Search results for: renewable energy resource
1496 The Effect of Potassium Hydroxide on Fine Soil Treated with Olivine
Authors: Abdelmaoula Mahamoud Tahir, Sedat Sert
Abstract:
The possibility of improving the shear strength of unsaturated clayey soil with the addition of olivine was investigated in this paper. Unconsolidated undrained triaxial tests (UU), under different cell pressures (namely: 100 kPa and 200 kPa), with varying percentages of olivine (10% and 20% by weight) and with one day, 28 days, and 56 days curing times, were performed to determine the shear strength of the soil. The increase in strength was observed as a function of the increase in olivine content. An olivine content of 25% was determined as the optimum value to achieve the targeted improvement for both cure times. A comparative study was also conducted between clay samples treated with only olivine and others in the presence of potassium hydroxide (KOH). Clay samples treated with olivine and activated with potassium hydroxide (KOH) had higher shear strength than non-activated olivine-treated samples. It was determined that the strength of the clay samples treated with only olivine did not increase over time and added resistance only with the high specific gravity of olivine. On the other hand, the samples activated with potassium hydroxide (KOH) added to the resistance with high specific gravity and the chemical bonds of olivine. Morphological and mineralogical analyzes were carried out in this study to see and analyze the chemical bonds formed after the reaction. The main components of this improvement were the formation of magnesium-aluminate-hydrate and magnesium-silicate-hydrate. Compared to older methods such as cement addition, these results show that in stabilizing clayey soils, olivine additive offers an energy-efficient alternative for reducing carbon dioxide emissions.Keywords: ground stabilization, clay, olivine additive, KOH, microstructure
Procedia PDF Downloads 1171495 Quantification of Effects of Structure-Soil-Structure Interactions on Urban Environment under Rayleigh Wave Loading
Authors: Neeraj Kumar, J. P. Narayan
Abstract:
The effects of multiple Structure-Soil-Structure Interactions (SSSI) on the seismic wave-field is generally disregarded by earthquake engineers, particularly the surface waves which cause more damage to buildings. Closely built high rise buildings exchange substantial seismic energy with each other and act as a full-coupled dynamic system. In this paper, SSI effects on the building responses and the free field motion due to a small city consisting 25- homogenous buildings blocks of 10-storey are quantified. The rocking and translational behavior of building under Rayleigh wave loading is studied for different dimensions of the building. The obtained dynamic parameters of buildings revealed a reduction in building roof drift with an increase in number of buildings ahead of the considered building. The strain developed by vertical component of Rayleigh may cause tension in structural components of building. A matching of fundamental frequency of building for the horizontal component of Rayleigh wave with that for vertically incident SV-wave is obtained. Further, the fundamental frequency of building for the vertical vibration is approximately twice to that for horizontal vibration. The city insulation has caused a reduction of amplitude of Rayleigh wave up to 19.3% and 21.6% in the horizontal and vertical components, respectively just outside the city. Further, the insulating effect of city was very large at fundamental frequency of buildings for both the horizontal and vertical components. Therefore, it is recommended to consider the insulating effects of city falling in the path of Rayleigh wave propagation in seismic hazard assessment for an area.Keywords: structure-soil-structure interactions, Rayleigh wave propagation, finite difference simulation, dynamic response of buildings
Procedia PDF Downloads 2151494 Digital Mapping of First-Order Drainages and Springs of the Guajiru River, Northeast of Brazil, Based on Satellite and Drone Images
Authors: Sebastião Milton Pinheiro da Silva, Michele Barbosa da Rocha, Ana Lúcia Fernandes Campos, Miquéias Rildo de Souza Silva
Abstract:
