular cylinder is one of the bench mark problem in the field of fluid-structure interaction in computational fluid dynamics (CFD). Motivated by this, in the present work, a two-dimensional computational model is developed using an improved version of immersed boundary method which combines the feedback forcing scheme of the virtual boundary method with Peskin’s regularized delta function approach. Lagrangian coordinates are used to represent the cylinder and Eulerian coordinates are used to describe the fluid flow. A two-dimensional Dirac delta function is used to transfer the quantities between the sold to fluid domain. Further, continuity and momentum equations governing the fluid flow are solved using fractional step based finite volume method on a staggered Cartesian grid system. The developed code is validated by comparing the values of drag coefficient obtained for different Reynolds numbers with that of other researcher’s results. Also, through numerical simulations for different Reynolds numbers flow behavior is well captured. The stability analysis of the improved version of immersed boundary method is tested for different values of feedback forcing coefficients.

Keywords: Feedback Forcing Scheme, Finite Volume Method, Immersed Boundary Method, Navier-Stokes Equations

Procedia PDF Downloads 300
10508 Modern State of the Universal Modeling for Centrifugal Compressors

Authors: Y. Galerkin, K. Soldatova, A. Drozdov

Abstract:

The 6th version of Universal modeling method for centrifugal compressor stage calculation is described. Identification of the new mathematical model was made. As a result of identification the uniform set of empirical coefficients is received. The efficiency definition error is 0,86 % at a design point. The efficiency definition error at five flow rate points (except a point of the maximum flow rate) is 1,22 %. Several variants of the stage with 3D impellers designed by 6th version program and quasi three-dimensional calculation programs were compared by their gas dynamic performances CFD (NUMECA FINE TURBO). Performance comparison demonstrated general principles of design validity and leads to some design recommendations.

Keywords: compressor design, loss model, performance prediction, test data, model stages, flow rate coefficient, work coefficient

Procedia PDF Downloads 410
10507 One Dimensional Reactor Modeling for Methanol Steam Reforming to Hydrogen

Authors: Hongfang Ma, Mingchuan Zhou, Haitao Zhang, Weiyong Ying

Abstract:

One dimensional pseudo-homogenous modeling has been performed for methanol steam reforming reactor. The results show that the models can well predict the industrial data. The reactor had minimum temperature along axial because of endothermic reaction. Hydrogen productions and temperature profiles along axial were investigated regarding operation conditions such as inlet mass flow rate and mass fraction of methanol, inlet temperature of external thermal oil. Low inlet mass flow rate of methanol, low inlet temperature, and high mass fraction of methanol decreased minimum temperature along axial. Low inlet mass flow rate of methanol, high mass fraction of methanol, and high inlet temperature of thermal oil made cold point forward. Low mass fraction, high mass flow rate, and high inlet temperature of thermal oil increased hydrogen production. One dimensional models can be a guide for industrial operation.

Keywords: reactor, modeling, methanol, steam reforming

Procedia PDF Downloads 291
10506 The Effects of Collaborative Videogame Play on Flow Experience and Mood

Authors: Eva Nolan, Timothy Mcnichols

Abstract:

