Search results for: customer friendly washing machine
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5521

Search results for: customer friendly washing machine

4621 Advancing Urban Sustainability through Data-Driven Machine Learning Solutions

Authors: Nasim Eslamirad, Mahdi Rasoulinezhad, Francesco De Luca, Sadok Ben Yahia, Kimmo Sakari Lylykangas, Francesco Pilla

Abstract:

With the ongoing urbanization, cities face increasing environmental challenges impacting human well-being. To tackle these issues, data-driven approaches in urban analysis have gained prominence, leveraging urban data to promote sustainability. Integrating Machine Learning techniques enables researchers to analyze and predict complex environmental phenomena like Urban Heat Island occurrences in urban areas. This paper demonstrates the implementation of data-driven approach and interpretable Machine Learning algorithms with interpretability techniques to conduct comprehensive data analyses for sustainable urban design. The developed framework and algorithms are demonstrated for Tallinn, Estonia to develop sustainable urban strategies to mitigate urban heat waves. Geospatial data, preprocessed and labeled with UHI levels, are used to train various ML models, with Logistic Regression emerging as the best-performing model based on evaluation metrics to derive a mathematical equation representing the area with UHI or without UHI effects, providing insights into UHI occurrences based on buildings and urban features. The derived formula highlights the importance of building volume, height, area, and shape length to create an urban environment with UHI impact. The data-driven approach and derived equation inform mitigation strategies and sustainable urban development in Tallinn and offer valuable guidance for other locations with varying climates.

Keywords: data-driven approach, machine learning transparent models, interpretable machine learning models, urban heat island effect

Procedia PDF Downloads 41
4620 Copyright Clearance for Artificial Intelligence Training Data: Challenges and Solutions

Authors: Erva Akin

Abstract:

– The use of copyrighted material for machine learning purposes is a challenging issue in the field of artificial intelligence (AI). While machine learning algorithms require large amounts of data to train and improve their accuracy and creativity, the use of copyrighted material without permission from the authors may infringe on their intellectual property rights. In order to overcome copyright legal hurdle against the data sharing, access and re-use of data, the use of copyrighted material for machine learning purposes may be considered permissible under certain circumstances. For example, if the copyright holder has given permission to use the data through a licensing agreement, then the use for machine learning purposes may be lawful. It is also argued that copying for non-expressive purposes that do not involve conveying expressive elements to the public, such as automated data extraction, should not be seen as infringing. The focus of such ‘copy-reliant technologies’ is on understanding language rules, styles, and syntax and no creative ideas are being used. However, the non-expressive use defense is within the framework of the fair use doctrine, which allows the use of copyrighted material for research or educational purposes. The questions arise because the fair use doctrine is not available in EU law, instead, the InfoSoc Directive provides for a rigid system of exclusive rights with a list of exceptions and limitations. One could only argue that non-expressive uses of copyrighted material for machine learning purposes do not constitute a ‘reproduction’ in the first place. Nevertheless, the use of machine learning with copyrighted material is difficult because EU copyright law applies to the mere use of the works. Two solutions can be proposed to address the problem of copyright clearance for AI training data. The first is to introduce a broad exception for text and data mining, either mandatorily or for commercial and scientific purposes, or to permit the reproduction of works for non-expressive purposes. The second is that copyright laws should permit the reproduction of works for non-expressive purposes, which opens the door to discussions regarding the transposition of the fair use principle from the US into EU law. Both solutions aim to provide more space for AI developers to operate and encourage greater freedom, which could lead to more rapid innovation in the field. The Data Governance Act presents a significant opportunity to advance these debates. Finally, issues concerning the balance of general public interests and legitimate private interests in machine learning training data must be addressed. In my opinion, it is crucial that robot-creation output should fall into the public domain. Machines depend on human creativity, innovation, and expression. To encourage technological advancement and innovation, freedom of expression and business operation must be prioritised.

Keywords: artificial intelligence, copyright, data governance, machine learning

Procedia PDF Downloads 85
4619 Tracing Back the Bot Master

Authors: Sneha Leslie

Abstract:

The current situation in the cyber world is that crimes performed by Botnets are increasing and the masterminds (botmaster) are not detectable easily. The botmaster in the botnet compromises the legitimate host machines in the network and make them bots or zombies to initiate the cyber-attacks. This paper will focus on the live detection of the botmaster in the network by using the strong framework 'metasploit', when distributed denial of service (DDOS) attack is performed by the botnet. The affected victim machine will be continuously monitoring its incoming packets. Once the victim machine gets to know about the excessive count of packets from any IP, that particular IP is noted and details of the noted systems are gathered. Using the vulnerabilities present in the zombie machines (already compromised by botmaster), the victim machine will compromise them. By gaining access to the compromised systems, applications are run remotely. By analyzing the incoming packets of the zombies, the victim comes to know the address of the botmaster. This is an effective and a simple system where no specific features of communication protocol are considered.

