Search results for: current vector
9078 Spatial Heterogeneity of Urban Land Use in the Yangtze River Economic Belt Based on DMSP/OLS Data
Authors: Liang Zhou, Qinke Sun
Abstract:
Taking the Yangtze River Economic Belt as an example, using long-term nighttime lighting data from DMSP/OLS from 1992 to 2012, support vector machine classification (SVM) was used to quantitatively extract urban built-up areas of economic belts, and spatial analysis of expansion intensity index, standard deviation ellipse, etc. was introduced. The model conducts detailed and in-depth discussions on the strength, direction, and type of the expansion of the middle and lower reaches of the economic belt and the key node cities. The results show that: (1) From 1992 to 2012, the built-up areas of the major cities in the Yangtze River Valley showed a rapid expansion trend. The built-up area expanded by 60,392 km², and the average annual expansion rate was 31%, that is, from 9615 km² in 1992 to 70007 km² in 2012. The spatial gradient analysis of the watershed shows that the expansion of urban built-up areas in the middle and lower reaches of the river basin takes Shanghai as the leading force, and the 'bottom-up' model shows an expanding pattern of 'upstream-downstream-middle-range' declines. The average annual rate of expansion is 36% and 35%, respectively. 17% of which the midstream expansion rate is about 50% of the upstream and downstream. (2) The analysis of expansion intensity shows that the urban expansion intensity in the Yangtze River Basin has generally shown an upward trend, the downstream region has continued to rise, and the upper and middle reaches have experienced different amplitude fluctuations. To further analyze the strength of urban expansion at key nodes, Chengdu, Chongqing, and Wuhan in the upper and middle reaches maintain a high degree of consistency with the intensity of regional expansion. Node cities with Shanghai as the core downstream continue to maintain a high level of expansion. (3) The standard deviation ellipse analysis shows that the overall center of gravity of the Yangtze River basin city is located in Anqing City, Anhui Province, and it showed a phenomenon of reciprocating movement from 1992 to 2012. The nighttime standard deviation ellipse distribution range increased from 61.96 km² to 76.52 km². The growth of the major axis of the ellipse was significantly larger than that of the minor axis. It had obvious east-west axiality, in which the nighttime lights in the downstream area occupied in the entire luminosity scale urban system leading position.Keywords: urban space, support vector machine, spatial characteristics, night lights, Yangtze River Economic Belt
Procedia PDF Downloads 1149077 Off-Line Parameter Estimation for the Induction Motor Drive System
Authors: Han-Woong Ahn, In-Gun Kim, Hyun-Seok Hong, Dong-Woo Kang, Ju Lee
Abstract:
It is important to accurately identify machine parameters for direct vector control. To obtain the parameter values, traditional methods can be used such as no-load and rotor locked tests. However, there are many differences between values obtained from the traditional tests and actual values. In addition, there are drawbacks that additional equipment and cost are required for the experiment. Therefore, it is hard to temporary operation to estimate induction motor parameters. Therefore, this paper deals with the estimation algorithm of induction motor parameters without a motor operation and the measurement from additional equipment such as sensors and dynamometer. The validity and usefulness of the estimation algorithm considering inverter nonlinearity is verified by comparing the conventional method with the proposed method.Keywords: induction motor, parameter, off-line estimation, inverter nonlinearity
Procedia PDF Downloads 5299076 An Elaborated Software Solution: The Tennis Ranking System
Authors: Dionysios Kakaroumpas, Jesseka Farago, Stephen Webber
Abstract:
Athletes and spectators depend on the tennis ranking system to represent the truest caliber of athletic prowess; a careful look at the current ranking system though, reveals its main weakness: it undermines expectations of fans and players. Our study proposes several key changes to the existing ranking formula that provide a fair and accurate approach to measure player performance. The study proposes a modification of the system to value: participation, continued advancement, and overall achievement. The new ranking formula facilitates closing the trust gap, encouraging competition equality, engaging the fan base, attracting investment, and promoting tennis involvement worldwide. To probe the crux of our main contention we performed week-by-week comparisons between results procured from the current and proposed formulae. After performing this rigorous case-study of top players of each gender, the findings strongly indicated that there is identifiable inflation in the ranks and enhanced the conviction that the current system should be updated. The new system is accompanied by a web-based software package freely available to anyone involved or interested in tennis rankings. The software package is designed to automatically calculate new player rankings based on a responsive, multi-faceted formula that also generates projected point scenarios and provides separate rankings for the three different court surfaces. By taking a critical look at the current tennis ranking system with consideration to the perspective of fans, players, and businesses involved, an upgrade is in order for it to maintain the balance of trust between fans and the evaluation process. In closure, this proposed solution increases fair play competition, eliminates rank inflation, and better engages fans, players, and sponsors by bringing in a new era of professional tennis.Keywords: measurement and evaluation, rules and regulations, sports management and marketing, tennis ranking system
Procedia PDF Downloads 2719075 Application of Vector Representation for Revealing the Richness of Meaning of Facial Expressions