Water is an essential natural resource for life on Earth. Rivers, lakes, lagoons and dams are the main sources of water storage for human consumption. The costs of extracting and using these water sources are lower than those of exploiting groundwater on transition zones to semi-arid terrains. However, the volume of surface water has decreased over time, with the depletion of first-order drainage and the disappearance of springs, phenomena which are easily observed in the field. Climate change worsens water scarcity, compromising supply and hydric security for rural populations. To minimize the expected impacts, producing and storing water through watershed management planning requires detailed cartographic information on the relief and topography, and updated data on the stage and intensity of catchment basin environmental degradation problems. The cartography available of the Brazilian northeastern territory dates to the 70s, with topographic maps, printed, at a scale of 1:100,000 which does not meet the requirements to execute this project. Exceptionally, there are topographic maps at scales of 1:50,000 and 1:25,000 of some coastal regions in northeastern Brazil. Still, due to scale limitations and outdatedness, they are products of little utility for mapping low-order watersheds drainage and springs. Remote sensing data and geographic information systems can contribute to guiding the process of mapping and environmental recovery by integrating detailed relief and topographic data besides social and other environmental information in the Guajiru River Basin, located on the east coast of Rio Grande do Norte, on the Northeast region of Brazil. This study aimed to recognize and map catchment basin, springs and low-order drainage features along estimating morphometric parameters. Alos PALSAR and Copernicus DEM digital elevation models were evaluated and provided regional drainage features and the watersheds limits extracted with Terraview/Terrahidro 5.0 software. CBERS 4A satellite images with 2 m spatial resolution, processed with ESA SNAP Toolbox, allowed generating land use land cover map of Guajiru River. A Mappir Survey 3 multiespectral camera onboard of a DJI Phantom 4, a Mavic 2 Pro PPK Drone and an X91 GNSS receiver to collect the precised position of selected points were employed to detail mapping. Satellite images enabled a first knowledge approach of watershed areas on a more regional scale, yet very current, and drone images were essential in mapping details of catchment basins. The drone multispectral image mosaics, the digital elevation model, the contour lines and geomorphometric parameters were generated using OpenDroneMap/ODM and QGis softwares. The drone images generated facilitated the location, understanding and mapping of watersheds, recharge areas and first-order ephemeral watercourses on an adequate scale and will be used in the following project’s phases: watershed management planning, recovery and environmental protection of Rio's springs Guajiru. Environmental degradation is being analyzed from the perspective of the availability and quality of surface water supply.Keywords: imaging, relief, UAV, water
Procedia PDF Downloads 321493 Study on the Process of Detumbling Space Target by Laser
Authors: Zhang Pinliang, Chen Chuan, Song Guangming, Wu Qiang, Gong Zizheng, Li Ming
Abstract:
The active removal of space debris and asteroid defense are important issues in human space activities. Both of them need a detumbling process, for almost all space debris and asteroid are in a rotating state, and it`s hard and dangerous to capture or remove a target with a relatively high tumbling rate. So it`s necessary to find a method to reduce the angular rate first. The laser ablation method is an efficient way to tackle this detumbling problem, for it`s a contactless technique and can work at a safe distance. In existing research, a laser rotational control strategy based on the estimation of the instantaneous angular velocity of the target has been presented. But their calculation of control torque produced by a laser, which is very important in detumbling operation, is not accurate enough, for the method they used is only suitable for the plane or regularly shaped target, and they did not consider the influence of irregular shape and the size of the spot. In this paper, based on the triangulation reconstruction of the target surface, we propose a new method to calculate the impulse of the irregularly shaped target under both the covered irradiation and spot irradiation of the laser and verify its accuracy by theoretical formula calculation and impulse measurement experiment. Then we use it to study the process of detumbling cylinder and asteroid by laser. The result shows that the new method is universally practical and has high precision; it will take more than 13.9 hours to stop the rotation of Bennu with 1E+05kJ laser pulse energy; the speed of the detumbling process depends on the distance between the spot and the centroid of the target, which can be found an optimal value in every particular case.Keywords: detumbling, laser ablation drive, space target, space debris remove