Keywords: bonet, DDoS attack, network security, detection system, metasploit framework

Procedia PDF Downloads 254
4618 New Machine Learning Optimization Approach Based on Input Variables Disposition Applied for Time Series Prediction

Authors: Hervice Roméo Fogno Fotsoa, Germaine Djuidje Kenmoe, Claude Vidal Aloyem Kazé

Abstract:

One of the main applications of machine learning is the prediction of time series. But a more accurate prediction requires a more optimal model of machine learning. Several optimization techniques have been developed, but without considering the input variables disposition of the system. Thus, this work aims to present a new machine learning architecture optimization technique based on their optimal input variables disposition. The validations are done on the prediction of wind time series, using data collected in Cameroon. The number of possible dispositions with four input variables is determined, i.e., twenty-four. Each of the dispositions is used to perform the prediction, with the main criteria being the training and prediction performances. The results obtained from a static architecture and a dynamic architecture of neural networks have shown that these performances are a function of the input variable's disposition, and this is in a different way from the architectures. This analysis revealed that it is necessary to take into account the input variable's disposition for the development of a more optimal neural network model. Thus, a new neural network training algorithm is proposed by introducing the search for the optimal input variables disposition in the traditional back-propagation algorithm. The results of the application of this new optimization approach on the two single neural network architectures are compared with the previously obtained results step by step. Moreover, this proposed approach is validated in a collaborative optimization method with a single objective optimization technique, i.e., genetic algorithm back-propagation neural networks. From these comparisons, it is concluded that each proposed model outperforms its traditional model in terms of training and prediction performance of time series. Thus the proposed optimization approach can be useful in improving the accuracy of time series forecasts. This proves that the proposed optimization approach can be useful in improving the accuracy of time series prediction based on machine learning.

Keywords: input variable disposition, machine learning, optimization, performance, time series prediction

Procedia PDF Downloads 111
4617 An Application to Predict the Best Study Path for Information Technology Students in Learning Institutes

Authors: L. S. Chathurika

Abstract:

Early prediction of student performance is an important factor to be gained academic excellence. Whatever the study stream in secondary education, students lay the foundation for higher studies during the first year of their degree or diploma program in Sri Lanka. The information technology (IT) field has certain improvements in the education domain by selecting specialization areas to show the talents and skills of students. These specializations can be software engineering, network administration, database administration, multimedia design, etc. After completing the first-year, students attempt to select the best path by considering numerous factors. The purpose of this experiment is to predict the best study path using machine learning algorithms. Five classification algorithms: decision tree, support vector machine, artificial neural network, Naïve Bayes, and logistic regression are selected and tested. The support vector machine obtained the highest accuracy, 82.4%. Then affecting features are recognized to select the best study path.

Keywords: algorithm, classification, evaluation, features, testing, training

Procedia PDF Downloads 120
4616 Robust Fuzzy PID Stabilizer: Modified Shuffled Frog Leaping Algorithm

Authors: Oveis Abedinia, Noradin Ghadimi, Nasser Mikaeilvand, Roza Poursoleiman, Asghar Poorfaraj

Abstract:

In this paper a robust Fuzzy Proportional Integral Differential (PID) controller is applied to multi-machine power system based on Modified Shuffled Frog Leaping (MSFL) algorithm. This newly proposed controller is more efficient because it copes with oscillations and different operating points. In this strategy the gains of the PID controller is optimized using the proposed technique. The nonlinear problem is formulated as an optimization problem for wide ranges of operating conditions using the MSFL algorithm. The simulation results demonstrate the effectiveness, good robustness and validity of the proposed method through some performance indices such as ITAE and FD under wide ranges operating conditions in comparison with TS and GSA techniques. The single-machine infinite bus system and New England 10-unit 39-bus standard power system are employed to illustrate the performance of the proposed method.

Keywords: fuzzy PID, MSFL, multi-machine, low frequency oscillation

Procedia PDF Downloads 434
4615 Comparison of Linear Discriminant Analysis and Support Vector Machine Classifications for Electromyography Signals Acquired at Five Positions of Elbow Joint

Authors: Amna Khan, Zareena Kausar, Saad Malik

Abstract:

Bio Mechatronics has extended applications in the field of rehabilitation. It has been contributing since World War II in improving the applicability of prosthesis and assistive devices in real life scenarios. In this paper, classification accuracies have been compared for two classifiers against five positions of elbow. Electromyography (EMG) signals analysis have been acquired directly from skeletal muscles of human forearm for each of the three defined positions and at modified extreme positions of elbow flexion and extension using 8 electrode Myo armband sensor. Features were extracted from filtered EMG signals for each position. Performance of two classifiers, support vector machine (SVM) and linear discriminant analysis (LDA) has been compared by analyzing the classification accuracies. SVM illustrated classification accuracies between 90-96%, in contrast to 84-87% depicted by LDA for five defined positions of elbow keeping the number of samples and selected feature the same for both SVM and LDA.

Keywords: classification accuracies, electromyography, linear discriminant analysis (LDA), Myo armband sensor, support vector machine (SVM)

Procedia PDF Downloads 368
4614 Leveraging SHAP Values for Effective Feature Selection in Peptide Identification

Authors: Sharon Li, Zhonghang Xia

Abstract:

Post-database search is an essential phase in peptide identification using tandem mass spectrometry (MS/MS) to refine peptide-spectrum matches (PSMs) produced by database search engines. These engines frequently face difficulty differentiating between correct and incorrect peptide assignments. Despite advances in statistical and machine learning methods aimed at improving the accuracy of peptide identification, challenges remain in selecting critical features for these models. In this study, two machine learning models—a random forest tree and a support vector machine—were applied to three datasets to enhance PSMs. SHAP values were utilized to determine the significance of each feature within the models. The experimental results indicate that the random forest model consistently outperformed the SVM across all datasets. Further analysis of SHAP values revealed that the importance of features varies depending on the dataset, indicating that a feature's role in model predictions can differ significantly. This variability in feature selection can lead to substantial differences in model performance, with false discovery rate (FDR) differences exceeding 50% between different feature combinations. Through SHAP value analysis, the most effective feature combinations were identified, significantly enhancing model performance.

