Search results for: Spanning tree
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1069

Search results for: Spanning tree

169 Potential Use of Cnidoscolus Chayamansa Leaf from Mexico as High-Quality Protein Source

Authors: Diana Karina Baigts Allende, Mariana Gonzalez Diaz, Luis Antonio Chel Guerrero, Mukthar Sandoval Peraza

Abstract:

Poverty and food insecurity are still incident problems in the developing countries, where population´s diet is based on cereals which are lack in protein content. Nevertheless, during last years the use of native plants has been studied as an alternative source of protein in order to improve the nutritional intake. Chaya crop also called Spinach tree, is a prehispanic plant native from Central America and South of Mexico (Mayan culture), which has been especially valued due to its high nutritional content particularly protein and some medicinal properties. The aim of this work was to study the effect of protein isolation processing from Chaya leaf harvest in Yucatan, Mexico on its structure quality in order: i) to valorize the Chaya crop and ii) to produce low-cost and high-quality protein. Chaya leaf was extruded, clarified and recovered using: a) acid precipitation by decreasing the pH value until reach the isoelectric point (3.5) and b) thermal coagulation, by heating the protein solution at 80 °C during 30 min. Solubilized protein was re-dissolved in water and spray dried. The presence of Fraction I protein, known as RuBisCO (Rubilose-1,5-biphosfate carboxylase/oxygenase) was confirmed by gel electrophoresis (SDS-PAGE) where molecular weight bands of 55 KDa and 12 KDa were observed. The infrared spectrum showed changes in protein structure due to the isolation method. The use of high temperatures (thermal coagulation) highly decreased protein solubility in comparison to isoelectric precipitated protein, the nutritional properties according to amino acid profile was also disturbed, showing minor amounts of overall essential amino acids from 435.9 to 367.8 mg/g. Chaya protein isolate obtained by acid precipitation showed higher protein quality according to essential amino acid score compared to FAO recommendations, which could represent an important sustainable source of protein for human consumption.

Keywords: chaya leaf, nutritional properties, protein isolate, protein structure

Procedia PDF Downloads 341
168 Woody Carbon Stock Potentials and Factor Affecting Their Storage in Munessa Forest, Southern Ethiopia

Authors: Mojo Mengistu Gelasso

Abstract:

The tropical forest is considered the most important forest ecosystem for mitigating climate change by sequestering a high amount of carbon. The potential carbon stock of the forest can be influenced by many factors. Therefore, studying these factors is crucial for understanding the determinants that affect the potential for woody carbon storage in the forest. This study was conducted to evaluate the potential for woody carbon stock and how it varies based on plant community types, as well as along altitudinal, slope, and aspect gradients in the Munessa dry Afromontane forest. Vegetation data was collected using systematic sampling. Five line transects were established at 100 m intervals along the altitudinal gradient between two consecutive transect lines. On each transect, 10 quadrats (20 x 20 m), separated by 200 m, were established. The woody carbon was estimated using an appropriate allometric equation formulated for tropical forests. The data was analyzed using one-way ANOVA in R software. The results showed that the total woody carbon stock of the Munessa forest was 210.43 ton/ha. The analysis of variance revealed that woody carbon density varied significantly based on environmental factors, while community types had no significant effect. The highest mean carbon stock was found at middle altitudes (2367-2533 m.a.s.l), lower slopes (0-13%), and west-facing aspects. The Podocarpus falcatus-Croton macrostachyus community type also contributed a higher woody carbon stock, as larger tree size classes and older trees dominated it. Overall, the potential for woody carbon sequestration in this study was strongly associated with environmental variables. Additionally, the uneven distribution of species with larger diameter at breast height (DBH) in the study area might be linked to anthropogenic factors, as the current forest growth indicates characteristics of a secondary forest. Therefore, our study suggests that the development and implementation of a sustainable forest management plan is necessary to increase the carbon sequestration potential of this forest and mitigate climate change.

Keywords: munessa forest, woody carbon stock, environmental factors, climate mitigation

Procedia PDF Downloads 80
167 Woody Carbon Stock Potentials and Factor Affecting Their Storage in Munessa Forest, Southern Ethiopia

Authors: Mengistu Gelasso Mojo

Abstract:

The tropical forest is considered the most important forest ecosystem for mitigating climate change by sequestering a high amount of carbon. The potential carbon stock of the forest can be influenced by many factors. Therefore, studying these factors is crucial for understanding the determinants that affect the potential for woody carbon storage in the forest. This study was conducted to evaluate the potential for woody carbon stock and how it varies based on plant community types, as well as along altitudinal, slope, and aspect gradients in the Munessa dry Afromontane forest. Vegetation data was collected using systematic sampling. Five line transects were established at 100 m intervals along the altitudinal gradient between two consecutive transect lines. On each transect, 10 quadrats (20 x 20 m), separated by 200 m, were established. The woody carbon was estimated using an appropriate allometric equation formulated for tropical forests. The data was analyzed using one-way ANOVA in R software. The results showed that the total woody carbon stock of the Munessa forest was 210.43 ton/ha. The analysis of variance revealed that woody carbon density varied significantly based on environmental factors, while community types had no significant effect. The highest mean carbon stock was found at middle altitudes (2367-2533 m.a.s.l), lower slopes (0-13%), and west-facing aspects. The Podocarpus falcatus-Croton macrostachyus community type also contributed a higher woody carbon stock, as larger tree size classes and older trees dominated it. Overall, the potential for woody carbon sequestration in this study was strongly associated with environmental variables. Additionally, the uneven distribution of species with larger diameter at breast height (DBH) in the study area might be linked to anthropogenic factors, as the current forest growth indicates characteristics of a secondary forest. Therefore, our study suggests that the development and implementation of a sustainable forest management plan is necessary to increase the carbon sequestration potential of this forest and mitigate climate change.

Keywords: munessa forest, woody carbon stock, environmental factors, climate mitigation

Procedia PDF Downloads 83
166 Effect of Velocity-Slip in Nanoscale Electroosmotic Flows: Molecular and Continuum Transport Perspectives

Authors: Alper T. Celebi, Ali Beskok

Abstract:

Electroosmotic (EO) slip flows in nanochannels are investigated using non-equilibrium molecular dynamics (MD) simulations, and the results are compared with analytical solution of Poisson-Boltzmann and Stokes (PB-S) equations with slip contribution. The ultimate objective of this study is to show that well-known continuum flow model can accurately predict the EO velocity profiles in nanochannels using the slip lengths and apparent viscosities obtained from force-driven flow simulations performed at various liquid-wall interaction strengths. EO flow of aqueous NaCl solution in silicon nanochannels are simulated under realistic electrochemical conditions within the validity region of Poisson-Boltzmann theory. A physical surface charge density is determined for nanochannels based on dissociations of silanol functional groups on channel surfaces at known salt concentration, temperature and local pH. First, we present results of density profiles and ion distributions by equilibrium MD simulations, ensuring that the desired thermodynamic state and ionic conditions are satisfied. Next, force-driven nanochannel flow simulations are performed to predict the apparent viscosity of ionic solution between charged surfaces and slip lengths. Parabolic velocity profiles obtained from force-driven flow simulations are fitted to a second-order polynomial equation, where viscosity and slip lengths are quantified by comparing the coefficients of the fitted equation with continuum flow model. Presence of charged surface increases the viscosity of ionic solution while the velocity-slip at wall decreases. Afterwards, EO flow simulations are carried out under uniform electric field for different liquid-wall interaction strengths. Velocity profiles present finite slips near walls, followed with a conventional viscous flow profile in the electrical double layer that reaches a bulk flow region in the center of the channel. The EO flow enhances with increased slip at the walls, which depends on wall-liquid interaction strength and the surface charge. MD velocity profiles are compared with the predictions from analytical solutions of the slip modified PB-S equation, where the slip length and apparent viscosity values are obtained from force-driven flow simulations in charged silicon nano-channels. Our MD results show good agreements with the analytical solutions at various slip conditions, verifying the validity of PB-S equation in nanochannels as small as 3.5 nm. In addition, the continuum model normalizes slip length with the Debye length instead of the channel height, which implies that enhancement in EO flows is independent of the channel height. Further MD simulations performed at different channel heights also shows that the flow enhancement due to slip is independent of the channel height. This is important because slip enhanced EO flow is observable even in micro-channels experiments by using a hydrophobic channel with large slip and high conductivity solutions with small Debye length. The present study provides an advanced understanding of EO flows in nanochannels. Correct characterization of nanoscale EO slip flow is crucial to discover the extent of well-known continuum models, which is required for various applications spanning from ion separation to drug delivery and bio-fluidic analysis.