Authors: Carmel Sofer, Dan Vilenchik, Ron Dotsch, Galia Avidan
Abstract:
Studies investigating emotional facial expressions typically reveal consensus among observes regarding the meaning of basic expressions, whose number ranges between 6 to 15 emotional states. Given this limited number of discrete expressions, how is it that the human vocabulary of emotional states is so rich? The present study argues that perceivers use sequences of these discrete expressions as the basis for a much richer vocabulary of emotional states. Such mechanisms, in which a relatively small number of basic components is expanded to a much larger number of possible combinations of meanings, exist in other human communications modalities, such as spoken language and music. In these modalities, letters and notes, which serve as basic components of spoken language and music respectively, are temporally linked, resulting in the richness of expressions. In the current study, in each trial participants were presented with sequences of two images containing facial expression in different combinations sampled out of the eight static basic expressions (total 64; 8X8). In each trial, using single word participants were required to judge the 'state of mind' portrayed by the person whose face was presented. Utilizing word embedding methods (Global Vectors for Word Representation), employed in the field of Natural Language Processing, and relying on machine learning computational methods, it was found that the perceived meanings of the sequences of facial expressions were a weighted average of the single expressions comprising them, resulting in 22 new emotional states, in addition to the eight, classic basic expressions. An interaction between the first and the second expression in each sequence indicated that every single facial expression modulated the effect of the other facial expression thus leading to a different interpretation ascribed to the sequence as a whole. These findings suggest that the vocabulary of emotional states conveyed by facial expressions is not restricted to the (small) number of discrete facial expressions. Rather, the vocabulary is rich, as it results from combinations of these expressions. In addition, present research suggests that using word embedding in social perception studies, can be a powerful, accurate and efficient tool, to capture explicit and implicit perceptions and intentions. Acknowledgment: The study was supported by a grant from the Ministry of Defense in Israel to GA and CS. CS is also supported by the ABC initiative in Ben-Gurion University of the Negev.Keywords: Glove, face perception, facial expression perception. , facial expression production, machine learning, word embedding, word2vec
Procedia PDF Downloads 1769074 Performance Evaluation of Contemporary Classifiers for Automatic Detection of Epileptic EEG
Authors: K. E. Ch. Vidyasagar, M. Moghavvemi, T. S. S. T. Prabhat
Abstract:
Epilepsy is a global problem, and with seizures eluding even the smartest of diagnoses a requirement for automatic detection of the same using electroencephalogram (EEG) would have a huge impact in diagnosis of the disorder. Among a multitude of methods for automatic epilepsy detection, one should find the best method out, based on accuracy, for classification. This paper reasons out, and rationalizes, the best methods for classification. Accuracy is based on the classifier, and thus this paper discusses classifiers like quadratic discriminant analysis (QDA), classification and regression tree (CART), support vector machine (SVM), naive Bayes classifier (NBC), linear discriminant analysis (LDA), K-nearest neighbor (KNN) and artificial neural networks (ANN). Results show that ANN is the most accurate of all the above stated classifiers with 97.7% accuracy, 97.25% specificity and 98.28% sensitivity in its merit. This is followed closely by SVM with 1% variation in result. These results would certainly help researchers choose the best classifier for detection of epilepsy.Keywords: classification, seizure, KNN, SVM, LDA, ANN, epilepsy
Procedia PDF Downloads 5209073 Potential for Massive Use of Biodiesel for Automotive in Italy
Authors: Domenico Carmelo Mongelli
Abstract:
The context of this research is that of the Italian reality, which, in order to adapt to the EU Directives that prohibit the production of internal combustion engines in favor of electric mobility from 2035, is extremely concerned about the significant loss of jobs resulting from the difficulty of the automotive industry in converting in such a short time and due to the reticence of potential buyers in the face of such an epochal change. The aim of the research is to evaluate for Italy the potential of the most valid alternative to this transition to electric: leaving the current production of diesel engines unchanged, no longer powered by gasoil, imported and responsible for greenhouse gas emissions, but powered entirely by a nationally produced and eco-sustainable fuel such as biodiesel. Today in Italy, the percentage of biodiesel mixed with gasoil for diesel engines is too low (around 10%); for this reason, this research aims to evaluate the functioning of current diesel engines powered 100% by biodiesel and the ability of the Italian production system to cope to this hypothesis. The research geographically identifies those abandoned lands in Italy, now out of the food market, which is best suited to an energy crop for the final production of biodiesel. The cultivation of oilseeds is identified, which for the Italian agro-industrial reality allows maximizing the agricultural and industrial yields of the transformation of the agricultural product into a final energy product and minimizing the production costs of the entire agro-industrial chain. To achieve this objective, specific databases are used, and energy and economic balances are prepared for the different agricultural product alternatives. Solutions are proposed and tested that allow the optimization of all production phases in