Gamers spend over 3 billion hours collectively playing video games a week, which is arguably not nearly enough time to indulge in the many benefits gaming has to offer. Much of the previous research on video gaming is centered on the effects of playing violent video games and the negative impacts they have on the individual. However, there is a dearth of research in the area of non-violent video games, specifically the emotional and cognitive benefits playing non-violent games can offer individuals. Current research in the area of video game play suggests there are many benefits to playing for an individual, such as decreasing symptoms of depression, decreasing stress, increasing positive emotions, inducing relaxation, decreasing anxiety, and particularly improving mood. One suggestion as to why video games may offer such benefits is that they possess ideal characteristics to create and maintain flow experiences, which in turn, is the subjective experience where an individual obtains a heightened and improved state of mind while they are engaged in a task where a balance of challenge and skill is found. Many video games offer a platform for collaborative gameplay, which can enhance the emotional experience of gaming through the feeling of social support and social inclusion. The present study was designed to examine the effects of collaborative gameplay and flow experience on participants’ perceived mood. To investigate this phenomenon, an in-between subjects design involving forty participants were randomly divided into two groups where they engaged in solo or collaborative gameplay. Each group represented an even number of frequent gamers and non-frequent gamers. Each participant played ‘The Lego Movie Videogame’ on the Playstation 4 console. The participant’s levels of flow experience and perceived mood were measured by the Flow State Scale (FSS) and the Positive and Negative Affect Schedule (PANAS). The following research hypotheses were investigated: (i.) participants in the collaborative gameplay condition will experience higher levels of flow experience and higher levels of mood than those in the solo gameplay condition; (ii.) participants who are frequent gamers will experience higher levels of flow experience and higher levels of mood than non-frequent gamers; and (iii.) there will be a significant positive relationship between flow experience and mood. If the estimated findings are supported, this suggests that engaging in collaborative gameplay can be beneficial for an individual’s mood and that experiencing a state of flow can also enhance an individual’s mood. Hence, collaborative gaming can be beneficial to promote positive emotions (higher levels of mood) through engaging an individual’s flow state.

Keywords: collaborative gameplay, flow experience, mood, games, positive emotions

Procedia PDF Downloads 331
10505 Geometrical Fluid Model for Blood Rheology and Pulsatile Flow in Stenosed Arteries

Authors: Karan Kamboj, Vikramjeet Singh, Vinod Kumar

Abstract:

Considering blood to be a non-Newtonian Carreau liquid, this indirect numerical model investigates the pulsatile blood flow in a constricted restricted conduit that has numerous gentle stenosis inside the view of an increasing body speed. Asymptotic answers are obtained for the flow rate, pressure inclination, speed profile, sheer divider pressure, and longitudinal impedance to stream after the use of the twofold irritation approach to the problem of the succeeding non-straight limit esteem. It has been observed that the speed of the blood increases when there is an increase in the point of tightening of the conduit, the body speed increase, and the power regulation file. However, this rheological manner of behaving changes to one of longitudinal impedance to stream and divider sheer pressure when each of the previously mentioned boundaries increases. It has also been seen that the sheer divider pressure in the bloodstream greatly increases when there is an increase in the maximum depth of the stenosis but that it significantly decreases when there is an increase in the pulsatile Reynolds number. This is an interesting phenomenon. The assessments of the amount of growth in the longitudinal resistance to flow increase overall with the increment of the maximum depth of the stenosis and the Weissenberg number. Additionally, it is noted that the average speed of blood increases noticeably with the growth of the point of tightening of the corridor, and body speed increases border. This is something that can be observed.

Keywords: geometry of artery, pulsatile blood flow, numerous stenosis

Procedia PDF Downloads 94
10504 Characterization of Two Hybrid Welding Techniques on SA 516 Grade 70 Weldments

Authors: M. T. Z. Butt, T. Ahmad, N. A. Siddiqui

Abstract:

Commercially SA 516 Grade 70 is frequently used for the manufacturing of pressure vessels, boilers and storage tanks etc. in fabrication industry. Heat input is the major parameter during welding that may bring significant changes in the microstructure as well as the mechanical properties. Different welding technique has different heat input rate per unit surface area. Materials with large thickness are dealt with different combination of welding techniques to achieve required mechanical properties. In the present research two schemes: Scheme 1: SMAW (Shielded Metal Arc Welding) & GTAW (Gas Tungsten Arc Welding) and Scheme 2: SMAW & SAW (Submerged Arc Welding) of hybrid welding techniques have been studied. The purpose of these schemes was to study hybrid welding effect on the microstructure and mechanical properties of the weldment, heat affected zone and base metal area. It is significant to note that the thickness of base plate was 12 mm, also welding conditions and parameters were set according to ASME Section IX. It was observed that two different hybrid welding techniques performed on two different plates demonstrated that the mechanical properties of both schemes are more or less similar. It means that the heat input, welding techniques and varying welding operating conditions & temperatures did not make any detrimental effect on the mechanical properties. Hence, the hybrid welding techniques mentioned in the present study are favorable to implicate for the industry using the plate thickness around 12 mm thick.