Procedia PDF Downloads 851492 Synthesis and Characterization of Cellulose-Based Halloysite-Carbon Adsorbent
Authors: Laura Frydel, Piotr M. Slomkiewicz, Beata Szczepanik
Abstract:
Triclosan has been used as a disinfectant in many medical products, such as: hand disinfectant soaps, creams, mouthwashes, pastes and household cleaners. Due to its strong antimicrobial activity, triclosan is becoming more and more popular and the consumption of disinfectants with triclosan in it is increasing. As a result, this compound increasingly finds its way into waters and soils in an unchanged form, pollutes the environment and may have a negative effect on organisms. The aim of this study was to investigate the synthesis of cellulose-based halloysite-carbon adsorbent and perform its characterization. The template in the halloysite-carbon adsorbent was halloysite nanotubes and the carbon precursor was microcrystalline cellulose. Scanning electron microscope (SEM) images were obtained and the elementary composition (qualitative and quantitative) of the sample was determined by energy dispersion spectroscopy (EDS). The identification of the crystallographic composition of the halloysite nanotubes and the sample of the halloysite-carbon composite was carried out using the X-ray powder diffraction (XRPD) method. The FTIR spectra were acquired before and after the adsorption process in order to determine the functional groups on the adsorbent surface and confirm the interactions between adsorbent and adsorbate molecules. The parameters of the porous structure of the adsorbent, such as the specific surface area (Brunauer-Emmett-Teller method), the total pore volume and the volume of mesopores and micropores were determined. Total carbon and total organic carbon were also determined in the samples. A cellulose-based halloysite-carbon adsorbent was used to remove triclosan from water. The degree of removal of triclosan from water was approximately 90%. The results indicate that the halloysite-carbon composite can be successfully used as an effective adsorbent for removing triclosan from water.Keywords: Adsorption, cellulose, halloysite, triclosan
Procedia PDF Downloads 1291491 A Method of Manufacturing Low Cost Utility Robots and Vehicles
Authors: Gregory E. Ofili
Abstract:
Introduction and Objective: Climate change and a global economy mean farmers must adapt and gain access to affordable and reliable automation technologies. Key barriers include a lack of transportation, electricity, and internet service, coupled with costly enabling technologies and limited local subject matter expertise. Methodology/Approach: Resourcefulness is essential to mechanization on a farm. This runs contrary to the tech industry practice of planned obsolescence and disposal. One solution is plug-and-play hardware that allows farmer to assemble, repair, program, and service their own fleet of industrial machines. To that end, we developed a method of manufacturing low-cost utility robots, transport vehicles, and solar/wind energy harvesting systems, all running on an open-source Robot Operating System (ROS). We demonstrate this technology by fabricating a utility robot and an all-terrain (4X4) utility vehicle. Constructed of aluminum trusses and weighing just 40 pounds, yet capable of transporting 200 pounds of cargo, on sale for less than $2,000. Conclusions & Policy Implications: Electricity, internet, and automation are essential for productivity and competitiveness. With planned obsolescence, the priorities of technology suppliers are not aligned with the farmer’s realities. This patent-pending method of manufacturing low-cost industrial robots and electric vehicles has met its objective. To create low-cost machines, the farmer can assemble, program, and repair with basic hand tools.Keywords: automation, robotics, utility robot, small-hold farm, robot operating system
Procedia PDF Downloads 711490 Electron-Ion Recombination for Photoionized and Collisionally Ionized Plasmas
Authors: Shahin A. Abdel-Naby, Asad T. Hassan
Abstract:
Astrophysical plasma environments can be classified into collisionally ionized (CP) and photoionizedplasmas (PP). In the PP, ionization is caused by an external radiation field, while it is caused by electron collision in the CP. Accurate and reliable laboratory astrophysical data for electron-ion recombination is needed for plasma modeling for low and high-temperatures. Dielectronic recombination (DR) is the dominant recombination process for the CP for most of the ions. When a free electron is captured by an ion with simultaneous excitation of its core, a doubly-exited intermediate state may be formed. The doubly excited state relaxes either by electron emission (autoionization) or by radiative decay (photon emission). DR process takes place when the relaxation occurs to a bound state by a photon emission. DR calculations at low-temperatures are problematic and challenging since small uncertaintiesin the low-energy DR resonance positions can produce huge uncertainties in DR rate coefficients.DR rate coefficients for N²⁺ and O³⁺ ions are calculated using state-of-the-art multi-configurationBreit-Pauli atomic structure AUTOSTRUCTURE collisional package within the generalized collisional-radiative framework. Level-resolved calculations for RR and DR rate coefficients from the ground and metastable initial states are produced in an intermediate coupling scheme associated withn = 0 and n = 1 core-excitations. DR cross sections for these ions are convoluted with the experimental electron-cooler temperatures to produce DR rate coefficients. Good agreements are foundbetween these rate coefficients and theexperimental measurements performed at CRYRING heavy-ionstorage ring for both ions.Keywords: atomic data, atomic process, electron-ion collision, plasmas
Procedia PDF Downloads 981489 A Study on the Effect of Cod to Sulphate Ratio on Performance of Lab Scale Upflow Anaerobic Sludge Blanket Reactor
Authors: Neeraj Sahu, Ahmad Saadiq
Abstract:
Anaerobic sulphate reduction has the potential for being effective and economically viable over conventional treatment methods for the treatment of sulphate-rich wastewater. However, a major challenge in anaerobic sulphate reduction is the diversion of a fraction of organic carbon towards methane production and some minor problem such as odour problems, corrosion, and increase of effluent chemical oxygen demand. A high-rate anaerobic technology has encouraged researchers to extend its application to the treatment of complex wastewaters with relatively low cost and energy consumption compared to physicochemical methods. Therefore, the aim of this study was to investigate the effects of COD/SO₄²⁻ ratio on the performance of lab scale UASB reactor. A lab-scale upflow anaerobic sludge blanket (UASB) reactor was operated for 170 days. In which first 60 days, for successful start-up with acclimation under methanogenesis and sulphidogenesis at COD/SO₄²⁻ of 18 and were operated at COD/SO₄²⁻ ratios of 12, 8, 4 and 1 to evaluate the effects of the presence of sulfate on the reactor performance. The reactor achieved maximum COD removal efficiency and biogas evolution at the end of acclimation (control). This phase lasted 53 days with 89.5% efficiency. The biogas was 0.6 L/d at (OLR) of 1.0 kg COD/m³d when it was treating synthetic wastewater with effective volume of reactor as 2.8 L. When COD/SO₄²⁻ ratio changed from 12 to 1, slight decrease in COD removal efficiencies (76.8–87.4%) was observed, biogas production decreased from 0.58 to 0.32 L/d, while the sulfate removal efficiency increased from 42.5% to 72.7%.Keywords: anaerobic, chemical oxygen demand, organic loading rate, sulphate, up-flow anaerobic sludge blanket reactor
Procedia PDF Downloads 2181488 Electrochemical Synthesis of Copper Nanoparticles
Authors: Juan Patricio Ibáñez, Exequiel López
Abstract:
A method for synthesizing copper nanoparticles through an electrochemical approach is proposed, employing surfactants to stabilize the size of the newly formed nanoparticles. The electrolyte was made up of a matrix of H₂SO₄ (190 g/L) having Cu²⁺ (from 3.2 to 9.5 g/L), sodium dodecyl sulfate -SDS- (from 0.5 to 1.0 g/L) and Tween 80 (from 0 to 7.5 mL/L). Tween 80 was used in a molar relation of 1 to 1 with SDS. A glass cell was used, which was in a thermostatic water bath to keep the system temperature, and the electrodes were cathodic copper as an anode and stainless steel 316-L as a cathode. This process was influenced by the control exerted through the initial copper concentration in the electrolyte and the applied current density. Copper nanoparticles of electrolytic purity, exhibiting a spherical morphology of varying sizes with low dispersion, were successfully produced, contingent upon the chemical composition of the electrolyte and current density. The minimum size achieved was 3.0 nm ± 0.9 nm, with an average standard deviation of 2.2 nm throughout the entire process. The deposited copper mass ranged from 0.394 g to 1.848 g per hour (over an area of 25 cm²), accompanied by an average Faradaic efficiency of 30.8% and an average specific energy consumption of 4.4 kWh/kg. The chemical analysis of the product employed X-ray powder diffraction (XRD), while physical characteristics such as size and morphology were assessed using atomic force microscopy (AFM). It was identified that the initial concentration of copper and the current density are the variables defining the size and dispersion of the nanoparticles, as they serve as reactants in the cathodic half-reaction. The presence of surfactants stabilizes the nanoparticle size as their molecules adsorb onto the nanoparticle surface, forming a thick barrier that prevents mass transfer with the exterior and halts further growth.Keywords: copper nanopowder, electrochemical synthesis, current density, surfactant stabilizer