Keywords: peptide identification, SHAP value, feature selection, random forest tree, support vector machine

Procedia PDF Downloads 30
4613 Enhancing Code Security with AI-Powered Vulnerability Detection

Authors: Zzibu Mark Brian

Abstract:

As software systems become increasingly complex, ensuring code security is a growing concern. Traditional vulnerability detection methods often rely on manual code reviews or static analysis tools, which can be time-consuming and prone to errors. This paper presents a distinct approach to enhancing code security by leveraging artificial intelligence (AI) and machine learning (ML) techniques. Our proposed system utilizes a combination of natural language processing (NLP) and deep learning algorithms to identify and classify vulnerabilities in real-world codebases. By analyzing vast amounts of open-source code data, our AI-powered tool learns to recognize patterns and anomalies indicative of security weaknesses. We evaluated our system on a dataset of over 10,000 open-source projects, achieving an accuracy rate of 92% in detecting known vulnerabilities. Furthermore, our tool identified previously unknown vulnerabilities in popular libraries and frameworks, demonstrating its potential for improving software security.

Keywords: AI, machine language, cord security, machine leaning

Procedia PDF Downloads 40
4612 The Adoption of State Feminism by the Dominant Party: A Case Study in Japan

Authors: Mengmeng Xiao

Abstract:

The study examines the proactive promotion of feminist agendas by states experiencing prolonged one-party dominance, with a specific focus on Japan. Through a case study approach, it explores why leaders of the dominant party, the Liberal Democratic Party (LDP), actively endorse women-friendly initiatives. The findings reveal three primary motivations: 1) the adoption of women-friendly policies for legitimation, 2) the establishment or funding of women’s organizations for co-optation, and 3) the enhancement of women’s economic and employment rights for state-building purposes. These findings bridge theories across the democracy/autocracy spectrum, emphasizing the need to restructure the research framework on state feminism beyond the binary categorization of regime types. Additionally, they underscore the significance of acknowledging the discretion exercised by state officials, providing insights into instances where state feminism may fail in certain democratic contexts.

Keywords: state feminism, feminist policies, national machinery, regime types, political parties, Japan

Procedia PDF Downloads 51
4611 Restricted Boltzmann Machines and Deep Belief Nets for Market Basket Analysis: Statistical Performance and Managerial Implications

Authors: H. Hruschka

Abstract:

This paper presents the first comparison of the performance of the restricted Boltzmann machine and the deep belief net on binary market basket data relative to binary factor analysis and the two best-known topic models, namely Dirichlet allocation and the correlated topic model. This comparison shows that the restricted Boltzmann machine and the deep belief net are superior to both binary factor analysis and topic models. Managerial implications that differ between the investigated models are treated as well. The restricted Boltzmann machine is defined as joint Boltzmann distribution of hidden variables and observed variables (purchases). It comprises one layer of observed variables and one layer of hidden variables. Note that variables of the same layer are not connected. The comparison also includes deep belief nets with three layers. The first layer is a restricted Boltzmann machine based on category purchases. Hidden variables of the first layer are used as input variables by the second-layer restricted Boltzmann machine which then generates second-layer hidden variables. Finally, in the third layer hidden variables are related to purchases. A public data set is analyzed which contains one month of real-world point-of-sale transactions in a typical local grocery outlet. It consists of 9,835 market baskets referring to 169 product categories. This data set is randomly split into two halves. One half is used for estimation, the other serves as holdout data. Each model is evaluated by the log likelihood for the holdout data. Performance of the topic models is disappointing as the holdout log likelihood of the correlated topic model – which is better than Dirichlet allocation - is lower by more than 25,000 compared to the best binary factor analysis model. On the other hand, binary factor analysis on its own is clearly surpassed by both the restricted Boltzmann machine and the deep belief net whose holdout log likelihoods are higher by more than 23,000. Overall, the deep belief net performs best. We also interpret hidden variables discovered by binary factor analysis, the restricted Boltzmann machine and the deep belief net. Hidden variables characterized by the product categories to which they are related differ strongly between these three models. To derive managerial implications we assess the effect of promoting each category on total basket size, i.e., the number of purchased product categories, due to each category's interdependence with all the other categories. The investigated models lead to very different implications as they disagree about which categories are associated with higher basket size increases due to a promotion. Of course, recommendations based on better performing models should be preferred. The impressive performance advantages of the restricted Boltzmann machine and the deep belief net suggest continuing research by appropriate extensions. To include predictors, especially marketing variables such as price, seems to be an obvious next step. It might also be feasible to take a more detailed perspective by considering purchases of brands instead of purchases of product categories.

Keywords: binary factor analysis, deep belief net, market basket analysis, restricted Boltzmann machine, topic models

Procedia PDF Downloads 202
4610 Comparison of Different Machine Learning Models for Time-Series Based Load Forecasting of Electric Vehicle Charging Stations

Authors: H. J. Joshi, Satyajeet Patil, Parth Dandavate, Mihir Kulkarni, Harshita Agrawal

Abstract:

As the world looks towards a sustainable future, electric vehicles have become increasingly popular. Millions worldwide are looking to switch to Electric cars over the previously favored combustion engine-powered cars. This demand has seen an increase in Electric Vehicle Charging Stations. The big challenge is that the randomness of electrical energy makes it tough for these charging stations to provide an adequate amount of energy over a specific amount of time. Thus, it has become increasingly crucial to model these patterns and forecast the energy needs of power stations. This paper aims to analyze how different machine learning models perform on Electric Vehicle charging time-series data. The data set consists of authentic Electric Vehicle Data from the Netherlands. It has an overview of ten thousand transactions from public stations operated by EVnetNL.