both the agronomic and industrial phases. The biodiesel obtained from the most feasible of the alternatives examined is analyzed, and its compatibility with current diesel engines is identified, and from the evaluation of its thermo-fluid-dynamic properties, the engineering measures that allow the perfect functioning of current internal combustion engines are examined. The results deriving from experimental tests on the engine bench are evaluated to evaluate the performance of different engines fueled with biodiesel alone in terms of power, torque, specific consumption and useful thermal efficiency and compared with the performance of engines fueled with the current mixture of fuel on the market. The results deriving from experimental tests on the engine bench are evaluated to evaluate the polluting emissions of engines powered only by biodiesel and compared with current emissions. At this point, we proceed with the simulation of the total replacement of gasoil with biodiesel as a fuel for the current fleet of diesel vehicles in Italy, drawing the necessary conclusions in technological, energy, economic, and environmental terms and in terms of social and employment implications. The results allow us to evaluate the potential advantage of a total replacement of diesel fuel with biodiesel for powering road vehicles with diesel cycle internal combustion engines without significant changes to the current vehicle fleet and without requiring future changes to the automotive industry.Keywords: biodiesel, economy, engines, environment
Procedia PDF Downloads 759072 Low Complexity Deblocking Algorithm
Authors: Jagroop Singh Sidhu, Buta Singh
Abstract:
A low computational deblocking filter including three frequency related modes (smooth mode, intermediate mode, and non-smooth mode for low-frequency, mid-frequency, and high frequency regions, respectively) is proposed. The suggested approach requires zero additions, zero subtractions, zero multiplications (for intermediate region), no divisions (for non-smooth region) and no comparison. The suggested method thus keeps the computation lower and thus suitable for image coding systems based on blocks. Comparison of average number of operations for smooth, non-smooth, intermediate (per pixel vector for each block) using filter suggested by Chen and the proposed method filter suggests that the proposed filter keeps the computation lower and is thus suitable for fast processing algorithms.Keywords: blocking artifacts, computational complexity, non-smooth, intermediate, smooth
Procedia PDF Downloads 4629071 Magnetohydrodynamic Flows in a Misaligned Duct under a Uniform Magnetic Field
Authors: Mengqi Zhu, Chang Nyung Kim
Abstract:
This study numerically investigates three-dimensional liquid-metal (LM) magnetohydrodynamic (MHD) flows in a misaligned duct under a uniform magnetic field. The duct consists of two misaligned horizontal channels (one is inflow channel, the other is outflow channel) and one central vertical channel. Computational fluid dynamics simulations are performed to predict the behavior of the MHD flows, using commercial code CFX. In the current study, a case with Hartmann number 1000 is considered. The electromagnetic features of LM MHD flows are elucidated to examine the interdependency of the flow velocity, current density, electric potential, pressure drop and Lorentz force. The results show that pressure decreases linearly along the main flow direction.Keywords: CFX, liquid-metal magnetohydrodynamic flows, misaligned duct, pressure drop
Procedia PDF Downloads 2849070 A Neural Approach for the Offline Recognition of the Arabic Handwritten Words of the Algerian Departments
Authors: Salim Ouchtati, Jean Sequeira, Mouldi Bedda
Abstract:
In this work we present an off line system for the recognition of the Arabic handwritten words of the Algerian departments. The study is based mainly on the evaluation of neural network performances, trained with the gradient back propagation algorithm. The used parameters to form the input vector of the neural network are extracted on the binary images of the handwritten word by several methods: the parameters of distribution, the moments centered of the different projections and the Barr features. It should be noted that these methods are applied on segments gotten after the division of the binary image of the word in six segments. The classification is achieved by a multi layers perceptron. Detailed experiments are carried and satisfactory recognition results are reported.Keywords: handwritten word recognition, neural networks, image processing, pattern recognition, features extraction
Procedia PDF Downloads 5139069 Determination of Relationship among Shape Indexes Used for Land Consolidation
Authors: Firat Arslan, Hasan Degirmenci, Serife Tulin Akkaya Aslan
Abstract:
The aim of the current experiment was to determine the relationship among shape indexes which are used by the researchers in many fields to evaluate parcel shapes which is very important for farming even if these indexes are controversial. In the current study, land consolidation project of Halitaga village in Mersin province in Turkey which has 278 parcel and cover 894.4 ha, was taken as a material. Commonly used indicators such as fractal dimension (FD), shape index (SI), form factor (FORM), areal form factor (AFF) and two distinct area-perimeter ratio (APR-1 and APR2) in land consolidation are used to measure agricultural plot’s shape. FD was positively correlated with SI, APR-1 and APR-2 whereas it was negatively correlated with FORM and AFF. SI was positively correlated with APR-1 and APR-2 whereas it was negatively correlated with FORM and AFF. As a conclusion, it is likely that these indexes involved may be used interchangeably due to high correlations among them.Keywords: GIS, land consolidation, parcel shape, shape index
Procedia PDF Downloads 1879068 Power Circuit Schemes in AC Drive is Made by Condition of the Minimum Electric Losses
Authors: M. A. Grigoryev, A. N. Shishkov, D. A. Sychev
Abstract:
The article defines the necessity of choosing the optimal power circuits scheme of the electric drive with field regulated reluctance machine. The specific weighting factors are calculation, the linear regression dependence of specific losses in semiconductor frequency converters are presented depending on the values of the rated current. It is revealed that with increase of the carrier frequency PWM improves the output current waveform, but increases the loss, so you will need depending on the task in a certain way to choose from the carrier frequency. For task of optimization by criterion of the minimum electrical losses regression dependence of the electrical losses in the frequency converter circuit at a frequency of a PWM signal of 0 Hz. The surface optimization criterion is presented depending on the rated output torque of the motor and number of phases. In electric drives with field regulated reluctance machine with at low output power optimization criterion appears to be the worst for multiphase circuits. With increasing output power this trend hold true, but becomes insignificantly different optimal solutions for three-phase and multiphase circuits. This is explained to the linearity of the dependence of the electrical losses from the current.Keywords: field regulated reluctance machine, the electrical losses, multiphase power circuit, the surface optimization criterion
Procedia PDF Downloads 2949067 Starting Characteristic Analysis of LSPM for Pumping System Considering Demagnetization
Authors: Subrato Saha, Yun-Hyun Cho
Abstract:
This paper presents the design process of a high performance 3-phase 3.7 kW 2-pole line start permanent magnet synchronous motor for pumping system. A method was proposed to study the starting torque characteristics considering line start with high inertia load. A d-q model including cage was built to study the synchronization capability. Time-stepping finite element method analysis was utilized to accurately predict the dynamic and transient performance, efficiency, starting current, speed curve and, etc. Considering the load torque of pumps during starting stage, the rotor bar was designed with minimum demagnetization of permanent magnet caused by huge starting current.Keywords: LSPM, starting analysis, demagnetization, FEA, pumping system
Procedia PDF Downloads 4719066 The Use of Water Resources Yield Model at Kleinfontein Dam
Authors: Lungile Maliba, O. I. Nkwonta, E Onyari
Abstract:
Water resources development and management are regarded as crucial for poverty reduction in many developing countries and sustainable economic growth such as South Africa. The contribution of large hydraulic infrastructure and management of it, particularly reservoirs, to development remains controversial. This controversy stems from the fact that from a historical point of view construction of reservoirs has brought fewer benefits than envisaged and has resulted in significant environmental and social costs. A further complexity in reservoir management is the variety of stakeholders involved, all with different objectives, including domestic and industrial water use, flood control, irrigation and hydropower generation. The objective was to evaluate technical adaptation options for kleinfontein Dam’s current operating rule curves. To achieve this objective, the current operating rules curves being used in the sub-basin were analysed. An objective methodology was implemented in other to get the operating rules with regards to the target storage curves. These were derived using the Water Resources Yield/Planning Model (WRY/PM), with the aim of maximising of releases to demand zones. The result showed that the system is over allocated and in addition the demands exceed the long-term yield that is available for the system. It was concluded that the current operating rules in the system do not produce the optimum operation such as target storage curves to avoid supply failures in the system.Keywords: infrastructure, Kleinfontein dam, operating rule curve, water resources yield and planning model
Procedia PDF Downloads 1399065 Renewable Energy Interfaced Shunt Active Filter Using a Virtual Flux Direct Power Control
Authors: M. R. Bengourina, M. Rahli, L. Hassaine, S. Saadi
Abstract:
In this study, we present a control method entitled virtual flux direct power control of a grid connected photovoltaic system associated with an active power filter. The virtual flux direct control of power (VF-DPC) is employed for the calculation of reference current generation. In this technique, the switches states of inverter are selected from a table of switching based on the immediate errors between the active and reactive powers and their reference values. The objectives of this paper are the reduction of Total Harmonic Distortion (THD) of source current, compensating reactive power and injecting the maximum active power available from the PV array into the load and/or grid. MATLAB/SIMULINK simulations are provided to demonstrate the performance of the proposed approach.Keywords: shunt active power filter, VF-DPC, photovoltaic, MPPT
Procedia PDF Downloads 3239064 Synthesis and Electromagnetic Property of Li₀.₃₅Zn₀.₃Fe₂.₃₅O₄ Grafted with Polyaniline Fibers
Authors: Jintang Zhou, Zhengjun Yao, Tiantian Yao
Abstract:
Li₀.₃₅Zn₀.₃Fe₂.₃₅O₄(LZFO) grafted with polyaniline (PANI) fibers was synthesized by in situ polymerization. FTIR, XRD, SEM, and vector network analyzer were used to investigate chemical composition, micro-morphology, electromagnetic properties and microwave absorbing properties of the composite. The results show that PANI fibers were grafted on the surfaces of LZFO particles. The reflection loss exceeds 10 dB in the frequency range from 2.5 to 5 GHz and from 15 to 17GHz, and the maximum reflection loss reaches -33 dB at 15.9GHz. The enhanced microwave absorption properties of LZFO/PANI-fiber composites are mainly ascribed to the combined effect of both dielectric loss and magnetic loss and the improved impedance matching.Keywords: Li₀.₃₅Zn₀.₃Fe₂.₃₅O₄, polyaniline, electromagnetic properties, microwave absorbing properties