Keywords: grade 70, GTAW, hybrid welding, SAW, SMAW

Procedia PDF Downloads 335
10503 Managing Physiological and Nutritional Needs of Rugby Players in Kenya

Authors: Masita Mokeira, Kimani Rita, Obonyo Brian, Kwenda Kennedy, Mugambi Purity, Kirui Joan, Chomba Eric, Orwa Daniel, Waiganjo Peter

Abstract:

Rugby is a highly intense and physical game requiring speed and strength. The need for physical fitness therefore cannot be over-emphasized. Sports are no longer about lifting weights so as to build muscle. Most professional teams are investing much more in the sport in terms of time, equipment and other resources. To play competitively, Kenyan players may therefore need to complement their ‘home-grown’ and sometimes ad-hoc training and nutrition regimes with carefully measured strength and conditioning, diet, nutrition, and supplementation. Nokia Research Center and University of Nairobi conducted an exploratory study on needs and behaviours surrounding sports in Africa. Rugby being one sport that is gaining ground in Kenya was selected as the main focus. The end goal of the research was to identify areas where mobile technology could be used to address gaps, challenges and/or unmet needs. Themes such as information gap, social culture, growth, and development, revenue flow, and technology adoption among others emerged about the sport. From the growth and development theme, it was clear that as rugby continues to grow in the country, teams, coaches, and players are employing interesting techniques both in training and playing. Though some of these techniques are indeed scientific, those employing them are sometimes not fully aware of their scientific basis. A further case study on sports science in rugby in Kenya focusing on physical fitness and nutrition revealed interesting findings. This paper discusses findings on emerging adoption of techniques in managing physiological and nutritional needs of rugby players across different levels of rugby in Kenya namely high school, club and national levels.

Keywords: rugby, nutrition, physiological needs, sports science

Procedia PDF Downloads 380
10502 Inter-Complex Dependence of Production Technique and Preforms Construction on the Failure Pattern of Multilayer Homo-Polymer Composites

Authors: Ashraf Nawaz Khan, R. Alagirusamy, Apurba Das, Puneet Mahajan

Abstract:

The thermoplastic-based fibre composites are acquiring a market sector of conventional as well as thermoset composites. However, replacing the thermoset with a thermoplastic composite has never been an easy task. The inherent high viscosity of thermoplastic resin reveals poor interface properties. In this work, a homo-polymer towpreg is produced through an electrostatic powder spray coating methodology. The produced flexible towpreg offers a low melt-flow distance during the consolidation of the laminate. The reduced melt-flow distance demonstrates a homogeneous fibre/matrix distribution (and low void content) on consolidation. The composite laminate has been fabricated with two manufacturing techniques such as conventional film stack (FS) and powder-coated (PC) technique. This helps in understanding the distinct response of produced laminates on applying load since the laminates produced through the two techniques are comprised of the same constituent fibre and matrix (constant fibre volume fraction). The changed behaviour is observed mainly due to the different fibre/matrix configurations within the laminate. The interface adhesion influences the load transfer between the fibre and matrix. Therefore, it influences the elastic, plastic, and failure patterns of the laminates. Moreover, the effect of preform geometries (plain weave and satin weave structure) are also studied for corresponding composite laminates in terms of various mechanical properties. The fracture analysis is carried out to study the effect of resin at the interlacement points through micro-CT analysis. The PC laminate reveals a considerably small matrix-rich and deficient zone in comparison to the FS laminate. The different load tensile, shear, fracture toughness, and drop weight impact test) is applied to the laminates, and corresponding damage behaviour is analysed in the successive stage of failure. The PC composite has shown superior mechanical properties in comparison to the FS composite. The damage that occurs in the laminate is captured through the SEM analysis to identify the prominent mode of failure, such as matrix cracking, fibre breakage, delamination, debonding, and other phenomena.