Keywords: forecasting, smart grid, electric vehicle load forecasting, machine learning, time series forecasting

Procedia PDF Downloads 109
4609 Novel Hole-Bar Standard Design and Inter-Comparison for Geometric Errors Identification on Machine-Tool

Authors: F. Viprey, H. Nouira, S. Lavernhe, C. Tournier

Abstract:

Manufacturing of freeform parts may be achieved on 5-axis machine tools currently considered as a common means of production. In particular, the geometrical quality of the freeform parts depends on the accuracy of the multi-axis structural loop, which is composed of several component assemblies maintaining the relative positioning between the tool and the workpiece. Therefore, to reach high quality of the geometries of the freeform parts the geometric errors of the 5 axis machine should be evaluated and compensated, which leads one to master the deviations between the tool and the workpiece (volumetric accuracy). In this study, a novel hole-bar design was developed and used for the characterization of the geometric errors of a RRTTT 5-axis machine tool. The hole-bar standard design is made of Invar material, selected since it is less sensitive to thermal drift. The proposed design allows once to extract 3 intrinsic parameters: one linear positioning and two straightnesses. These parameters can be obtained by measuring the cylindricity of 12 holes (bores) and 11 cylinders located on a perpendicular plane. By mathematical analysis, twelve 3D points coordinates can be identified and correspond to the intersection of each hole axis with the least square plane passing through two perpendicular neighbour cylinders axes. The hole-bar was calibrated using a precision CMM at LNE traceable the SI meter definition. The reversal technique was applied in order to separate the error forms of the hole bar from the motion errors of the mechanical guiding systems. An inter-comparison was additionally conducted between four NMIs (National Metrology Institutes) within the EMRP IND62: JRP-TIM project. Afterwards, the hole-bar was integrated in RRTTT 5-axis machine tool to identify its volumetric errors. Measurements were carried out in real time and combine raw data acquired by the Renishaw RMP600 touch probe and the linear and rotary encoders. The geometric errors of the 5 axis machine were also evaluated by an accurate laser tracer interferometer system. The results were compared to those obtained with the hole bar.

Keywords: volumetric errors, CMM, 3D hole-bar, inter-comparison

Procedia PDF Downloads 386
4608 Synthesis and Characterization of Nano-Alumina Using Neem Oil as the Template for Efficient Hydrogen Generation via Photo-Hydrolysis of Sodium Borohydride

Authors: Dina M. Abd El-Aty, D. Aman, E. G. Zaki, Heba M. Salem

Abstract:

A friendly environmental source of energy as hydrogen was produced by photo-hydrolysis of hydrogen storage material as sodium borohydride (NaBH4), which is non-toxic and stores a high percentage of hydrogen. The photoreaction was produced under visible light and nano-alumina as a catalyst. In this study, we use more economical and friendly environmental oil as a template to produce a nano-catalyst. The prepared catalyst was characterized by X-Ray diffraction, N2-adsorption-desorption, Fourier Transforms Infrared, Scanning Electron microscope and X-Ray Photoelectron Spectroscopy. Different parameters such as catalyst weight, NaBH4 weight and time of irradiation were studied to obtain a highly efficient photo-hydrolysis reaction. The reaction is pseudo-first order and the hydrogen production rate was determined as 1500 ml min-1 g-1 at the optimum conditions.

Keywords: photo-reaction, nano-alumina, hydrogen production, sodium borohydride, visible light

Procedia PDF Downloads 84
4607 Pulmonary Disease Identification Using Machine Learning and Deep Learning Techniques

Authors: Chandu Rathnayake, Isuri Anuradha

Abstract:

Early detection and accurate diagnosis of lung diseases play a crucial role in improving patient prognosis. However, conventional diagnostic methods heavily rely on subjective symptom assessments and medical imaging, often causing delays in diagnosis and treatment. To overcome this challenge, we propose a novel lung disease prediction system that integrates patient symptoms and X-ray images to provide a comprehensive and reliable diagnosis.In this project, develop a mobile application specifically designed for detecting lung diseases. Our application leverages both patient symptoms and X-ray images to facilitate diagnosis. By combining these two sources of information, our application delivers a more accurate and comprehensive assessment of the patient's condition, minimizing the risk of misdiagnosis. Our primary aim is to create a user-friendly and accessible tool, particularly important given the current circumstances where many patients face limitations in visiting healthcare facilities. To achieve this, we employ several state-of-the-art algorithms. Firstly, the Decision Tree algorithm is utilized for efficient symptom-based classification. It analyzes patient symptoms and creates a tree-like model to predict the presence of specific lung diseases. Secondly, we employ the Random Forest algorithm, which enhances predictive power by aggregating multiple decision trees. This ensemble technique improves the accuracy and robustness of the diagnosis. Furthermore, we incorporate a deep learning model using Convolutional Neural Network (CNN) with the RestNet50 pre-trained model. CNNs are well-suited for image analysis and feature extraction. By training CNN on a large dataset of X-ray images, it learns to identify patterns and features indicative of lung diseases. The RestNet50 architecture, known for its excellent performance in image recognition tasks, enhances the efficiency and accuracy of our deep learning model. By combining the outputs of the decision tree-based algorithms and the deep learning model, our mobile application generates a comprehensive lung disease prediction. The application provides users with an intuitive interface to input their symptoms and upload X-ray images for analysis. The prediction generated by the system offers valuable insights into the likelihood of various lung diseases, enabling individuals to take appropriate actions and seek timely medical attention. Our proposed mobile application has significant potential to address the rising prevalence of lung diseases, particularly among young individuals with smoking addictions. By providing a quick and user-friendly approach to assessing lung health, our application empowers individuals to monitor their well-being conveniently. This solution also offers immense value in the context of limited access to healthcare facilities, enabling timely detection and intervention. In conclusion, our research presents a comprehensive lung disease prediction system that combines patient symptoms and X-ray images using advanced algorithms. By developing a mobile application, we provide an accessible tool for individuals to assess their lung health conveniently. This solution has the potential to make a significant impact on the early detection and management of lung diseases, benefiting both patients and healthcare providers.