Procedia PDF Downloads 4309063 MHD Flow in a Curved Duct with FCI under a Uniform Magnetic Field
Authors: Yue Yan, Chang Nyung Kim
Abstract:
The numerical investigation of the three-dimensional liquid-metal (LM) magnetohydrodynamic (MHD) flows in a curved duct with flow channel insert (FCI) is presented in this paper, based on the computational fluid dynamics (CFD) method. A uniform magnetic field is applied perpendicular to the duct. The interdependency of the flow variables is examined in terms of the flow velocity, current density, electric potential and pressure. The electromagnetic characteristics of the LM MHD flows are reviewed with an introduction of the electric-field component and electro-motive component of the current. The influence of the existence of the FCI on the fluid flow is investigated in detail. The case with FCI slit located near the side layer yields smaller pressure gradient with stable flow field.Keywords: curved duct, flow channel insert, liquid-metal, magnetohydrodynamic
Procedia PDF Downloads 4969062 Bio-Oil Compounds Sorption Enhanced Steam Reforming
Authors: Esther Acha, Jose Cambra, De Chen
Abstract:
Hydrogen is considered an important energy vector for the 21st century. Nowadays there are some difficulties for hydrogen economy implantation, and one of them is the high purity required for hydrogen. This energy vector is still being mainly produced from fuels, from wich hydrogen is produced as a component of a mixture containing other gases, such as CO, CO2 and H2O. A forthcoming sustainable pathway for hydrogen is steam-reforming of bio-oils derived from biomass, e.g. via fast pyrolysis. Bio-oils are a mixture of acids, alcohols, aldehydes, esters, ketones, sugars phenols, guaiacols, syringols, furans, multi-functional compounds and also up to a 30 wt% of water. The sorption enhanced steam reforming (SESR) process is attracting a great deal of attention due to the fact that it combines both hydrogen production and CO2 separation. In the SESR process, carbon dioxide is captured by an in situ sorbent, which shifts the reversible reforming and water gas shift reactions to the product side, beyond their conventional thermodynamic limits, giving rise to a higher hydrogen production and lower cost. The hydrogen containing mixture has been obtained from the SESR of bio-oil type compounds. Different types of catalysts have been tested. All of them contain Ni at around a 30 wt %. Two samples have been prepared with the wet impregnation technique over conventional (gamma alumina) and non-conventional (olivine) supports. And a third catalysts has been prepared over a hydrotalcite-like material (HT). The employed sorbent is a commercial dolomite. The activity tests were performed in a bench-scale plant (PID Eng&Tech), using a stainless steel fixed bed reactor. The catalysts were reduced in situ in the reactor, before the activity tests. The effluent stream was cooled down, thus condensed liquid was collected and weighed, and the gas phase was analysed online by a microGC. The hydrogen yield, and process behavior was analysed without the sorbent (the traditional SR where a second purification step will be needed but that operates in steady state) and the SESR (where the purification step could be avoided but that operates in batch state). The influence of the support type and preparation method will be observed in the produced hydrogen yield. Additionally, the stability of the catalysts is critical, due to the fact that in SESR process sorption-desorption steps are required. The produced hydrogen yield and hydrogen purity has to be high and also stable, even after several sorption-desorption cycles. The prepared catalysts were characterized employing different techniques to determine the physicochemical properties of the fresh-reduced and used (after the activity tests) materials. The characterization results, together with the activity results show the influence of the catalysts preparation method, calcination temperature, or can even explain the observed yield and conversion.Keywords: CO2 sorbent, enhanced steam reforming, hydrogen
Procedia PDF Downloads 5799061 E-Learning Approaches Based on Artificial Intelligence Techniques: A Survey
Authors: Nabila Daly, Hamdi Ellouzi, Hela Ltifi
Abstract:
In last year’s, several recent researches’ that focus on e-learning approaches having as goal to improve pedagogy and student’s academy level assessment. E-learning-related works have become an important research file nowadays due to several problems that make it impossible for students join classrooms, especially in last year’s. Among those problems, we note the current epidemic problems in the word case of Covid-19. For those reasons, several e-learning-related works based on Artificial Intelligence techniques are proposed to improve distant education targets. In the current paper, we will present a short survey of the most relevant e-learning based on Artificial Intelligence techniques giving birth to newly developed e-learning tools that rely on new technologies.Keywords: artificial intelligence techniques, decision, e-learning, support system, survey
Procedia PDF Downloads 2259060 Integration of UPQC Based on Fuzzy Controller for Power Quality Enhancement in Distributed Network
Authors: M. Habab, C. Benachaiba, B. Mazari, H. Madi, C. Benoudjafer
Abstract:
The use of Distributed Generation (DG) has been increasing in recent years to fill the gap between energy supply and demand. This paper presents the grid connected wind energy system with UPQC based on fuzzy controller to compensate for voltage and current disturbances. The proposed system can improve power quality at the point of installation on power distribution systems. Simulation results show the capability of the DG-UPQC intelligent system to compensate sags voltage and current harmonics at the Point of Common Coupling (PCC).Keywords: shunt active filter, series active filter, UPQC, power quality, sags voltage, distributed generation, wind turbine