Keywords: composite, damage, fibre, manufacturing

Procedia PDF Downloads 134
10501 Usage of Channel Coding Techniques for Peak-to-Average Power Ratio Reduction in Visible Light Communications Systems

Authors: P. L. D. N. M. de Silva, S. G. Edirisinghe, R. Weerasuriya

Abstract:

High peak-to-average power ratio (PAPR) is a concern of orthogonal frequency division multiplexing (OFDM) based visible light communication (VLC) systems. Discrete Fourier Transform spread (DFT-s) OFDM is an alternative single carrier modulation scheme which would address this concern. Employing channel coding techniques is another mechanism to reduce the PAPR. Previous research has been conducted to study the impact of these techniques separately. However, to the best of the knowledge of the authors, no study has been done so far to identify the improvement which can be harnessed by hybridizing these two techniques for VLC systems. Therefore, this is a novel study area under this research. In addition, channel coding techniques such as Polar codes and Turbo codes have been tested in the VLC domain. However, other efficient techniques such as Hamming coding and Convolutional coding have not been studied too. Therefore, the authors present the impact of the hybrid of DFT-s OFDM and Channel coding (Hamming coding and Convolutional coding) on PAPR in VLC systems using Matlab simulations.

Keywords: convolutional coding, discrete Fourier transform spread orthogonal frequency division multiplexing, hamming coding, peak-to-average power ratio, visible light communications

Procedia PDF Downloads 151
10500 Corrosion Monitoring Techniques Impact on Concrete Durability: A Review

Authors: Victor A. Okenyi, Kehinde A. Alawode

Abstract:

Corrosion of reinforcement in concrete structures remains a durability issue in structural engineering with the increasing cost of repair and maintenance. The mechanism and factors influencing reinforcement corrosion in concrete with various electrochemical monitoring techniques including non-destructive, destructive techniques and the roles of sensors have been reviewed with the aim of determining the monitoring technique that proved most effective in determining corrosion parameters and more practicable for the assessment of concrete durability. Electrochemical impedance spectroscopy (EIS) and linear polarization resistance (LPR) techniques showed great performance in evaluating corrosion kinetics and corrosion rate, respectively, while the gravimetric weight loss (GWL) technique provided accurate measurements. However, no single monitoring technique showed to be the ultimate technique, and this calls for more research work in the development of more dynamic monitoring tools capable of considering all possible corrosion factors in the corrosion monitoring process.

Keywords: corrosion, concrete structures, durability, non-destructive technique, sensor

Procedia PDF Downloads 178
10499 Hybrid Reliability-Similarity-Based Approach for Supervised Machine Learning

Authors: Walid Cherif

Abstract:

Data mining has, over recent years, seen big advances because of the spread of internet, which generates everyday a tremendous volume of data, and also the immense advances in technologies which facilitate the analysis of these data. In particular, classification techniques are a subdomain of Data Mining which determines in which group each data instance is related within a given dataset. It is used to classify data into different classes according to desired criteria. Generally, a classification technique is either statistical or machine learning. Each type of these techniques has its own limits. Nowadays, current data are becoming increasingly heterogeneous; consequently, current classification techniques are encountering many difficulties. This paper defines new measure functions to quantify the resemblance between instances and then combines them in a new approach which is different from actual algorithms by its reliability computations. Results of the proposed approach exceeded most common classification techniques with an f-measure exceeding 97% on the IRIS Dataset.

Keywords: data mining, knowledge discovery, machine learning, similarity measurement, supervised classification

Procedia PDF Downloads 461
10498 Empirical Research to Improve Performances of Paddy Columnar Dryer

Authors: Duong Thi Hong, Nguyen Van Hung, Martin Gummert

Abstract:

Good practices of mechanical drying can reduce losses of grain quality. Recently, with demands of higher capacity for paddy drying in the Mekong River Delta of Vietnam, columnar dryers have been introduced rapidly in this area. To improve the technology, this study was conducted to investigate and optimize the parameters for drying Jasmine paddy using an empirical cross-flow columnar dryer. The optimum parameters were resulted in air flow rate and drying temperature that are 1-1.5 m³ s-¹ t-¹ of paddy and 40-42°C, respectively. The investigation also addressed a solution of reversing drying air to achieve the uniformity of grain temperature and quality. Results of this study should be significant for developments of grain drying, contributing to reduce post harvest losses