Keywords: CNN, random forest, decision tree, machine learning, deep learning

Procedia PDF Downloads 74
4606 ANOVA-Based Feature Selection and Machine Learning System for IoT Anomaly Detection

Authors: Muhammad Ali

Abstract:

Cyber-attacks and anomaly detection on the Internet of Things (IoT) infrastructure is emerging concern in the domain of data-driven intrusion. Rapidly increasing IoT risk is now making headlines around the world. denial of service, malicious control, data type probing, malicious operation, DDos, scan, spying, and wrong setup are attacks and anomalies that can affect an IoT system failure. Everyone talks about cyber security, connectivity, smart devices, and real-time data extraction. IoT devices expose a wide variety of new cyber security attack vectors in network traffic. For further than IoT development, and mainly for smart and IoT applications, there is a necessity for intelligent processing and analysis of data. So, our approach is too secure. We train several machine learning models that have been compared to accurately predicting attacks and anomalies on IoT systems, considering IoT applications, with ANOVA-based feature selection with fewer prediction models to evaluate network traffic to help prevent IoT devices. The machine learning (ML) algorithms that have been used here are KNN, SVM, NB, D.T., and R.F., with the most satisfactory test accuracy with fast detection. The evaluation of ML metrics includes precision, recall, F1 score, FPR, NPV, G.M., MCC, and AUC & ROC. The Random Forest algorithm achieved the best results with less prediction time, with an accuracy of 99.98%.

Keywords: machine learning, analysis of variance, Internet of Thing, network security, intrusion detection

Procedia PDF Downloads 126
4605 Identification of Hepatocellular Carcinoma Using Supervised Learning Algorithms

Authors: Sagri Sharma

Abstract:

Analysis of diseases integrating multi-factors increases the complexity of the problem and therefore, development of frameworks for the analysis of diseases is an issue that is currently a topic of intense research. Due to the inter-dependence of the various parameters, the use of traditional methodologies has not been very effective. Consequently, newer methodologies are being sought to deal with the problem. Supervised Learning Algorithms are commonly used for performing the prediction on previously unseen data. These algorithms are commonly used for applications in fields ranging from image analysis to protein structure and function prediction and they get trained using a known dataset to come up with a predictor model that generates reasonable predictions for the response to new data. Gene expression profiles generated by DNA analysis experiments can be quite complex since these experiments can involve hypotheses involving entire genomes. The application of well-known machine learning algorithm - Support Vector Machine - to analyze the expression levels of thousands of genes simultaneously in a timely, automated and cost effective way is thus used. The objectives to undertake the presented work are development of a methodology to identify genes relevant to Hepatocellular Carcinoma (HCC) from gene expression dataset utilizing supervised learning algorithms and statistical evaluations along with development of a predictive framework that can perform classification tasks on new, unseen data.

Keywords: artificial intelligence, biomarker, gene expression datasets, hepatocellular carcinoma, machine learning, supervised learning algorithms, support vector machine

Procedia PDF Downloads 429
4604 Advantages of a New Manufacturing Facility for the Production of Nanofiber

Authors: R. Knizek, D. Karhankova

Abstract:

The production of nanofibers and the machinery for their production is a current issue. The pioneer, in the industrial production of nanofibers, is the machinery with the sales descriptions NanospiderTM from the company Elmarco, which came into being in 2008. Most of the production facilities, like NanospiderTM, use electrospinning. There are also other methods of industrial production of nanofibers, such as the centrifugal spinning process, which is used by FibeRio Technology Corporation. However, each method and machine has its advantages, but also disadvantages and that is the reason why a new machine called as Nanomachine, which eliminates the disadvantages of other production facilities producing nanofibers, has been developed.

Keywords: nanomachine, nanospider, spinning slat, electrospinning

Procedia PDF Downloads 306
4603 Modeling Usage Patterns of Mobile App Service in App Market Using Hidden Markov Model

Authors: Yangrae Cho, Jinseok Kim, Yongtae Park

Abstract:

Mobile app service ecosystem has been abruptly emerged, explosively grown, and dynamically transformed. In contrast with product markets in which product sales directly cause increment in firm’s income, customer’s usage is less visible but more valuable in service market. Especially, the market situation with cutthroat competition in mobile app store makes securing and keeping of users as vital. Although a few service firms try to manage their apps’ usage patterns by fitting on S-curve or applying other forecasting techniques, the time series approaches based on past sequential data are subject to fundamental limitation in the market where customer’s attention is being moved unpredictably and dynamically. We therefore propose a new conceptual approach for detecting usage pattern of mobile app service with Hidden Markov Model (HMM) which is based on the dual stochastic structure and mainly used to clarify unpredictable and dynamic sequential patterns in voice recognition or stock forecasting. Our approach could be practically utilized for app service firms to manage their services’ lifecycles and academically expanded to other markets.