Keywords: electroosmotic flow, molecular dynamics, slip length, velocity-slip

Procedia PDF Downloads 157
165 A Deforestation Dilemma: An Integrated Approach to Conservation and Development in Madagascar

Authors: Tara Moore

Abstract:

Madagascar is one of the regions of the world with the highest biodiversity, with more than 600 new species discovered in just the last decade. In parallel with its record-breaking biodiversity, Madagascar is also the tenth poorest country in the world. The resultant socio-economic pressures are leading to a highly threatened environment. In particular, deforestation is at the core of biodiversity and ecosystem loss, primarily from slash and burn agriculture and illegal rosewood tree harvesting. Effective policy response is imperative for improved conservation in Madagascar. However, these changes cannot come from the current, unstable government institutions. After a violent and politically turbulent coup in 2009, any effort to defend Madagascar's biodiversity has been eclipsed by the high corruption of government bodies. This paper presents three policy options designed for a private donor to invest in conservation in Madagascar. The first proposed policy consists of payments for ecosystem services model, which involves paying local Malagasy women to reforest nearby territories. The second option is a micro-irrigation system proposal involving relocating local Malagasy out of the threatened forest region. The final proposition is captive breeding funding for the Madagascar Fauna and Flora Group, which could then lead to new reintroductions in the threatened northeastern rainforests. In the end, all three options present feasible, impactful options for a conservation-minded major donor. Ideally, the policy change would involve a combination of all three options, as each provides necessary development and conservation re-structuring goals. Option one, payments for ecosystem services, would be the preferred choice if there were only enough funding for one project. The payments for ecosystem services project both support local populations and promotes sustainable development while reforesting the threatened Marojejy National Park. Regardless of the chosen policy solution, any support from a donor will make a huge impact if it supports both sustainable development and biodiversity conservation.

Keywords: captive breeding, cnservation policy, lemur conservation, Madagascar conservation, payments for ecosystem services

Procedia PDF Downloads 134
164 Big Data Applications for Transportation Planning

Authors: Antonella Falanga, Armando Cartenì

Abstract:

"Big data" refers to extremely vast and complex sets of data, encompassing extraordinarily large and intricate datasets that require specific tools for meaningful analysis and processing. These datasets can stem from diverse origins like sensors, mobile devices, online transactions, social media platforms, and more. The utilization of big data is pivotal, offering the chance to leverage vast information for substantial advantages across diverse fields, thereby enhancing comprehension, decision-making, efficiency, and fostering innovation in various domains. Big data, distinguished by its remarkable attributes of enormous volume, high velocity, diverse variety, and significant value, represent a transformative force reshaping the industry worldwide. Their pervasive impact continues to unlock new possibilities, driving innovation and advancements in technology, decision-making processes, and societal progress in an increasingly data-centric world. The use of these technologies is becoming more widespread, facilitating and accelerating operations that were once much more complicated. In particular, big data impacts across multiple sectors such as business and commerce, healthcare and science, finance, education, geography, agriculture, media and entertainment and also mobility and logistics. Within the transportation sector, which is the focus of this study, big data applications encompass a wide variety, spanning across optimization in vehicle routing, real-time traffic management and monitoring, logistics efficiency, reduction of travel times and congestion, enhancement of the overall transportation systems, but also mitigation of pollutant emissions contributing to environmental sustainability. Meanwhile, in public administration and the development of smart cities, big data aids in improving public services, urban planning, and decision-making processes, leading to more efficient and sustainable urban environments. Access to vast data reservoirs enables deeper insights, revealing hidden patterns and facilitating more precise and timely decision-making. Additionally, advancements in cloud computing and artificial intelligence (AI) have further amplified the potential of big data, enabling more sophisticated and comprehensive analyses. Certainly, utilizing big data presents various advantages but also entails several challenges regarding data privacy and security, ensuring data quality, managing and storing large volumes of data effectively, integrating data from diverse sources, the need for specialized skills to interpret analysis results, ethical considerations in data use, and evaluating costs against benefits. Addressing these difficulties requires well-structured strategies and policies to balance the benefits of big data with privacy, security, and efficient data management concerns. Building upon these premises, the current research investigates the efficacy and influence of big data by conducting an overview of the primary and recent implementations of big data in transportation systems. Overall, this research allows us to conclude that big data better provide to enhance rational decision-making for mobility choices and is imperative for adeptly planning and allocating investments in transportation infrastructures and services.

Keywords: big data, public transport, sustainable mobility, transport demand, transportation planning

Procedia PDF Downloads 60
163 Changes in Forest Cover Regulate Streamflow in Central Nigerian Gallery Forests

Authors: Rahila Yilangai, Sonali Saha, Amartya Saha, Augustine Ezealor

Abstract:

Gallery forests in sub-Saharan Africa are drastically disappearing due to intensive anthropogenic activities thus reducing ecosystem services, one of which is water provisioning. The role played by forest cover in regulating streamflow and water yield is not well understood, especially in West Africa. This pioneering 2-year study investigated the interrelationships between plant cover and hydrology in protected and unprotected gallery forests. Rainfall, streamflow, and evapotranspiration (ET) measurements/estimates over 2015-2016 were obtained to form a water balance for both catchments. In addition, transpiration in the protected gallery forest with high vegetation cover was calculated from stomatal conductance readings of selected species chosen from plot level data of plant diversity and abundance. Results showed that annual streamflow was significantly higher in the unprotected site than the protected site, even when normalized by catchment area. However, streamflow commenced earlier and lasted longer in the protected site than the degraded unprotected site, suggesting regulation by the greater tree density in the protected site. Streamflow correlated strongly with rainfall with the highest peak in August. As expected, transpiration measurements were less than potential evapotranspiration estimates, while rainfall exceeded ET in the water cycle. The water balance partitioning suggests that the lower vegetation cover in the unprotected catchment leads to a larger runoff in the rainy season and less infiltration, thereby leading to streams drying up earlier, than in the protected catchment. This baseline information is important in understanding the contribution of plants in water cycle regulation, for modeling integrative water management in applied research and natural resource management in sustaining water resources with changing the land cover and climate uncertainties in this data-poor region.

Keywords: evapotranspiration, gallery forest, rainfall, streamflow, transpiration

Procedia PDF Downloads 173
162 Comparing Performance of Neural Network and Decision Tree in Prediction of Myocardial Infarction

Authors: Reza Safdari, Goli Arji, Robab Abdolkhani Maryam zahmatkeshan

Abstract:

Background and purpose: Cardiovascular diseases are among the most common diseases in all societies. The most important step in minimizing myocardial infarction and its complications is to minimize its risk factors. The amount of medical data is increasingly growing. Medical data mining has a great potential for transforming these data into information. Using data mining techniques to generate predictive models for identifying those at risk for reducing the effects of the disease is very helpful. The present study aimed to collect data related to risk factors of heart infarction from patients’ medical record and developed predicting models using data mining algorithm. Methods: The present work was an analytical study conducted on a database containing 350 records. Data were related to patients admitted to Shahid Rajaei specialized cardiovascular hospital, Iran, in 2011. Data were collected using a four-sectioned data collection form. Data analysis was performed using SPSS and Clementine version 12. Seven predictive algorithms and one algorithm-based model for predicting association rules were applied to the data. Accuracy, precision, sensitivity, specificity, as well as positive and negative predictive values were determined and the final model was obtained. Results: five parameters, including hypertension, DLP, tobacco smoking, diabetes, and A+ blood group, were the most critical risk factors of myocardial infarction. Among the models, the neural network model was found to have the highest sensitivity, indicating its ability to successfully diagnose the disease. Conclusion: Risk prediction models have great potentials in facilitating the management of a patient with a specific disease. Therefore, health interventions or change in their life style can be conducted based on these models for improving the health conditions of the individuals at risk.