Keywords: paddy drying, columnar dryer, air flow rate, drying temperature

Procedia PDF Downloads 363
10497 Optical Flow Based System for Cross Traffic Alert

Authors: Giuseppe Spampinato, Salvatore Curti, Ivana Guarneri, Arcangelo Bruna

Abstract:

This document describes an advanced system and methodology for Cross Traffic Alert (CTA), able to detect vehicles that move into the vehicle driving path from the left or right side. The camera is supposed to be not only on a vehicle still, e.g. at a traffic light or at an intersection, but also moving slowly, e.g. in a car park. In all of the aforementioned conditions, a driver’s short loss of concentration or distraction can easily lead to a serious accident. A valid support to avoid these kinds of car crashes is represented by the proposed system. It is an extension of our previous work, related to a clustering system, which only works on fixed cameras. Just a vanish point calculation and simple optical flow filtering, to eliminate motion vectors due to the car relative movement, is performed to let the system achieve high performances with different scenarios, cameras and resolutions. The proposed system just uses as input the optical flow, which is hardware implemented in the proposed platform and since the elaboration of the whole system is really speed and power consumption, it is inserted directly in the camera framework, allowing to execute all the processing in real-time.

Keywords: clustering, cross traffic alert, optical flow, real time, vanishing point

Procedia PDF Downloads 195
10496 Estimation of Pressure Loss Coefficients in Combining Flows Using Artificial Neural Networks

Authors: Shahzad Yousaf, Imran Shafi

Abstract:

This paper presents a new method for calculation of pressure loss coefficients by use of the artificial neural network (ANN) in tee junctions. Geometry and flow parameters are feed into ANN as the inputs for purpose of training the network. Efficacy of the network is demonstrated by comparison of the experimental and ANN based calculated data of pressure loss coefficients for combining flows in a tee junction. Reynolds numbers ranging from 200 to 14000 and discharge ratios varying from minimum to maximum flow for calculation of pressure loss coefficients have been used. Pressure loss coefficients calculated using ANN are compared to the models from literature used in junction flows. The results achieved after the application of ANN agrees reasonably to the experimental values.

Keywords: artificial neural networks, combining flow, pressure loss coefficients, solar collector tee junctions

Procedia PDF Downloads 386
10495 Advancements in Arthroscopic Surgery Techniques for Anterior Cruciate Ligament (ACL) Reconstruction

Authors: Islam Sherif, Ahmed Ashour, Ahmed Hassan, Hatem Osman

Abstract:

Anterior Cruciate Ligament (ACL) injuries are common among athletes and individuals participating in sports with sudden stops, pivots, and changes in direction. Arthroscopic surgery is the gold standard for ACL reconstruction, aiming to restore knee stability and function. Recent years have witnessed significant advancements in arthroscopic surgery techniques, graft materials, and technological innovations, revolutionizing the field of ACL reconstruction. This presentation delves into the latest advancements in arthroscopic surgery techniques for ACL reconstruction and their potential impact on patient outcomes. Traditionally, autografts from the patellar tendon, hamstring tendon, or quadriceps tendon have been commonly used for ACL reconstruction. However, recent studies have explored the use of allografts, synthetic scaffolds, and tissue-engineered grafts as viable alternatives. This abstract evaluates the benefits and potential drawbacks of each graft type, considering factors such as graft incorporation, strength, and risk of graft failure. Moreover, the application of augmented reality (AR) and virtual reality (VR) technologies in surgical planning and intraoperative navigation has gained traction. AR and VR platforms provide surgeons with detailed 3D anatomical reconstructions of the knee joint, enhancing preoperative visualization and aiding in graft tunnel placement during surgery. We discuss the integration of AR and VR in arthroscopic ACL reconstruction procedures, evaluating their accuracy, cost-effectiveness, and overall impact on surgical outcomes. Beyond graft selection and surgical navigation, patient-specific planning has gained attention in recent research. Advanced imaging techniques, such as MRI-based personalized planning, enable surgeons to tailor ACL reconstruction procedures to each patient's unique anatomy. By accounting for individual variations in the femoral and tibial insertion sites, this personalized approach aims to optimize graft placement and potentially improve postoperative knee kinematics and stability. Furthermore, rehabilitation and postoperative care play a crucial role in the success of ACL reconstruction. This abstract explores novel rehabilitation protocols, emphasizing early mobilization, neuromuscular training, and accelerated recovery strategies. Integrating technology, such as wearable sensors and mobile applications, into postoperative care can facilitate remote monitoring and timely intervention, contributing to enhanced rehabilitation outcomes. In conclusion, this presentation provides an overview of the cutting-edge advancements in arthroscopic surgery techniques for ACL reconstruction. By embracing innovative graft materials, augmented reality, patient-specific planning, and technology-driven rehabilitation, orthopedic surgeons and sports medicine specialists can achieve superior outcomes in ACL injury management. These developments hold great promise for improving the functional outcomes and long-term success rates of ACL reconstruction, benefitting athletes and patients alike.