Keywords: mobile app service, usage pattern, Hidden Markov Model, pattern detection

Procedia PDF Downloads 338
4602 Solid Waste Management through Mushroom Cultivation: An Eco Friendly Approach

Authors: Mary Josephine

Abstract:

Waste of certain process can be the input source of other sectors in order to reduce environmental pollution. Today there are more and more solid wastes are generated, but only very small amount of those are recycled. So, the threatening of environmental pressure to public health is very serious. The methods considered for the treatment of solid waste are biogas tanks or processing to make animal feed and fertilizer, however, they did not perform well. An alternative approach is growing mushrooms on waste residues. This is regarded as an environmental friendly solution with potential economic benefit. The substrate producers do their best to produce quality substrate at low cost. Apart from other methods, this can be achieved by employing biologically degradable wastes used as the resource material component of the substrate. Mushroom growing is a significant tool for the restoration, replenishment and remediation of Earth’s overburdened ecosphere. One of the rational methods of waste utilization involves locally available wastes. The present study aims to find out the yield of mushroom grown on locally available waste for free and to conserve our environment by recycling wastes.

Keywords: biodegradable, environment, mushroom, remediation

Procedia PDF Downloads 398
4601 Optimization of the Dental Direct Digital Imaging by Applying the Self-Recognition Technology

Authors: Mina Dabirinezhad, Mohsen Bayat Pour, Amin Dabirinejad

Abstract:

This paper is intended to introduce the technology to solve some of the deficiencies of the direct digital radiology. Nowadays, digital radiology is the latest progression in dental imaging, which has become an essential part of dentistry. There are two main parts of the direct digital radiology comprised of an intraoral X-ray machine and a sensor (digital image receptor). The dentists and the dental nurses experience afflictions during the taking image process by the direct digital X-ray machine. For instance, sometimes they need to readjust the sensor in the mouth of the patient to take the X-ray image again due to the low quality of that. Another problem is, the position of the sensor may move in the mouth of the patient and it triggers off an inappropriate image for the dentists. It means that it is a time-consuming process for dentists or dental nurses. On the other hand, taking several the X-ray images brings some problems for the patient such as being harmful to their health and feeling pain in their mouth due to the pressure of the sensor to the jaw. The author provides a technology to solve the above-mentioned issues that is called “Self-Recognition Direct Digital Radiology” (SDDR). This technology is based on the principle that the intraoral X-ray machine is capable to diagnose the location of the sensor in the mouth of the patient automatically. In addition, to solve the aforementioned problems, SDDR technology brings out fewer environmental impacts in comparison to the previous version.

Keywords: Dental direct digital imaging, digital image receptor, digital x-ray machine, and environmental impacts

Procedia PDF Downloads 138
4600 FlexPoints: Efficient Algorithm for Detection of Electrocardiogram Characteristic Points

Authors: Daniel Bulanda, Janusz A. Starzyk, Adrian Horzyk

Abstract:

The electrocardiogram (ECG) is one of the most commonly used medical tests, essential for correct diagnosis and treatment of the patient. While ECG devices generate a huge amount of data, only a small part of them carries valuable medical information. To deal with this problem, many compression algorithms and filters have been developed over the past years. However, the rapid development of new machine learning techniques poses new challenges. To address this class of problems, we created the FlexPoints algorithm that searches for characteristic points on the ECG signal and ignores all other points that do not carry relevant medical information. The conducted experiments proved that the presented algorithm can significantly reduce the number of data points which represents ECG signal without losing valuable medical information. These sparse but essential characteristic points (flex points) can be a perfect input for some modern machine learning models, which works much better using flex points as an input instead of raw data or data compressed by many popular algorithms.

Keywords: characteristic points, electrocardiogram, ECG, machine learning, signal compression

Procedia PDF Downloads 164
4599 Applying Energy Consumption Schedule and Comparing It with Load Shifting Technique in Residential Load

Authors: Amira M. Attia, Karim H. Youssef, Nabil H. Abbasy

Abstract:

Energy consumption schedule (ECS) technique shifts usage of loads from on peak hours and redistributes them throughout the day according to residents’ operating time preferences. This technique is used as form of indirect control from utility to improve the load curve and hence its load factor and reduce customer’s total electric bill as well. Similarly, load shifting technique achieves ECS purposes but as direct control form applied from utility. In this paper, ECS is simulated twice as optimal constrained mathematical formula, solved by using CVX program in MATLAB® R2013b. First, it is utilized for single residential building with ten apartments to determine max allowable energy consumption per hour for each residential apartment. Then, it is used for single apartment with number of shiftable domestic devices, where operating schedule is deduced using previous simulation output results as constraints. The paper ends by giving differences between ECS technique and load shifting technique via literature and simulation. Based on results assessment, it will be shown whether using ECS or load shifting is more beneficial to both customer and utility.