Keywords: decision trees, neural network, myocardial infarction, Data Mining

Procedia PDF Downloads 429
161 Optimization of Geometric Parameters of Microfluidic Channels for Flow-Based Studies

Authors: Parth Gupta, Ujjawal Singh, Shashank Kumar, Mansi Chandra, Arnab Sarkar

Abstract:

Microfluidic devices have emerged as indispensable tools across various scientific disciplines, offering precise control and manipulation of fluids at the microscale. Their efficacy in flow-based research, spanning engineering, chemistry, and biology, relies heavily on the geometric design of microfluidic channels. This work introduces a novel approach to optimise these channels through Response Surface Methodology (RSM), departing from the conventional practice of addressing one parameter at a time. Traditionally, optimising microfluidic channels involved isolated adjustments to individual parameters, limiting the comprehensive understanding of their combined effects. In contrast, our approach considers the simultaneous impact of multiple parameters, employing RSM to efficiently explore the complex design space. The outcome is an innovative microfluidic channel that consumes an optimal sample volume and minimises flow time, enhancing overall efficiency. The relevance of geometric parameter optimization in microfluidic channels extends significantly in biomedical engineering. The flow characteristics of porous materials within these channels depend on many factors, including fluid viscosity, environmental conditions (such as temperature and humidity), and specific design parameters like sample volume, channel width, channel length, and substrate porosity. This intricate interplay directly influences the performance and efficacy of microfluidic devices, which, if not optimized, can lead to increased costs and errors in disease testing and analysis. In the context of biomedical applications, the proposed approach addresses the critical need for precision in fluid flow. it mitigate manufacturing costs associated with trial-and-error methodologies by optimising multiple geometric parameters concurrently. The resulting microfluidic channels offer enhanced performance and contribute to a streamlined, cost-effective process for testing and analyzing diseases. A key highlight of our methodology is its consideration of the interconnected nature of geometric parameters. For instance, the volume of the sample, when optimized alongside channel width, length, and substrate porosity, creates a synergistic effect that minimizes errors and maximizes efficiency. This holistic optimization approach ensures that microfluidic devices operate at their peak performance, delivering reliable results in disease testing. A key highlight of our methodology is its consideration of the interconnected nature of geometric parameters. For instance, the volume of the sample, when optimized alongside channel width, length, and substrate porosity, creates a synergistic effect that minimizes errors and maximizes efficiency. This holistic optimization approach ensures that microfluidic devices operate at their peak performance, delivering reliable results in disease testing. A key highlight of our methodology is its consideration of the interconnected nature of geometric parameters. For instance, the volume of the sample, when optimized alongside channel width, length, and substrate porosity, creates a synergistic effect that minimizes errors and maximizes efficiency. This holistic optimization approach ensures that microfluidic devices operate at their peak performance, delivering reliable results in disease testing.

Keywords: microfluidic device, minitab, statistical optimization, response surface methodology

Procedia PDF Downloads 68
160 Evolutionary Prediction of the Viral RNA-Dependent RNA Polymerase of Chandipura vesiculovirus and Related Viral Species

Authors: Maneesh Kumar, Roshan Kamal Topno, Manas Ranjan Dikhit, Vahab Ali, Ganesh Chandra Sahoo, Bhawana, Major Madhukar, Rishikesh Kumar, Krishna Pandey, Pradeep Das

Abstract:

Chandipura vesiculovirus is an emerging (-) ssRNA viral entity belonging to the genus Vesiculovirus of the family Rhabdoviridae, associated with fatal encephalitis in tropical regions. The multi-functionally active viral RNA-dependent RNA polymerase (vRdRp) that has been incorporated with conserved amino acid residues in the pathogens, assigned to synthesize distinct viral polypeptides. The lack of proofreading ability of the vRdRp produces many mutated variants. Here, we have performed the evolutionary analysis of 20 viral protein sequences of vRdRp of different strains of Chandipura vesiculovirus along with other viral species from genus Vesiculovirus inferred in MEGA6.06, employing the Neighbour-Joining method. The p-distance algorithmic method has been used to calculate the optimum tree which showed the sum of branch length of about 1.436. The percentage of replicate trees in which the associated taxa are clustered together in the bootstrap test (1000 replicates), is shown next to the branches. No mutation was observed in the Indian strains of Chandipura vesiculovirus. In vRdRp, 1230(His) and 1231(Arg) are actively participated in catalysis and, are found conserved in different strains of Chandipura vesiculovirus. Both amino acid residues were also conserved in the other viral species from genus Vesiculovirus. Many isolates exhibited maximum number of mutations in catalytic regions in strains of Chandipura vesiculovirus at position 26(Ser→Ala), 47 (Ser→Ala), 90(Ser→Tyr), 172(Gly→Ile, Val), 172(Ser→Tyr), 387(Asn→Ser), 1301(Thr→Ala), 1330(Ala→Glu), 2015(Phe→Ser) and 2065(Thr→Val) which make them variants under different tropical conditions from where they evolved. The result clarifies the actual concept of RNA evolution using vRdRp to develop as an evolutionary marker. Although, a limited number of vRdRp protein sequence similarities for Chandipura vesiculovirus and other species. This might endow with possibilities to identify the virulence level during viral multiplication in a host.

Keywords: Chandipura, (-) ssRNA, viral RNA-dependent RNA polymerase, neighbour-joining method, p-distance algorithmic, evolutionary marker

Procedia PDF Downloads 197
159 Ensemble Methods in Machine Learning: An Algorithmic Approach to Derive Distinctive Behaviors of Criminal Activity Applied to the Poaching Domain

Authors: Zachary Blanks, Solomon Sonya

Abstract:

Poaching presents a serious threat to endangered animal species, environment conservations, and human life. Additionally, some poaching activity has even been linked to supplying funds to support terrorist networks elsewhere around the world. Consequently, agencies dedicated to protecting wildlife habitats have a near intractable task of adequately patrolling an entire area (spanning several thousand kilometers) given limited resources, funds, and personnel at their disposal. Thus, agencies need predictive tools that are both high-performing and easily implementable by the user to help in learning how the significant features (e.g. animal population densities, topography, behavior patterns of the criminals within the area, etc) interact with each other in hopes of abating poaching. This research develops a classification model using machine learning algorithms to aid in forecasting future attacks that is both easy to train and performs well when compared to other models. In this research, we demonstrate how data imputation methods (specifically predictive mean matching, gradient boosting, and random forest multiple imputation) can be applied to analyze data and create significant predictions across a varied data set. Specifically, we apply these methods to improve the accuracy of adopted prediction models (Logistic Regression, Support Vector Machine, etc). Finally, we assess the performance of the model and the accuracy of our data imputation methods by learning on a real-world data set constituting four years of imputed data and testing on one year of non-imputed data. This paper provides three main contributions. First, we extend work done by the Teamcore and CREATE (Center for Risk and Economic Analysis of Terrorism Events) research group at the University of Southern California (USC) working in conjunction with the Department of Homeland Security to apply game theory and machine learning algorithms to develop more efficient ways of reducing poaching. This research introduces ensemble methods (Random Forests and Stochastic Gradient Boosting) and applies it to real-world poaching data gathered from the Ugandan rain forest park rangers. Next, we consider the effect of data imputation on both the performance of various algorithms and the general accuracy of the method itself when applied to a dependent variable where a large number of observations are missing. Third, we provide an alternate approach to predict the probability of observing poaching both by season and by month. The results from this research are very promising. We conclude that by using Stochastic Gradient Boosting to predict observations for non-commercial poaching by season, we are able to produce statistically equivalent results while being orders of magnitude faster in computation time and complexity. Additionally, when predicting potential poaching incidents by individual month vice entire seasons, boosting techniques produce a mean area under the curve increase of approximately 3% relative to previous prediction schedules by entire seasons.