Procedia PDF Downloads 4079059 A Study of Different Factors Influencing Youngsters’ Mobile Device Buying Behaviors in Malaysia
Authors: Z. S. Yip, T. K. Tan, C. C. Geh, T. T. Ting
Abstract:
The mobile phone is an indispensable device in today’s daily living. The arising new brands in the market with different specification are targeting at the different population. The most promising market would be the younger generation who are IT savvy. Therefore, it is beneficial to find out their factors of consideration in purchasing a mobile phone. A survey is carried out in Malaysia to discover the current youngster’s mobile phone buying behavior. This study has found that the most influencing factor of consideration is Price, followed by Feature, and Battery Lifespan. Gender and Income have no relationship with certain factors of consideration. It is important to discover the factors of consideration in order to provide industry insight into the current trend of smartphone in Malaysia.Keywords: buying behavior, smart phone, mobile brand, mobile operating system, specification, battery lifespan
Procedia PDF Downloads 3559058 Machine Learning for Disease Prediction Using Symptoms and X-Ray Images
Authors: Ravija Gunawardana, Banuka Athuraliya
Abstract:
Machine learning has emerged as a powerful tool for disease diagnosis and prediction. The use of machine learning algorithms has the potential to improve the accuracy of disease prediction, thereby enabling medical professionals to provide more effective and personalized treatments. This study focuses on developing a machine-learning model for disease prediction using symptoms and X-ray images. The importance of this study lies in its potential to assist medical professionals in accurately diagnosing diseases, thereby improving patient outcomes. Respiratory diseases are a significant cause of morbidity and mortality worldwide, and chest X-rays are commonly used in the diagnosis of these diseases. However, accurately interpreting X-ray images requires significant expertise and can be time-consuming, making it difficult to diagnose respiratory diseases in a timely manner. By incorporating machine learning algorithms, we can significantly enhance disease prediction accuracy, ultimately leading to better patient care. The study utilized the Mask R-CNN algorithm, which is a state-of-the-art method for object detection and segmentation in images, to process chest X-ray images. The model was trained and tested on a large dataset of patient information, which included both symptom data and X-ray images. The performance of the model was evaluated using a range of metrics, including accuracy, precision, recall, and F1-score. The results showed that the model achieved an accuracy rate of over 90%, indicating that it was able to accurately detect and segment regions of interest in the X-ray images. In addition to X-ray images, the study also incorporated symptoms as input data for disease prediction. The study used three different classifiers, namely Random Forest, K-Nearest Neighbor and Support Vector Machine, to predict diseases based on symptoms. These classifiers were trained and tested using the same dataset of patient information as the X-ray model. The results showed promising accuracy rates for predicting diseases using symptoms, with the ensemble learning techniques significantly improving the accuracy of disease prediction. The study's findings indicate that the use of machine learning algorithms can significantly enhance disease prediction accuracy, ultimately leading to better patient care. The model developed in this study has the potential to assist medical professionals in diagnosing respiratory diseases more accurately and efficiently. However, it is important to note that the accuracy of the model can be affected by several factors, including the quality of the X-ray images, the size of the dataset used for training, and the complexity of the disease being diagnosed. In conclusion, the study demonstrated the potential of machine learning algorithms for disease prediction using symptoms and X-ray images. The use of these algorithms can improve the accuracy of disease diagnosis, ultimately leading to better patient care. Further research is needed to validate the model's accuracy and effectiveness in a clinical setting and to expand its application to other diseases.Keywords: K-nearest neighbor, mask R-CNN, random forest, support vector machine
Procedia PDF Downloads 1549057 AFM Probe Sensor Designed for Cellular Membrane Components
Authors: Sarmiza Stanca, Wolfgang Fritzsche, Christoph Krafft, Jürgen Popp
Abstract:
Independent of the cell type a thin layer of a few nanometers thickness surrounds the cell interior as the cellular membrane. The transport of ions and molecules through the membrane is achieved in a very precise way by pores. Understanding the process of opening and closing the pores due to an electrochemical gradient across the membrane requires knowledge of the pore constitutive proteins. Recent reports prove the access to the molecular level of the cellular membrane by atomic force microscopy (AFM). This technique also permits an electrochemical study in the immediate vicinity of the tip. Specific molecules can be electrochemically localized in the natural cellular membrane. Our work aims to recognize the protein domains of the pores using an AFM probe as a miniaturized amperometric sensor, and to follow the protein behavior while changing the applied potential. The intensity of the current produced between the surface and the AFM probe is amplified and detected simultaneously with the surface imaging. The AFM probe plays the role of the working electrode and the substrate, a conductive glass on which the cells are grown, represent the counter electrode. For a better control of the electric potential on the probe, a third electrode Ag/AgCl wire is mounted in the circuit as a reference electrode. The working potential is applied between the electrodes with a programmable source and the current intensity in the circuit is recorded with a multimeter. The applied potential considers the overpotential at the electrode surface and the potential drop due to the current flow through the system. The reported method permits a high resolved electrochemical study of the protein domains on the living cell membrane. The amperometric map identifies areas of different current intensities on the pore depending on the applied potential. The reproducibility of this method is limited by the tip shape, the uncontrollable capacitance, which occurs at the apex and a potential local charge separation.Keywords: AFM, sensor, membrane, pores, proteins