Keywords: energy consumption schedule, load shifting, comparison, demand side mangement

Procedia PDF Downloads 184
4598 WebAppShield: An Approach Exploiting Machine Learning to Detect SQLi Attacks in an Application Layer in Run-time

Authors: Ahmed Abdulla Ashlam, Atta Badii, Frederic Stahl

Abstract:

In recent years, SQL injection attacks have been identified as being prevalent against web applications. They affect network security and user data, which leads to a considerable loss of money and data every year. This paper presents the use of classification algorithms in machine learning using a method to classify the login data filtering inputs into "SQLi" or "Non-SQLi,” thus increasing the reliability and accuracy of results in terms of deciding whether an operation is an attack or a valid operation. A method Web-App auto-generated twin data structure replication. Shielding against SQLi attacks (WebAppShield) that verifies all users and prevents attackers (SQLi attacks) from entering and or accessing the database, which the machine learning module predicts as "Non-SQLi" has been developed. A special login form has been developed with a special instance of data validation; this verification process secures the web application from its early stages. The system has been tested and validated, up to 99% of SQLi attacks have been prevented.

Keywords: SQL injection, attacks, web application, accuracy, database

Procedia PDF Downloads 153
4597 Text2Time: Transformer-Based Article Time Period Prediction

Authors: Karthick Prasad Gunasekaran, B. Chase Babrich, Saurabh Shirodkar, Hee Hwang

Abstract:

Construction preparation is crucial for the success of a construction project. By involving project participants early in the construction phase, project managers can plan ahead and resolve issues early, resulting in project success and satisfaction. This study uses quantitative data from construction management projects to determine the relationship between the pre-construction phase, construction schedule, and customer satisfaction. This study examined a total of 65 construction projects and 93 clients per job to (a) identify the relationship between the pre-construction phase and program reduction and (b) the pre-construction phase and customer retention. Based on a quantitative analysis, this study found a negative correlation between pre-construction status and project schedule in 65 construction projects. This finding means that the more preparatory work done on a particular project, the shorter the total construction time. The Net Promoter Score of 93 clients from 65 projects was then used to determine the relationship between construction preparation and client satisfaction. The pre-construction status and the projects were further analyzed, and a positive correlation between them was found. This shows that customers are happier with projects with a higher ready-to-build ratio than projects with less ready-to-build.

Keywords: NLP, BERT, LLM, deep learning, classification

Procedia PDF Downloads 105
4596 Normal and Peaberry Coffee Beans Classification from Green Coffee Bean Images Using Convolutional Neural Networks and Support Vector Machine

Authors: Hira Lal Gope, Hidekazu Fukai

Abstract:

The aim of this study is to develop a system which can identify and sort peaberries automatically at low cost for coffee producers in developing countries. In this paper, the focus is on the classification of peaberries and normal coffee beans using image processing and machine learning techniques. The peaberry is not bad and not a normal bean. The peaberry is born in an only single seed, relatively round seed from a coffee cherry instead of the usual flat-sided pair of beans. It has another value and flavor. To make the taste of the coffee better, it is necessary to separate the peaberry and normal bean before green coffee beans roasting. Otherwise, the taste of total beans will be mixed, and it will be bad. In roaster procedure time, all the beans shape, size, and weight must be unique; otherwise, the larger bean will take more time for roasting inside. The peaberry has a different size and different shape even though they have the same weight as normal beans. The peaberry roasts slower than other normal beans. Therefore, neither technique provides a good option to select the peaberries. Defect beans, e.g., sour, broken, black, and fade bean, are easy to check and pick up manually by hand. On the other hand, the peaberry pick up is very difficult even for trained specialists because the shape and color of the peaberry are similar to normal beans. In this study, we use image processing and machine learning techniques to discriminate the normal and peaberry bean as a part of the sorting system. As the first step, we applied Deep Convolutional Neural Networks (CNN) and Support Vector Machine (SVM) as machine learning techniques to discriminate the peaberry and normal bean. As a result, better performance was obtained with CNN than with SVM for the discrimination of the peaberry. The trained artificial neural network with high performance CPU and GPU in this work will be simply installed into the inexpensive and low in calculation Raspberry Pi system. We assume that this system will be used in under developed countries. The study evaluates and compares the feasibility of the methods in terms of accuracy of classification and processing speed.

Keywords: convolutional neural networks, coffee bean, peaberry, sorting, support vector machine

Procedia PDF Downloads 145
4595 A Radiomics Approach to Predict the Evolution of Prostate Imaging Reporting and Data System Score 3/5 Prostate Areas in Multiparametric Magnetic Resonance

Authors: Natascha C. D'Amico, Enzo Grossi, Giovanni Valbusa, Ala Malasevschi, Gianpiero Cardone, Sergio Papa

Abstract:

Purpose: To characterize, through a radiomic approach, the nature of areas classified PI-RADS (Prostate Imaging Reporting and Data System) 3/5, recognized in multiparametric prostate magnetic resonance with T2-weighted (T2w), diffusion and perfusion sequences with paramagnetic contrast. Methods and Materials: 24 cases undergoing multiparametric prostate MR and biopsy were admitted to this pilot study. Clinical outcome of the PI-RADS 3/5 was found through biopsy, finding 8 malignant tumours. The analysed images were acquired with a Philips achieva 1.5T machine with a CE- T2-weighted sequence in the axial plane. Semi-automatic tumour segmentation was carried out on MR images using 3DSlicer image analysis software. 45 shape-based, intensity-based and texture-based features were extracted and represented the input for preprocessing. An evolutionary algorithm (a TWIST system based on KNN algorithm) was used to subdivide the dataset into training and testing set and select features yielding the maximal amount of information. After this pre-processing 20 input variables were selected and different machine learning systems were used to develop a predictive model based on a training testing crossover procedure. Results: The best machine learning system (three-layers feed-forward neural network) obtained a global accuracy of 90% ( 80 % sensitivity and 100% specificity ) with a ROC of 0.82. Conclusion: Machine learning systems coupled with radiomics show a promising potential in distinguishing benign from malign tumours in PI-RADS 3/5 areas.