Keywords: ensemble methods, imputation, machine learning, random forests, statistical analysis, stochastic gradient boosting, wildlife protection

Procedia PDF Downloads 292
158 Milk Yield and Fingerprinting of Beta-Casein Precursor (CSN2) Gene in Some Saudi Camel Breeds

Authors: Amr A. El Hanafy, Yasser M. Saad, Saleh A. Alkarim, Hussein A. Almehdar, Elrashdy M. Redwan

Abstract:

Camels are substantial providers of transport, milk, sport, meat, shelter, fuel, security and capital in many countries, particularly Saudi Arabia. Identification of animal breeds has progressed rapidly during the last decade. Advanced molecular techniques are playing a significant role in breeding or strain protection laws. On the other hand, fingerprinting of some molecular markers related to some productive traits in farm animals represents most important studies to our knowledge, which aim to conserve these local genetic resources, and to the genetic improvement of such local breeds by selective programs depending on gene markers. Milk records were taken two days in each week from female camels of Majahem, Safara, Wathaha, and Hamara breeds, respectively from different private farms in northern Jeddah, Riyadh and Alwagh governorates and average weekly yields were calculated. DNA sequencing for CSN2 gene was used for evaluating the genetic variations and calculating the genetic distance values among four Saudi camel populations which are Hamra(R), Safra(Y), Wadha(W) and Majaheim(M). In addition, this marker was analyzed for reconstructing the Neighbor joining tree among evaluating camel breeds. In respect to milk yield during winter season, result indicated that average weekly milk yield of Safara camel breed (30.05 Kg/week) is significantly (p < 0.05) lower than the other 3 breeds which ranged from 39.68 for Hamara to 42.42 Kg/week for Majahem, while there are not significant differences between these three breeds. The Neighbor Joining analysis that re-constructed based on DNA variations showed that samples are clustered into two unique clades. The first clade includes Y (from Y4 to Y18) and M (from M1, to M9). On the other hand, the second cluster is including all R (from R1 to R6) and W (from W1 to W6). The genetic distance values were equal 0.0068 (between the groups M&Y and R&W) and equal 0 (within each group).

Keywords: milk yield, beta-casein precursor (CSN2), Saudi camel, molecular markers

Procedia PDF Downloads 214
157 Placencia Belize: An Alternative to the Development of “Your Private Paradise”

Authors: Ryan Tao

Abstract:

This paper analyzes the local context and effects of tourism on Placencia in Belize to identify key environmental and social impacts. Placencia was a small, sleepy coastal fishing village at risk of losing its local identity to tourism. In the last decade, tourism has driven an economic shift from fishing to tourism. The consequence of this shift has eroded local environmental resources and diluted local cultural heritage. A key example is Harvest Caye, an island converted from a natural manatee breeding ground to a stereotypical sandy beach and palm tree resort complex. The incoming cruise ship-geared development of Harvest Caye reflects the urban tourist vision of Placencia’s local landscape, which indicates a “neo-colonial” rule. Consequently, this vision causes environmental destruction, replacing local memories of abundant manatee-filled waters. The paper will explore environmental and cultural damage from uncontrolled development by focusing on how Placencia has been affected by unmanaged tourism. It will then propose solutions to create a medium between tourism and the local community. New developments in other Belizean cities, such as Belmopan and Belize City, are planned at the time of approval to be sensitive to their setting. While Placencia is fully built out, there are opportunities to plan in advance for the future while preserving local integrity. As a consequence of time, shepherding tourist development, defining tourist areas, and planning these areas with an eye towards natural disasters (such as hurricanes) can act as a tool to craft a future vision that helps preserve the local identity of Placencia. This research will consist of personal observations, case studies, and synthesis of other source materials. These sources provide guidance for creating a framework to understand the local environment and culture and plan around it to ultimately protect Placencia from becoming “Your Private Paradise” for the rich.

Keywords: Placencia, coastal development, coastal protection, tourism, zoning, coastal zoning, Caribbean, Belize, small island developing states

Procedia PDF Downloads 13
156 Study on Safety Management of Deep Foundation Pit Construction Site Based on Building Information Modeling

Authors: Xuewei Li, Jingfeng Yuan, Jianliang Zhou

Abstract:

The 21st century has been called the century of human exploitation of underground space. Due to the characteristics of large quantity, tight schedule, low safety reserve and high uncertainty of deep foundation pit engineering, accidents frequently occur in deep foundation pit engineering, causing huge economic losses and casualties. With the successful application of information technology in the construction industry, building information modeling has become a research hotspot in the field of architectural engineering. Therefore, the application of building information modeling (BIM) and other information communication technologies (ICTs) in construction safety management is of great significance to improve the level of safety management. This research summed up the mechanism of the deep foundation pit engineering accident through the fault tree analysis to find the control factors of deep foundation pit engineering safety management, the deficiency existing in the traditional deep foundation pit construction site safety management. According to the accident cause mechanism and the specific process of deep foundation pit construction, the hazard information of deep foundation pit engineering construction site was identified, and the hazard list was obtained, including early warning information. After that, the system framework was constructed by analyzing the early warning information demand and early warning function demand of the safety management system of deep foundation pit. Finally, the safety management system of deep foundation pit construction site based on BIM through combing the database and Web-BIM technology was developed, so as to realize the three functions of real-time positioning of construction site personnel, automatic warning of entering a dangerous area, real-time monitoring of deep foundation pit structure deformation and automatic warning. This study can initially improve the current situation of safety management in the construction site of deep foundation pit. Additionally, the active control before the occurrence of deep foundation pit accidents and the whole process dynamic control in the construction process can be realized so as to prevent and control the occurrence of safety accidents in the construction of deep foundation pit engineering.

Keywords: Web-BIM, safety management, deep foundation pit, construction

Procedia PDF Downloads 153
155 Embolism: How Changes in Xylem Sap Surface Tension Affect the Resistance against Hydraulic Failure

Authors: Adriano Losso, Birgit Dämon, Stefan Mayr

Abstract:

In vascular plants, water flows from roots to leaves in a metastable state, and even a small perturbation of the system can lead a sudden transition from the liquid to the vapor phase, resulting in xylem embolism (cavitation). Xylem embolism, induced by drought stress and/or freezing stress is caused by the aspiration of gaseous bubbles into xylem conduits from adjacent gas-filled compartments through pit membrane pores (‘air seeding’). At water potentials less negative than the threshold for air seeding, the surface tension (γ) stabilizes the air-water interface and thus prevents air from passing the pit pores. This hold is probably also true for conifers, where this effect occurs at the edge of the sealed torus. Accordingly, it was experimentally demonstrated that γ influences air seeding, but information on the relevance of this effect under field conditions is missing. In this study, we analyzed seasonal changes in γ of the xylem sap in two conifers growing at the alpine timberline (Picea abies and Pinus mugo). In addition, cut branches were perfused (40 min perfusion at 0.004 MPa) with different γ solutions (i.e. distilled and degassed water, 2, 5 and 15% (v/v) ethanol-water solution corresponding to a γ of 74, 65, 55 and 45 mN m-1, respectively) and their vulnerability to drought-induced embolism analyzed via the centrifuge technique (Cavitron). In both species, xylem sap γ changed considerably (ca. 53-67 and ca. 50-68 mN m-1 in P. abies and P. cembra, respectively) over the season. Branches perfused with low γ solutions showed reduced resistance against drought-induced embolism in both species. A significant linear relationship (P < 0.001) between P12, P50 and P88 (i.e. water potential at 12, 50 and 88% of the loss of conductivity) and xylem sap γ was found. Based on this correlation, a variation in P50 between -3.10 and -3.83 MPa (P. abies) and between -3.21 and -4.11 MPa (P. mugo) over the season could be estimated. Results demonstrate that changes in γ of the xylem sap can considerably influence a tree´s resistance to drought-induced embolism. They indicate that vulnerability analyses, normally conducted at a γ near that of pure water, might often underestimate vulnerabilities under field conditions. For studied timberline conifers, seasonal changes in γ might be especially relevant in winter, when frost drought and freezing stress can lead to an excessive embolism.