Procedia PDF Downloads 3079056 Exploiting Kinetic and Kinematic Data to Plot Cyclograms for Managing the Rehabilitation Process of BKAs by Applying Neural Networks
Authors: L. Parisi
Abstract:
Kinematic data wisely correlate vector quantities in space to scalar parameters in time to assess the degree of symmetry between the intact limb and the amputated limb with respect to a normal model derived from the gait of control group participants. Furthermore, these particular data allow a doctor to preliminarily evaluate the usefulness of a certain rehabilitation therapy. Kinetic curves allow the analysis of ground reaction forces (GRFs) to assess the appropriateness of human motion. Electromyography (EMG) allows the analysis of the fundamental lower limb force contributions to quantify the level of gait asymmetry. However, the use of this technological tool is expensive and requires patient’s hospitalization. This research work suggests overcoming the above limitations by applying artificial neural networks.Keywords: kinetics, kinematics, cyclograms, neural networks, transtibial amputation
Procedia PDF Downloads 4439055 Comparison of Different Data Acquisition Techniques for Shape Optimization Problems
Authors: Attila Vámosi, Tamás Mankovits, Dávid Huri, Imre Kocsis, Tamás Szabó
Abstract:
Non-linear FEM calculations are indispensable when important technical information like operating performance of a rubber component is desired. Rubber bumpers built into air-spring structures may undergo large deformations under load, which in itself shows non-linear behavior. The changing contact range between the parts and the incompressibility of the rubber increases this non-linear behavior further. The material characterization of an elastomeric component is also a demanding engineering task. The shape optimization problem of rubber parts led to the study of FEM based calculation processes. This type of problems was posed and investigated by several authors. In this paper the time demand of certain calculation methods are studied and the possibilities of time reduction is presented.Keywords: rubber bumper, data acquisition, finite element analysis, support vector regression
Procedia PDF Downloads 4719054 Efficiency Improvement of REV-Method for Calibration of Phased Array Antennas
Authors: Daniel Hristov
Abstract:
The paper describes the principle of operation, simulation and physical validation of method for simultaneous acquisition of gain and phase states of multiple antenna elements and the corresponding feed lines across a Phased Array Antenna (PAA). The derived values for gain and phase are used for PAA-calibration. The method utilizes the Rotating-Element Electric- Field Vector (REV) principle currently used for gain and phase state estimation of single antenna element across an active antenna aperture. A significant reduction of procedure execution time is achieved with simultaneous setting of different phase delays to multiple phase shifters, followed by a single power measurement. The initial gain and phase states are calculated using spectral and correlation analysis of the measured power series.Keywords: antenna, antenna arrays, calibration, phase measurement, power measurement
Procedia PDF Downloads 1379053 Clinical Neuropsychology in India: Challenges and Achievements
Authors: Garima Joshi, Ashima N. Wadhawan
Abstract:
Neuropsychology in India is a fairly new field, having started only four decades back. Neuropsychology has come a long way since the establishment of the first department, from using western batteries for assessing patients to the development of highly reliable indigenous tools for assessing neuropsychological functioning. Clinical neuropsychology has risen as a discipline in the field of assessing and rehabilitating patients with various neurological conditions such as Traumatic Brain Injury, Stroke, Mild Cognitive Impairment, Alzheimer’s, Schizophrenia and other disorders with cognitive decline. The current review attempts to assimilate the history of the discipline in India, along with the current developments and future direction of the field and highlights the pursuit and undertakings of the scientists to provide culturally appropriate services, in terms of assessment and rehabilitation, to the Indian population.Keywords: clinical neuropsychology, cognitive assessment, cognitive rehabilitation, neuropsychological test batteries in India
Procedia PDF Downloads 3209052 The Adoption of Mobile Learning in Saudi Women Faculty in King Abdulaziz University
Authors: Leena Alfarani
Abstract:
Although mobile devices are ubiquitous on university campuses, teacher-readiness for mobile learning has yet to be fully explored in the non-western nations. This study shows that two main factors affect the adoption and use of m-learning among female teachers within a university in Saudi Arabia—resistance to change and perceived social culture. These determinants of the current use and intention to use of m-learning were revealed through the analysis of an online questionnaire completed by 165 female faculty members. This study reveals several important issues for m-learning research and practice. The results further extend the body of knowledge in the field of m-learning, with the findings revealing that resistance to change and perceived social culture are significant determinants of the current use of and the intention to use m-learning.Keywords: blended learning, mobile learning, technology adoption, devices