Keywords: machine learning, MR prostate, PI-Rads 3, radiomics

Procedia PDF Downloads 188
4594 A Machine Learning-Based Approach to Capture Extreme Rainfall Events

Authors: Willy Mbenza, Sho Kenjiro

Abstract:

Increasing efforts are directed towards a better understanding and foreknowledge of extreme precipitation likelihood, given the adverse effects associated with their occurrence. This knowledge plays a crucial role in long-term planning and the formulation of effective emergency response. However, predicting extreme events reliably presents a challenge to conventional empirical/statistics due to the involvement of numerous variables spanning different time and space scales. In the recent time, Machine Learning has emerged as a promising tool for predicting the dynamics of extreme precipitation. ML techniques enables the consideration of both local and regional physical variables that have a strong influence on the likelihood of extreme precipitation. These variables encompasses factors such as air temperature, soil moisture, specific humidity, aerosol concentration, among others. In this study, we develop an ML model that incorporates both local and regional variables while establishing a robust relationship between physical variables and precipitation during the downscaling process. Furthermore, the model provides valuable information on the frequency and duration of a given intensity of precipitation.

Keywords: machine learning (ML), predictions, rainfall events, regional variables

Procedia PDF Downloads 90
4593 Applying Push Notifications with Behavioral Change Strategies in Fitness Applications: A Survey of User's Perception Based on Consumer Engagement

Authors: Yali Liu, Maria Avello Iturriagagoitia

Abstract:

Background: Fitness applications (apps) are one of the most popular mobile health (mHealth) apps. These apps can help prevent/control health issues such as obesity, which is one of the most serious public health challenges in the developed world in recent decades. Compared with the traditional intervention like face-to-face treatment, it is cheaper and more convenient to use fitness apps to interfere with physical activities and healthy behaviors. Nevertheless, fitness applications apps tend to have high abandonment rates and low levels of user engagement. Therefore, maintaining the endurance of users' usage is challenging. In fact, previous research shows a variety of strategies -goal-setting, self-monitoring, coaching, etc.- for promoting fitness and health behavior change. These strategies can influence the users’ perseverance and self-monitoring of the program as well as favoring their adherence to routines that involve a long-term behavioral change. However, commercial fitness apps rarely incorporate these strategies into their design, thus leading to a lack of engagement with the apps. Most of today’s mobile services and brands engage their users proactively via push notifications. Push notifications. These notifications are visual or auditory alerts to inform mobile users about a wide range of topics that entails an effective and personal mean of communication between the app and the user. One of the research purposes of this article is to implement the application of behavior change strategies through push notifications. Proposes: This study aims to better understand the influence that effective use of push notifications combined with the behavioral change strategies will have on users’ engagement with the fitness app. And the secondary objectives are 1) to discuss the sociodemographic differences in utilization of push notifications of fitness apps; 2) to determine the impact of each strategy in customer engagement. Methods: The study uses a combination of the Consumer Engagement Theory and UTAUT2 based model to conduct an online survey among current users of fitness apps. The questionnaire assessed attitudes to each behavioral change strategy, and sociodemographic variables. Findings: Results show the positive effect of push notifications in the generation of consumer engagement and the different impacts of each strategy among different groups of population in customer engagement. Conclusions: Fitness apps with behavior change strategies have a positive impact on increasing users’ usage time and customer engagement. Theoretical experts can participate in designing fitness applications, along with technical designers.

Keywords: behavioral change, customer engagement, fitness app, push notification, UTAUT2

Procedia PDF Downloads 136
4592 Enhancing Sell-In and Sell-Out Forecasting Using Ensemble Machine Learning Method

Authors: Vishal Das, Tianyi Mao, Zhicheng Geng, Carmen Flores, Diego Pelloso, Fang Wang

Abstract:

Accurate sell-in and sell-out forecasting is a ubiquitous problem in the retail industry. It is an important element of any demand planning activity. As a global food and beverage company, Nestlé has hundreds of products in each geographical location that they operate in. Each product has its sell-in and sell-out time series data, which are forecasted on a weekly and monthly scale for demand and financial planning. To address this challenge, Nestlé Chilein collaboration with Amazon Machine Learning Solutions Labhas developed their in-house solution of using machine learning models for forecasting. Similar products are combined together such that there is one model for each product category. In this way, the models learn from a larger set of data, and there are fewer models to maintain. The solution is scalable to all product categories and is developed to be flexible enough to include any new product or eliminate any existing product in a product category based on requirements. We show how we can use the machine learning development environment on Amazon Web Services (AWS) to explore a set of forecasting models and create business intelligence dashboards that can be used with the existing demand planning tools in Nestlé. We explored recent deep learning networks (DNN), which show promising results for a variety of time series forecasting problems. Specifically, we used a DeepAR autoregressive model that can group similar time series together and provide robust predictions. To further enhance the accuracy of the predictions and include domain-specific knowledge, we designed an ensemble approach using DeepAR and XGBoost regression model. As part of the ensemble approach, we interlinked the sell-out and sell-in information to ensure that a future sell-out influences the current sell-in predictions. Our approach outperforms the benchmark statistical models by more than 50%. The machine learning (ML) pipeline implemented in the cloud is currently being extended for other product categories and is getting adopted by other geomarkets.

Keywords: sell-in and sell-out forecasting, demand planning, DeepAR, retail, ensemble machine learning, time-series

Procedia PDF Downloads 276