Keywords: conifers, Picea abies, Pinus mugo, timberline

Procedia PDF Downloads 294
154 Genetic Diversity Analysis of Pearl Millet (Pennisetum glaucum [L. R. Rr.]) Accessions from Northwestern Nigeria

Authors: Sa’adu Mafara Abubakar, Muhammad Nuraddeen Danjuma, Adewole Tomiwa Adetunji, Richard Mundembe, Salisu Mohammed, Francis Bayo Lewu, Joseph I. Kiok

Abstract:

Pearl millet is the most drought tolerant of all domesticated cereals, is cultivated extensively to feed millions of people who mainly live in hash agroclimatic zones. It serves as a major source of food for more than 40 million smallholder farmers living in the marginal agricultural lands of Northern Nigeria. Pearl millet grain is more nutritious than other cereals like maize, is also a principal source of energy, protein, vitamins, and minerals for millions of poorest people in the regions where it is cultivated. Pearl millet has recorded relatively little research attention compared with other crops and no sufficient work has analyzed its genetic diversity in north-western Nigeria. Therefore, this study was undertaken with the objectives to analyze the genetic diversity of pearl millet accessions using SSR marker and to analyze the extent of evolutionary relationship among pearl millet accessions at the molecular level. The result of the present study confirmed diversity among accessions of pearl millet in the study area. Simple Sequence Repeats (SSR) markers were used for genetic analysis and evolutionary relationship of the accessions of pearl millet. To analyze the level of genetic diversity, 8 polymorphic SSR markers were used to screen 69 accessions collected based on three maturity periods. SSR markers result reveal relationships among the accessions in terms of genetic similarities, evolutionary and ancestral origin, it also reveals a total of 53 alleles recorded with 8 microsatellites and an average of 6.875 per microsatellite, the range was from 3 to 9 alleles in PSMP2248 and PSMP2080 respectively. Moreover, both the factorial analysis and the dendrogram of phylogeny tree grouping patterns and cluster analysis were almost in agreement with each other that diversity is not clustering according to geographical patterns but, according to similarity, the result showed maximum similarity among clusters with few numbers of accessions. It has been recommended that other molecular markers should be tested in the same study area.

Keywords: pearl millet, genetic diversity, simple sequence repeat (SSR)

Procedia PDF Downloads 269
153 Arbuscular Mycorrhizal Symbiosis in Trema orientalis: Effect of a Naturally-Occurring Symbiosis Receptor Kinase Mutant Allele

Authors: Yuda Purwana Roswanjaya, Wouter Kohlen, Rene Geurts

Abstract:

The Trema genus represents a group of fast-growing tropical tree species within the Cannabaceae. Interestingly, five species nested in this lineage -known as Parasponia- can establish rhizobium nitrogen-fixing root nodules, similar to those found in legumes. Parasponia and legumes use a conserved genetic network to control root nodule formation, among which are genes also essential for mycorrhizal symbiosis (the so-called common symbiotic pathway). However, Trema species lost several genes that function exclusively in nodulation, suggesting a loss-of the nodulation trait in Trema. Strikingly, in a Trema orientalis population found in Malaysian Borneo we identified a truncated SYMBIOSIS RECEPTOR KINASE (SYMRK) mutant allele lacking a large portion of the c-terminal kinase domain. In legumes this gene is essential for nodulation and mycorrhization. This raises the question whether Trema orientalis can still be mycorrhized. To answer this question, we established quantitative mycorrhization assay for Parasponia andersonii and Trema orientalis. Plants were grown in closed pots on half strength Hoagland medium containing 20 µM potassium phosphate in sterilized sand and inoculated with 125 spores of Rhizopagus irregularis (Agronutrion-DAOM197198). Mycorrhization efficiency was determined by analyzing the frequency of mycorrhiza (%F), the intensity of the mycorrhizal colonization (%M) and the arbuscule abundance (%A) in the root system. Trema orientalis RG33 can be mycorrhized, though with lower efficiency compared to Parasponia andersonii. From this we conclude that a functional SYMRK kinase domain is not essential for Trema orientalis mycorrhization. In ongoing experiments, we aim to investigate the role of SYMRK in Parasponia andersonii mycorrhization and nodulation. For this two Parasponia andersonii symrk CRISPR-Cas9 mutant alleles were created. One mimicking the TorSYMRKRG33 allele by deletion of exon 13-15, and a full Parasponia andersonii SYMRK knockout.

Keywords: endomycorrhization, Parasponia andersonii, symbiosis receptor kinase (SYMRK), Trema orientalis

Procedia PDF Downloads 163
152 Enhancing the Implementation Strategy of Simultaneous Operations (SIMOPS) for the Major Turnaround at Pertamina Plaju Refinery

Authors: Fahrur Rozi, Daniswara Krisna Prabatha, Latief Zulfikar Chusaini

Abstract:

Amidst the backdrop of Pertamina Plaju Refinery, which stands as the oldest and historically less technologically advanced among Pertamina's refineries, lies a unique challenge. Originally integrating facilities established by Shell in 1904 and Stanvac (originally Standard Oil) in 1926, the primary challenge at Plaju Refinery does not solely revolve around complexity; instead, it lies in ensuring reliability, considering its operational history of over a century. After centuries of existence, Plaju Refinery has never undergone a comprehensive major turnaround encompassing all its units. The usual practice involves partial turnarounds that are sequentially conducted across its primary, secondary, and tertiary units (utilities and offsite). However, a significant shift is on the horizon. In the Q-IV of 2023, the refinery embarks on its first-ever major turnaround since its establishment. This decision was driven by the alignment of maintenance timelines across various units. Plaju Refinery's major turnaround was scheduled for October-November 2023, spanning 45 calendar days, with the objective of enhancing the operational reliability of all refinery units. The extensive job list for this turnaround encompasses 1583 tasks across 18 units/areas, involving approximately 9000 contracted workers. In this context, the Strategy of Simultaneous Operations (SIMOPS) execution emerges as a pivotal tool to optimize time efficiency and ensure safety. A Hazard Effect Management Process (HEMP) has been employed to assess the risk ratings of each task within the turnaround. Out of the tasks assessed, 22 are deemed high-risk and necessitate mitigation. The SIMOPS approach serves as a preventive measure against potential incidents. It is noteworthy that every turnaround period at Pertamina Plaju Refinery involves SIMOPS-related tasks. In this context, enhancing the implementation strategy of "Simultaneous Operations (SIMOPS)" becomes imperative to minimize the occurrence of incidents. At least four improvements have been introduced in the enhancement process for the major turnaround at Refinery Plaju. The first improvement involves conducting systematic risk assessment and potential hazard mitigation studies for SIMOPS tasks before task execution, as opposed to the previous on-site approach. The second improvement includes the completion of SIMOPS Job Mitigation and Work Matrices Sheets, which was often neglected in the past. The third improvement emphasizes comprehensive awareness to workers/contractors regarding potential hazards and mitigation strategies for SIMOPS tasks before and during the major turnaround. The final improvement is the introduction of a daily program for inspecting and observing work in progress for SIMOPS tasks. Prior to these improvements, there was no established program for monitoring ongoing activities related to SIMOPS tasks during the turnaround. This study elucidates the steps taken to enhance SIMOPS within Pertamina, drawing from the experiences of Plaju Refinery as a guide. A real actual case study will be provided from our experience in the operational unit. In conclusion, these efforts are essential for the success of the first-ever major turnaround at Plaju Refinery, with the SIMOPS strategy serving as a central component. Based on these experiences, enhancements have been made to Pertamina's official Internal Guidelines for Executing SIMOPS Risk Mitigation, benefiting all Pertamina units.