Keywords: arthroscopic surgery, ACL, autograft, allograft, graft materials, ACL reconstruction, synthetic scaffolds, tissue-engineered graft, virtual reality, augmented reality, surgical planning, intra-operative navigation

Procedia PDF Downloads 89
10494 A Learning Effects Research Applied a Mobile Guide System with Augmented Reality for Education Center

Authors: Y. L. Chang, Y. H. Huang

Abstract:

This study designed a mobile guide system that integrates the design principles of guidance and interpretation with augmented reality (AR) as an auxiliary tool for National Taiwan Science Education Center guidance and explored the learning performance of participants who were divided into two visiting groups: AR-guided mode and non-guided mode (without carrying any auxiliary devices). The study included 96 college students as participants and employed a quasi-experimental research design. This study evaluated the learning performance of education center students aided with different guided modes, including their flow experience, activity involvement, learning effects, as well as their attitude and acceptance of using the guide systems. The results showed that (a) the AR guide promoted visitors’ flow experience; (b) the AR-guidance activity involvement and flow experience having a significant positive effect; (c) most of the visitors of mobile guide system with AR elicited a positive response and acceptance attitude. These results confirm the necessity of human–computer–context interaction. Future research can continue exploring the advantages of enhanced learning effectiveness, activity involvement, and flow experience through application of the results of this study.

Keywords: augmented reality, mobile guide system, informal learning, flow experience, activity involvement

Procedia PDF Downloads 225
10493 The Dynamics of Unsteady Squeezing Flow between Parallel Plates (Two-Dimensional)

Authors: Jiya Mohammed, Ibrahim Ismail Giwa

Abstract:

Unsteady squeezing flow of a viscous fluid between parallel plates is considered. The two plates are considered to be approaching each other symmetrically, causing the squeezing flow. Two-dimensional rectangular Cartesian coordinate is considered. The Navier-Stokes equation was reduced using similarity transformation to a single fourth order non-linear ordinary differential equation. The energy equation was transformed to a second order coupled differential equation. We obtained solution to the resulting ordinary differential equations via Homotopy Perturbation Method (HPM). HPM deforms a differential problem into a set of problem that are easier to solve and it produces analytic approximate expression in the form of an infinite power series by using only sixth and fifth terms for the velocity and temperature respectively. The results reveal that the proposed method is very effective and simple. Comparisons among present and existing solutions were provided and it is shown that the proposed method is in good agreement with Variation of Parameter Method (VPM). The effects of appropriate dimensionless parameters on the velocity profiles and temperature field are demonstrated with the aid of comprehensive graphs and tables.