Procedia PDF Downloads 4649051 Highly Specific DNA-Aptamer-Based Electrochemical Biosensor for Mercury (II) and Lead (II) Ions Detection in Water Samples
Authors: H. Abu-Ali, A. Nabok, T. Smith
Abstract:
Aptamers are single-strand of DNA or RNA nucleotides sequence which is designed in vitro using selection process known as SELEX (systematic evolution of ligands by exponential enrichment) were developed for the selective detection of many toxic materials. In this work, we have developed an electrochemical biosensor for highly selective and sensitive detection of Hg2+ and Pb2+ using a specific aptamer probe (SAP) labelled with ferrocene (or methylene blue) in (5′) end and the thiol group at its (3′) termini, respectively. The SAP has a specific coil structure that matching with G-G for Pb2+ and T-T for Hg2+ interaction binding nucleotides ions, respectively. Aptamers were immobilized onto surface of screen-printed gold electrodes via SH groups; then the cyclic voltammograms were recorded in binding buffer with the addition of the above metal salts in different concentrations. The resulted values of anode current increase upon binding heavy metal ions to aptamers and analyte due to the presence of electrochemically active probe, i.e. ferrocene or methylene blue group. The correlation between the anodic current values and the concentrations of Hg2+ and Pb2+ ions has been established in this work. To the best of our knowledge, this is the first example of using a specific DNA aptamers for electrochemical detection of heavy metals. Each increase in concentration of 0.1 μM results in an increase in the anode current value by simple DC electrochemical test i.e (Cyclic Voltammetry), thus providing an easy way of determining Hg2+ and Pb2+concentration.Keywords: aptamer, based, biosensor, DNA, electrochemical, highly, specific
Procedia PDF Downloads 1599050 Towards a Deeper Understanding of 21st Century Global Terrorism
Authors: Francis Jegede
Abstract:
This paper examines essential issues relating to the rise and nature of violent extremism involving non-state actors and groups in the early 21st century. The global trends in terrorism and violent extremism are examined in relation to Western governments’ counter terror operations. The paper analyses the existing legal framework for fighting violent extremism and terrorism and highlights the inherent limitations of the current International Law of War in dealing with the growing challenges posed by terrorists and violent extremist groups. The paper discusses how terrorist groups use civilians, women and children as tools and weapon of war to fuel their campaign of terror and suggests ways in which the international community could deal with the challenge of fighting terrorist groups without putting civilians, women and children in harm way. The paper emphasises the need to uphold human rights values and respect for the law of war in our response to global terrorism. The paper poses the question as to whether the current legal framework for dealing with terrorist groups is sufficient without contravening the essential provisions and ethos of the International Law of War and Human Rights. While the paper explains how terrorist groups flagrantly disregard the rule of law and disrespect human rights in their campaign of terror, it also notes instances in which the current Western strategy in fighting terrorism may be viewed or considered as conflicting with human rights and international law.Keywords: terrorism, law of war, international law, violent extremism
Procedia PDF Downloads 3199049 A Review of Current Research and Future Directions on Foodborne Illness and Food Safety: Understanding the Risks and Mitigation Strategies
Authors: Tuji Jemal Ahmed
Abstract:
This paper is to provides a comprehensive review of current research works on foodborne illness and food safety, including the risks associated with foodborne illnesses, the latest research on food safety, and the mitigation strategies used to prevent and control foodborne illnesses. Foodborne illness is a major public health concern that affects millions of people every year. As foodborne illnesses have grown more common and dangerous in recent years, it is vital that we research and build upon methods to ensure food remains safe throughout consumption. Additionally, this paper will discuss future directions for food safety research, including emerging technologies, changes in regulations and standards, and collaborative efforts to improve food safety. The first section of the paper provides an overview of the risks of foodborne illness, including a definition of foodborne illness, the causes of foodborne illness, the types of foodborne illnesses, and high-risk foods for foodborne illness, Health Consequences of Foodborne Illness. The second section of the paper focuses on current research on food safety, including the role of regulatory agencies in food safety, food safety standards and guidelines, emerging food safety concerns, and advances in food safety technology. The third section of the paper explores mitigation strategies for foodborne illness, including preventative measures, hazard analysis and critical control points (HACCP), good manufacturing practices (GMPs), and training and education. Finally, this paper examines future directions for food safety research, including hurdle technologies and their impact on food safety, changes in food safety regulations and standards, collaborative efforts to improve food safety, and research gaps and areas for further exploration. In general, this work provides a comprehensive review of current research and future directions in food safety and understanding the risks associated with foodborne illness. The implications of the assessment for food safety and public health are discussed, as well as recommended for research scholars.Keywords: food safety, foodborne illness, technologies, mitigation
Procedia PDF Downloads 106