Keywords: process safety management, turn around, oil refinery, risk assessment

Procedia PDF Downloads 74
151 Career Guidance System Using Machine Learning

Authors: Mane Darbinyan, Lusine Hayrapetyan, Elen Matevosyan

Abstract:

Artificial Intelligence in Education (AIED) has been created to help students get ready for the workforce, and over the past 25 years, it has grown significantly, offering a variety of technologies to support academic, institutional, and administrative services. However, this is still challenging, especially considering the labor market's rapid change. While choosing a career, people face various obstacles because they do not take into consideration their own preferences, which might lead to many other problems like shifting jobs, work stress, occupational infirmity, reduced productivity, and manual error. Besides preferences, people should properly evaluate their technical and non-technical skills, as well as their personalities. Professional counseling has become a difficult undertaking for counselors due to the wide range of career choices brought on by changing technological trends. It is necessary to close this gap by utilizing technology that makes sophisticated predictions about a person's career goals based on their personality. Hence, there is a need to create an automated model that would help in decision-making based on user inputs. Improving career guidance can be achieved by embedding machine learning into the career consulting ecosystem. There are various systems of career guidance that work based on the same logic, such as the classification of applicants, matching applications with appropriate departments or jobs, making predictions, and providing suitable recommendations. Methodologies like KNN, Neural Networks, K-means clustering, D-Tree, and many other advanced algorithms are applied in the fields of data and compute some data, which is helpful to predict the right careers. Besides helping users with their career choice, these systems provide numerous opportunities which are very useful while making this hard decision. They help the candidate to recognize where he/she specifically lacks sufficient skills so that the candidate can improve those skills. They are also capable to offer an e-learning platform, taking into account the user's lack of knowledge. Furthermore, users can be provided with details on a particular job, such as the abilities required to excel in that industry.

Keywords: career guidance system, machine learning, career prediction, predictive decision, data mining, technical and non-technical skills

Procedia PDF Downloads 80
150 Research on Teachers’ Perceptions on the Usability of Classroom Space: Analysis of a Nation-Wide Questionnaire Survey in Japan

Authors: Masayuki Mori

Abstract:

This study investigates the relationship between teachers’ perceptions of the usability of classroom space and various elements, including both physical and non-physical, of classroom environments. With the introduction of the GIGA School funding program in Japan in 2019, understanding its impact on learning in classroom space is crucial. The program enabled local educational authorities (LEA) to make it possible to provide one PC/tablet for each student of both elementary and junior high schools. Moreover, at the same time, the program also supported LEA to purchase other electronic devices for educational purposes such as electronic whiteboards, large displays, and real image projectors. A nationwide survey was conducted using random sampling methodology among 100 junior high schools to collect data on classroom space. Of those, 60 schools responded to the survey. The survey covered approximately fifty items, including classroom space size, class size, and educational electronic devices owned. After the data compilation, statistical analysis was used to identify correlations between the variables and to explore the extent to which classroom environment elements influenced teachers’ perceptions. Furthermore, decision tree analysis was applied to visualize the causal relationships between the variables. The findings indicate a significant negative correlation between class size and teachers’ evaluation of usability. In addition to the class size, the way students stored their belongings also influenced teachers’ perceptions. As for the placement of educational electronic devices, the installation of a projector produced a small negative correlation with teachers’ perceptions. The study suggests that while the GIGA School funding program is not significantly influential, traditional educational conditions such as class size have a greater impact on teachers’ perceptions of the usability of classroom space. These results highlight the need for awareness and strategies to integrate various elements in designing the learning environment of the classroom for teachers and students to improve their learning experience.

Keywords: classroom space, GIGA School, questionnaire survey, teachers’ perceptions

Procedia PDF Downloads 21
149 Career Guidance System Using Machine Learning

Authors: Mane Darbinyan, Lusine Hayrapetyan, Elen Matevosyan

Abstract:

Artificial Intelligence in Education (AIED) has been created to help students get ready for the workforce, and over the past 25 years, it has grown significantly, offering a variety of technologies to support academic, institutional, and administrative services. However, this is still challenging, especially considering the labor market's rapid change. While choosing a career, people face various obstacles because they do not take into consideration their own preferences, which might lead to many other problems like shifting jobs, work stress, occupational infirmity, reduced productivity, and manual error. Besides preferences, people should evaluate properly their technical and non-technical skills, as well as their personalities. Professional counseling has become a difficult undertaking for counselors due to the wide range of career choices brought on by changing technological trends. It is necessary to close this gap by utilizing technology that makes sophisticated predictions about a person's career goals based on their personality. Hence, there is a need to create an automated model that would help in decision-making based on user inputs. Improving career guidance can be achieved by embedding machine learning into the career consulting ecosystem. There are various systems of career guidance that work based on the same logic, such as the classification of applicants, matching applications with appropriate departments or jobs, making predictions, and providing suitable recommendations. Methodologies like KNN, neural networks, K-means clustering, D-Tree, and many other advanced algorithms are applied in the fields of data and compute some data, which is helpful to predict the right careers. Besides helping users with their career choice, these systems provide numerous opportunities which are very useful while making this hard decision. They help the candidate to recognize where he/she specifically lacks sufficient skills so that the candidate can improve those skills. They are also capable of offering an e-learning platform, taking into account the user's lack of knowledge. Furthermore, users can be provided with details on a particular job, such as the abilities required to excel in that industry.

Keywords: career guidance system, machine learning, career prediction, predictive decision, data mining, technical and non-technical skills

Procedia PDF Downloads 70
148 An ANOVA-based Sequential Forward Channel Selection Framework for Brain-Computer Interface Application based on EEG Signals Driven by Motor Imagery

Authors: Forouzan Salehi Fergeni

Abstract:

Converting the movement intents of a person into commands for action employing brain signals like electroencephalogram signals is a brain-computer interface (BCI) system. When left or right-hand motions are imagined, different patterns of brain activity appear, which can be employed as BCI signals for control. To make better the brain-computer interface (BCI) structures, effective and accurate techniques for increasing the classifying precision of motor imagery (MI) based on electroencephalography (EEG) are greatly needed. Subject dependency and non-stationary are two features of EEG signals. So, EEG signals must be effectively processed before being used in BCI applications. In the present study, after applying an 8 to 30 band-pass filter, a car spatial filter is rendered for the purpose of denoising, and then, a method of analysis of variance is used to select more appropriate and informative channels from a category of a large number of different channels. After ordering channels based on their efficiencies, a sequential forward channel selection is employed to choose just a few reliable ones. Features from two domains of time and wavelet are extracted and shortlisted with the help of a statistical technique, namely the t-test. Finally, the selected features are classified with different machine learning and neural network classifiers being k-nearest neighbor, Probabilistic neural network, support-vector-machine, Extreme learning machine, decision tree, Multi-layer perceptron, and linear discriminant analysis with the purpose of comparing their performance in this application. Utilizing a ten-fold cross-validation approach, tests are performed on a motor imagery dataset found in the BCI competition III. Outcomes demonstrated that the SVM classifier got the greatest classification precision of 97% when compared to the other available approaches. The entire investigative findings confirm that the suggested framework is reliable and computationally effective for the construction of BCI systems and surpasses the existing methods.

Keywords: brain-computer interface, channel selection, motor imagery, support-vector-machine

Procedia PDF Downloads 50
147 Learning Fashion Construction and Manufacturing Methods from the Past: Cultural History and Genealogy at the Middle Tennessee State University Historic Clothing Collection

Authors: Teresa B. King

Abstract:

In the millennial age, with more students desiring a fashion major yet fewer having sewing and manufacturing knowledge, this increases demand on academicians to adequately educate. While fashion museums have a prominent place for historical preservation, the need for apparel education via working collections of handmade or mass manufactured apparel is lacking in most universities in the United States, especially in the Southern region. Created in 1988, Middle Tennessee State University’s historic clothing collection provides opportunities to study apparel construction methods throughout history, to compare and apply to today’s construction and manufacturing methods, as well as to learn the cyclical nature/importance of historic styles on current and upcoming fashion. In 2019, a class exercise experiment was implemented for which students researched their family genealogy using Ancestry.com, identified the oldest visual media (photographs, etc.) available, and analyzed the garment represented in said media. The student then located a comparable garment in the historic collection and evaluated the construction methods of the ancestor’s time period. A class 'fashion' genealogy tree was created and mounted for public viewing/education. Results of this exercise indicated that student learning increased due to the 'personal/familial connection' as it triggered more interest in historical garments as related to the student’s own personal culture. Students better identified garments regarding the historical time period, fiber content, fabric, and construction methods utilized, thus increasing learning and retention. Students also developed increased learning and recognition of custom construction methods versus current mass manufacturing techniques, which impact today’s fashion industry. A longitudinal effort will continue with the growth of the historic collection and as students continue to utilize the historic clothing collection.