Keywords: coupled differential equation, Homotopy Perturbation Method, plates, squeezing flow

Procedia PDF Downloads 469
10492 Microwave Plasma Dry Reforming of Methane at High CO2/CH4 Feed Ratio

Authors: Nabil Majd Alawi, Gia Hung Pham, Ahmed Barifcani

Abstract:

Dry reforming of methane that converts two greenhouses gases (CH4 and CO2) to synthesis gas (a mixture of H2 and CO) was studied in a commercial bench scale microwave (MW) plasma reactor system at atmospheric pressure. The CO2, CH4 and N2 conversions; H2, CO selectivities and yields, and syngas ratio (H2/CO) were investigated in a wide range of total feed flow rate (0.45 – 2.1 L/min), MW power (700 – 1200 watt) and CO2/CH4 molar ratio (2 – 5). At the feed flow rates of CH4, CO2 and N2 of 0.2, 0.4 and 1.5 L/min respectively, and the MWs input power of 700 W, the highest conversions of CH4 and CO2, selectivity and yield of H2, CO and H2/CO ratio of 79.35%, 44.82%, 50.12, 58.42, 39.77%, 32.89%, and 0.86, respectively, were achieved. The results of this work show that the product ratio increases slightly with the increasing total feed flow rate, but it decreases significantly with the increasing MW power and feeds CO2/CH4 ratio.

Keywords: dry reforming of methane, microwave discharge, plasma technology, synthesis gas production

Procedia PDF Downloads 265
10491 On Erosion-Corrosion Behavior of Carbon Steel in Oil Sands Slurry: Electrochemical Studies

Authors: M. Deyab, A. Al-Sabagh, S. Keera

Abstract:

The effects of flow velocity, sand concentration, sand size and temperature on erosion-corrosion of carbon steel in oil sands slurry were studied by electrochemical polarization measurements. It was found that the anodic excursion spans of carbon steel in oil sands slurry are characterized by the occurrence of a well-defined anodic peak, followed by a passive region. The data reveal that increasing flow velocity, sand concentration and temperature enhances the anodic peak current density (jAP) and shifts pitting potential (Epit) towards more negative values. The variation of sand particle size does not have apparent effect on polarization behavior of carbon steel. The ratios of the erosion rate to corrosion rate (E/C) were calculated and discussed. The ratio of erosion to corrosion rates E/C increased with increasing the flow velocity, sand concentration, sand size and temperature indicating that an increasing slurry flow velocity, sand concentration, sand size and temperature resulted in an enhancement of the erosion effect.

Keywords: erosion-corrosion, steel, oil sands slurry, polarization

Procedia PDF Downloads 290
10490 Monthly River Flow Prediction Using a Nonlinear Prediction Method

Authors: N. H. Adenan, M. S. M. Noorani

Abstract:

River flow prediction is an essential to ensure proper management of water resources can be optimally distribute water to consumers. This study presents an analysis and prediction by using nonlinear prediction method involving monthly river flow data in Tanjung Tualang from 1976 to 2006. Nonlinear prediction method involves the reconstruction of phase space and local linear approximation approach. The phase space reconstruction involves the reconstruction of one-dimensional (the observed 287 months of data) in a multidimensional phase space to reveal the dynamics of the system. Revenue of phase space reconstruction is used to predict the next 72 months. A comparison of prediction performance based on correlation coefficient (CC) and root mean square error (RMSE) have been employed to compare prediction performance for nonlinear prediction method, ARIMA and SVM. Prediction performance comparisons show the prediction results using nonlinear prediction method is better than ARIMA and SVM. Therefore, the result of this study could be used to developed an efficient water management system to optimize the allocation water resources.