Keywords: ancestry, clothing history, fashion history, genealogy, historic fashion museum collection

Procedia PDF Downloads 136
146 Molecular Diversity of Forensically Relevant Insects from the Cadavers of Lahore

Authors: Sundus Mona, Atif Adnan, Babar Ali, Fareeha Arshad, Allah Rakha

Abstract:

Molecular diversity is the variation in the abundance of species. Forensic entomology is a neglected field in Pakistan. Insects collected from the crime scene should be handled by forensic entomologists who are currently virtually non-existent in Pakistan. Correct identification of insect specimen along with knowledge of their biodiversity can aid in solving many problems related to complicated forensic cases. Inadequate morphological identification and insufficient thermal biological studies limit the entomological utility in Forensic Medicine. Recently molecular identification of entomological evidence has gained attention globally. DNA barcoding is the latest and established method for species identification. Only proper identification can provide a precise estimation of postmortem intervals. Arthropods are known to be the first tourists scavenging on decomposing dead matter. The objective of the proposed study was to identify species by molecular techniques and analyze their phylogenetic importance with barcoded necrophagous insect species of early succession on human cadavers. Based upon this identification, the study outcomes will be the utilization of established DNA bar codes to identify carrion feeding insect species for concordant estimation of post mortem interval. A molecular identification method involving sequencing of a 658bp ‘barcode’ fragment of the mitochondrial cytochrome oxidase subunit 1 (CO1) gene from collected specimens of unknown dipteral species from cadavers of Lahore was evaluated. Nucleotide sequence divergences were calculated using MEGA 7 and Arlequin, and a neighbor-joining phylogenetic tree was generated. Three species were identified, Chrysomya megacephala, Chrysomya saffranea, and Chrysomya rufifacies with low genetic diversity. The fixation index was 0.83992 that suggests a need for further studies to identify and classify forensically relevant insects in Pakistan. There is an exigency demand for further research especially when immature forms of arthropods are recovered from the crime scene.

Keywords: molecular diversity, DNA barcoding, species identification, forensically relevant

Procedia PDF Downloads 149
145 An Intelligence-Led Methodologly for Detecting Dark Actors in Human Trafficking Networks

Authors: Andrew D. Henshaw, James M. Austin

Abstract:

Introduction: Human trafficking is an increasingly serious transnational criminal enterprise and social security issue. Despite ongoing efforts to mitigate the phenomenon and a significant expansion of security scrutiny over past decades, it is not receding. This is true for many nations in Southeast Asia, widely recognized as the global hub for trafficked persons, including men, women, and children. Clearly, human trafficking is difficult to address because there are numerous drivers, causes, and motivators for it to persist, such as non-military and non-traditional security challenges, i.e., climate change, global warming displacement, and natural disasters. These make displaced persons and refugees particularly vulnerable. The issue is so large conservative estimates put a dollar value at around $150 billion-plus per year (Niethammer, 2020) spanning sexual slavery and exploitation, forced labor, construction, mining and in conflict roles, and forced marriages of girls and women. Coupled with corruption throughout military, police, and civil authorities around the world, and the active hands of powerful transnational criminal organizations, it is likely that such figures are grossly underestimated as human trafficking is misreported, under-detected, and deliberately obfuscated to protect those profiting from it. For example, the 2022 UN report on human trafficking shows a 56% reduction in convictions in that year alone (UNODC, 2022). Our Approach: To better understand this, our research utilizes a bespoke methodology. Applying a JAM (Juxtaposition Assessment Matrix), which we previously developed to detect flows of dark money around the globe (Henshaw, A & Austin, J, 2021), we now focus on the human trafficking paradigm. Indeed, utilizing a JAM methodology has identified key indicators of human trafficking not previously explored in depth. Being a set of structured analytical techniques that provide panoramic interpretations of the subject matter, this iteration of the JAM further incorporates behavioral and driver indicators, including the employment of Open-Source Artificial Intelligence (OS-AI) across multiple collection points. The extracted behavioral data was then applied to identify non-traditional indicators as they contribute to human trafficking. Furthermore, as the JAM OS-AI analyses data from the inverted position, i.e., the viewpoint of the traffickers, it examines the behavioral and physical traits required to succeed. This transposed examination of the requirements of success delivers potential leverage points for exploitation in the fight against human trafficking in a new and novel way. Findings: Our approach identified new innovative datasets that have previously been overlooked or, at best, undervalued. For example, the JAM OS-AI approach identified critical 'dark agent' lynchpins within human trafficking that are difficult to detect and harder to connect to actors and agents within a network. Our preliminary data suggests this is in part due to the fact that ‘dark agents’ in extant research have been difficult to detect and potentially much harder to directly connect to the actors and organizations in human trafficking networks. Our research demonstrates that using new investigative techniques such as OS-AI-aided JAM introduces a powerful toolset to increase understanding of human trafficking and transnational crime and illuminate networks that, to date, avoid global law enforcement scrutiny.

Keywords: human trafficking, open-source intelligence, transnational crime, human security, international human rights, intelligence analysis, JAM OS-AI, Dark Money

Procedia PDF Downloads 90
144 Water Footprint for the Palm Oil Industry in Malaysia

Authors: Vijaya Subramaniam, Loh Soh Kheang, Astimar Abdul Aziz

Abstract:

Water footprint (WFP) has gained importance due to the increase in water scarcity in the world. This study analyses the WFP for an agriculture sector, i.e., the oil palm supply chain, which produces oil palm fresh fruit bunch (FFB), crude palm oil, palm kernel, and crude palm kernel oil. The water accounting and vulnerability evaluation (WAVE) method was used. This method analyses the water depletion index (WDI) based on the local blue water scarcity. The main contribution towards the WFP at the plantation was the production of FFB from the crop itself at 0.23m³/tonne FFB. At the mill, the burden shifts to the water added during the process, which consists of the boiler and process water, which accounted for 6.91m³/tonne crude palm oil. There was a 33% reduction in the WFP when there was no dilution or water addition after the screw press at the mill. When allocation was performed, the WFP reduced by 42% as the burden was shared with the palm kernel and palm kernel shell. At the kernel crushing plant (KCP), the main contributor towards the WFP 4.96 m³/tonne crude palm kernel oil which came from the palm kernel which carried the burden from upstream followed by electricity, 0.33 m³/tonne crude palm kernel oil used for the process and 0.08 m³/tonne crude palm kernel oil for transportation of the palm kernel. A comparison was carried out for mills with biogas capture versus no biogas capture, and the WFP had no difference for both scenarios. The comparison when the KCPs operate in the proximity of mills as compared to those operating in the proximity of ports only gave a reduction of 6% for the WFP. Both these scenarios showed no difference and insignificant difference, which differed from previous life cycle assessment studies on the carbon footprint, which showed significant differences. This shows that findings change when only certain impact categories are focused on. It can be concluded that the impact from the water used by the oil palm tree is low due to the practice of no irrigation at the plantations and the high availability of water from rainfall in Malaysia. This reiterates the importance of planting oil palm trees in regions with high rainfall all year long, like the tropics. The milling stage had the most significant impact on the WFP. Mills should avoid dilution to reduce this impact.