Keywords: river flow, nonlinear prediction method, phase space, local linear approximation

Procedia PDF Downloads 406
10489 Comparison of Techniques for Detection and Diagnosis of Eccentricity in the Air-Gap Fault in Induction Motors

Authors: Abrahão S. Fontes, Carlos A. V. Cardoso, Levi P. B. Oliveira

Abstract:

The induction motors are used worldwide in various industries. Several maintenance techniques are applied to increase the operating time and the lifespan of these motors. Among these, the predictive maintenance techniques such as Motor Current Signature Analysis (MCSA), Motor Square Current Signature Analysis (MSCSA), Park's Vector Approach (PVA) and Park's Vector Square Modulus (PVSM) are used to detect and diagnose faults in electric motors, characterized by patterns in the stator current frequency spectrum. In this article, these techniques are applied and compared on a real motor, which has the fault of eccentricity in the air-gap. It was used as a theoretical model of an electric induction motor without fault in order to assist comparison between the stator current frequency spectrum patterns with and without faults. Metrics were purposed and applied to evaluate the sensitivity of each technique fault detection. The results presented here show that the above techniques are suitable for the fault of eccentricity in the air gap, whose comparison between these showed the suitability of each one.

Keywords: eccentricity in the air-gap, fault diagnosis, induction motors, predictive maintenance

Procedia PDF Downloads 343
10488 Enhanced Water Vapor Flow in Silica Microtubes Explained by Maxwell’s Tangential Momentum Accommodation and Langmuir’s Adsorption

Authors: Wenwen Lei, David R. Mckenzie

Abstract:

Recent findings of anomalously high gas flow rates in carbon nanotubes show smooth hydrophobic walls can increase specular reflection of molecules and reduce the tangential momentum accommodation coefficient (TMAC). Here we report the first measurements of water vapor flows in microtubes over a wide humidity range and show that for hydrophobic silica there is a range of humidity over which an adsorbed water layer reduces TMAC and accelerates flow. Our results show that this association between hydrophobicity and accelerated moisture flow occurs in readily available materials. We develop a hierarchical theory that unifies Maxwell’s ideas on TMAC with Langmuir’s ideas on adsorption. We fit the TMAC data as a function of humidity with the hierarchical theory based on two stages of Langmuir adsorption and derive total adsorption isotherms for water on hydrophobic silica that agree with direct observations. We propose structures for each stage of the water adsorption, the first reducing TMAC by a passivation of adsorptive patches and a smoothing of the surface, the second resembling bulk water with large TMAC. We find that leak testing of moisture barriers with an ideal gas such as helium may not be accurate enough for critical applications and that direct measurements of the water leak rate should be made.

Keywords: water vapor flows, silica microtubes, TMAC, enhanced flow rates

Procedia PDF Downloads 266
10487 Performance Evaluation of a Piano Key Weir

Authors: M. Shaheer Ali, Talib Mansoor

Abstract:

The Piano Key Weir (PKW) is a particular shape of labyrinth weir, using up- and/or downstream overhangs. The horizontal rectangular labyrinth shape allows to multiply the crest length for a given weir width. With the increasing demand of power, it is becoming greatly essential to increase the storage capacity of existing dams without neglecting their safety. The present aims at comparing the performance of piano key weirs in respect to the normal sharp-crested weirs. The discharge v/s head data for the piano key weir and normal sharp-crested weir obtained from the experimental study were compared and analysed using regression analysis. Piano key weir was found to perform doubly w.r.t a normal weir. The flow profiles show the parabolic nature of flow and the nappe interference in the inlet keys.

Keywords: crest length, flow profile, labyrinth weir, normal weir, nappe interference, overhangs, piano key weir

Procedia PDF Downloads 290
10486 Total Thermal Resistance of Graphene-Oxide-Substrate Stack: Role of Interfacial Thermal Resistance in Heat Flow of 2D Material Based Devices

Authors: Roisul H. Galib, Prabhakar R. Bandaru

Abstract:

In 2D material based device, an interface between 2D materials and substrates often limits the heat flow through the device. In this paper, we quantify the total thermal resistance of a graphene-based device by series resistance model and show that the thermal resistance at the interface of graphene and substrate contributes to more than 50% of the total resistance. Weak Van der Waals interactions at the interface and dissimilar phonon vibrational modes create this thermal resistance, allowing less heat to flow across the interface. We compare our results with commonly used materials and interfaces, demonstrating the role of the interface as a potential application for heat guide or block in a 2D material-based device.

Keywords: 2D material, graphene, thermal conductivity, thermal conductance, thermal resistance

Procedia PDF Downloads 146