Keywords: life cycle assessment, water footprint, crude palm oil, crude palm kernel oil, WAVE method

Procedia PDF Downloads 175
143 Isolation, Characterization and Screening of Antimicrobial Producing Actinomycetes from Sediments of Persian Gulf

Authors: H. Alijani, M. Jabari, S. Matroodi, H. Zolqarnein, A. Sharafi, I. Zamani

Abstract:

Actinomycetes, Gram-positive bacteria, are interesting as a main producer of secondary metabolites and are important industrially and pharmaceutically. The marine environment is a potential source for new actinomycetes, which can provide novel bioactive compounds and industrially important enzymes. The aims of this study were to isolate and identify novel actinomycetes from Persian Gulf sediments and screen these isolates for the production of secondary metabolites, especially antibiotics, Using phylogenetic (16S rRNA gene sequence), morphological and biochemical analyses. 15 different actinomycete strains from Persian Gulf sediments at a depth of 5-10 m were identified. DNA extraction was done using Cinnapure DNA Kit. PCR amplification of 16S rDNA gene was performed using F27 and R1492 primers. Phylogenetic tree analysis was performed using the MEGA 6 software. Most of the isolated strains belong to the genus namely Streptomyces (14), followed by Nocardiopsis (1). Antibacterial assay of the isolates supernatant was performed using a standard disc diffusion assay with replication (n=3). The results of disk diffusion assay showed that most active strain against Proteus volgaris and Bacillus cereus was AMJ1 (16.46±0.2mm and 13.78±0.2mm, respectively), against Salmonella sp. AMJ7 was the most effective strain (10.13±0.2mm), and AMJ1 and AHA5 showed more inhibitory activity against Escherichia coli (8.04±0.02 mm and 8.2±0.03 ). The AMJ6 strain showed best antibacterial activity against Klebsiella sp. (8.03±0.02mm). Antifungal activity of AMJ2 showed that it was most active strain against complex (16.05±0.02mm) and against Aspergillus flavus strain AMJ1 was most active strain (16.4±0.2mm) and highest antifungal activity against Trichophyton mentagrophytes, Microsporum gyp serum and Candida albicans, were shown by AHA1 (21.03±0.02mm), AHA3 and AHA7 (18±0.03mm), AMJ6 (21.03±0.2mm) respectively. Our results revealed that the marine actinomycetes of Persian Gulf sediments were potent source of novel antibiotics and bioactive compounds and indicated that the antimicrobial metabolites were extracellular. Most of the secondary metabolites and antibiotics are extracellular in nature and extracellular products of actinomycetes show potent antimicrobial activities.

Keywords: antibacterial activity, antifungal activity, marine actinomycetes, Persian Gulf

Procedia PDF Downloads 297
142 Biostabilisation of Sediments for the Protection of Marine Infrastructure from Scour

Authors: Rob Schindler

Abstract:

Industry-standard methods of mitigating erosion of seabed sediments rely on ‘hard engineering’ approaches which have numerous environmental shortcomings: (1) direct loss of habitat by smothering of benthic species, (2) disruption of sediment transport processes, damaging geomorphic and ecosystem functionality (3) generation of secondary erosion problems, (4) introduction of material that may propagate non-local species, and (5) provision of pathways for the spread of invasive species. Recent studies have also revealed the importance of biological cohesion, the result of naturally occurring extra-cellular polymeric substances (EPS), in stabilizing natural sediments. Mimicking the strong bonding kinetics through the deliberate addition of EPS to sediments – henceforth termed ‘biostabilisation’ - offers a means in which to mitigate against erosion induced by structures or episodic increases in hydrodynamic forcing (e.g. storms and floods) whilst avoiding, or reducing, hard engineering. Here we present unique experiments that systematically examine how biostabilisation reduces scour around a monopile in a current, a first step to realizing the potential of this new method of scouring reduction for a wide range of engineering purposes in aquatic substrates. Experiments were performed in Plymouth University’s recirculating sediment flume which includes a recessed scour pit. The model monopile was 0.048 m in diameter, D. Assuming a prototype monopile diameter of 2.0 m yields a geometric ratio of 41.67. When applied to a 10 m prototype water depth this yields a model depth, d, of 0.24 m. The sediment pit containing the monopile was filled with different biostabilised substrata prepared using a mixture of fine sand (D50 = 230 μm) and EPS (Xanthan gum). Nine sand-EPS mixtures were examined spanning EPS contents of 0.0% < b0 < 0.50%. Scour development was measured using a laser point gauge along a 530 mm centreline at 10 mm increments at regular periods over 5 h. Maximum scour depth and excavated area were determined at different time steps and plotted against time to yield equilibrium values. After 5 hours the current was stopped and a detailed scan of the final scour morphology was taken. Results show that increasing EPS content causes a progressive reduction in the equilibrium depth and lateral extent of scour, and hence excavated material. Very small amounts equating to natural communities (< 0.1% by mass) reduce scour rate, depth and extent of scour around monopiles. Furthermore, the strong linear relationships between EPS content, equilibrium scour depth, excavation area and timescales of scouring offer a simple index on which to modify existing scour prediction methods. We conclude that the biostabilisation of sediments with EPS may offer a simple, cost-effective and ecologically sensitive means of reducing scour in a range of contexts including OWFs, bridge piers, pipeline installation, and void filling in rock armour. Biostabilisation may also reduce economic costs through (1) Use of existing site sediments, or waste dredged sediments (2) Reduced fabrication of materials, (3) Lower transport costs, (4) Less dependence on specialist vessels and precise sub-sea assembly. Further, its potential environmental credentials may allow sensitive use of the seabed in marine protection zones across the globe.

Keywords: biostabilisation, EPS, marine, scour

Procedia PDF Downloads 166
141 Automatic Furrow Detection for Precision Agriculture

Authors: Manpreet Kaur, Cheol-Hong Min

Abstract:

The increasing advancement in the robotics equipped with machine vision sensors applied to precision agriculture is a demanding solution for various problems in the agricultural farms. An important issue related with the machine vision system concerns crop row and weed detection. This paper proposes an automatic furrow detection system based on real-time processing for identifying crop rows in maize fields in the presence of weed. This vision system is designed to be installed on the farming vehicles, that is, submitted to gyros, vibration and other undesired movements. The images are captured under image perspective, being affected by above undesired effects. The goal is to identify crop rows for vehicle navigation which includes weed removal, where weeds are identified as plants outside the crop rows. The images quality is affected by different lighting conditions and gaps along the crop rows due to lack of germination and wrong plantation. The proposed image processing method consists of four different processes. First, image segmentation based on HSV (Hue, Saturation, Value) decision tree. The proposed algorithm used HSV color space to discriminate crops, weeds and soil. The region of interest is defined by filtering each of the HSV channels between maximum and minimum threshold values. Then the noises in the images were eliminated by the means of hybrid median filter. Further, mathematical morphological processes, i.e., erosion to remove smaller objects followed by dilation to gradually enlarge the boundaries of regions of foreground pixels was applied. It enhances the image contrast. To accurately detect the position of crop rows, the region of interest is defined by creating a binary mask. The edge detection and Hough transform were applied to detect lines represented in polar coordinates and furrow directions as accumulations on the angle axis in the Hough space. The experimental results show that the method is effective.

Keywords: furrow detection, morphological, HSV, Hough transform

Procedia PDF Downloads 231
140 Waste Water Treatment by Moringa oleifera Seed Powder in Historical Jalmahal Lake Located in Semi-Arid Monsoon Zone of India

Authors: Pomila Sharma

Abstract:

The rapid urbanization in India was not accompanied by the establishment of waste water treatment facility at similar and same pace. The inland fresh water ecosystem is increasingly subjected to great stress from various human activities. Jalmahal Lake is located in Jaipur city of Rajasthan state; the lake was constructed about 400 years ago and surrounded by hills. The lake was approximately 139 hectare in full spread and has catchment area of 23.5 sq. kilometer. Out of the total catchment area approximate 40% falls inside dense urban area of Jaipur city. During the showers, the treated and untreated waste waters and runoff waters get mixed and enter the lake through the various influx channels, and the lake water quality gets affected by the inflow of waste water. The main objective of this work was to use the Moringa oleifera seeds as a natural adsorbent for the treatment of wastewater in lake. Moringa oleifera is a tropical, multipurpose tree whose seeds contain high-quality edible oil 40% by weight and water soluble, non-toxic protein that act as an effective coagulant for the removal of organic matter in water and waste water treatment. Laboratory Jar test procedure had been used for coagulation studies; an experiment runs using lake water. Water extracts/powder of Moringa seed applied to treat polluted water of lake. In present study various doses of Moringa oleifera seed coagulant viz. 100 mg/L, 200 mg/L, and 400 mg/L were taken and checked for the efficiency dose on treated and untreated polluted water. Turbidity and color removal is one of the important steps in a waste water treatment processes. The results indicate significant reduction in turbidity and color. Standard plate count was significantly reduced fecal coliform levels too. All parameters were reduced with the increased dose of Moringa oleifera. It was clear from the study Moringa oleifera seed was shown to be a potential bio-coagulant, for treatment of sewage laden polluted water in the lake.

Keywords: coagulant, Moringa oleifera, plate count, turbidity, wastewater

Procedia PDF Downloads 410