Procedia PDF Downloads 631487 Temperature Distribution for Asphalt Concrete-Concrete Composite Pavement
Authors: Tetsya Sok, Seong Jae Hong, Young Kyu Kim, Seung Woo Lee
Abstract:
The temperature distribution for asphalt concrete (AC)-Concrete composite pavement is one of main influencing factor that affects to performance life of pavement. The temperature gradient in concrete slab underneath the AC layer results the critical curling stress and lead to causes de-bonding of AC-Concrete interface. These stresses, when enhanced by repetitive axial loadings, also contribute to the fatigue damage and eventual crack development within the slab. Moreover, the temperature change within concrete slab extremely causes the slab contracts and expands that significantly induces reflective cracking in AC layer. In this paper, the numerical prediction of pavement temperature was investigated using one-dimensional finite different method (FDM) in fully explicit scheme. The numerical predicted model provides a fundamental and clear understanding of heat energy balance including incoming and outgoing thermal energies in addition to dissipated heat in the system. By using the reliable meteorological data for daily air temperature, solar radiation, wind speech and variable pavement surface properties, the predicted pavement temperature profile was validated with the field measured data. Additionally, the effects of AC thickness and daily air temperature on the temperature profile in underlying concrete were also investigated. Based on obtained results, the numerical predicted temperature of AC-Concrete composite pavement using FDM provided a good accuracy compared to field measured data and thicker AC layer significantly insulates the temperature distribution in underlying concrete slab.Keywords: asphalt concrete, finite different method (FDM), curling effect, heat transfer, solar radiation
Procedia PDF Downloads 2701486 Evaluation of the Dry Compressive Strength of Refractory Bricks Developed from Local Kaolin
Authors: Olanrewaju Rotimi Bodede, Akinlabi Oyetunji
Abstract:
Modeling the dry compressive strength of sodium silicate bonded kaolin refractory bricks was studied. The materials used for this research work included refractory clay obtained from Ijero-Ekiti kaolin deposit on coordinates 7º 49´N and 5º 5´E, sodium silicate obtained from the open market in Lagos on coordinates 6°27′11″N 3°23′45″E all in the South Western part of Nigeria. The mineralogical composition of the kaolin clay was determined using the Energy Dispersive X-Ray Fluorescence Spectrometer (ED-XRF). The clay samples were crushed and sieved using the laboratory pulveriser, ball mill and sieve shaker respectively to obtain 100 μm diameter particles. Manual pipe extruder of dimension 30 mm diameter by 43.30 mm height was used to prepare the samples with varying percentage volume of sodium silicate 5 %, 7.5 % 10 %, 12.5 %, 15 %, 17.5 %, 20% and 22.5 % while kaolin and water were kept at 50 % and 5 % respectively for the comprehensive test. The samples were left to dry in the open laboratory atmosphere for 24 hours to remove moisture. The samples were then were fired in an electrically powered muffle furnace. Firing was done at the following temperatures; 700ºC, 750ºC, 800ºC, 850ºC, 900ºC, 950ºC, 1000ºC and 1100ºC. Compressive strength test was carried out on the dried samples using a Testometric Universal Testing Machine (TUTM) equipped with a computer and printer, optimum compression of 4.41 kN/mm2 was obtained at 12.5 % sodium silicate; the experimental results were modeled with MATLAB and Origin packages using polynomial regression equations that predicted the estimated values for dry compressive strength and later validated with Pearson’s rank correlation coefficient, thereby obtaining a very high positive correlation value of 0.97.Keywords: dry compressive strength, kaolin, modeling, sodium silicate
Procedia PDF Downloads 4551485 Simulation of Complex-Shaped Particle Breakage with a Bonded Particle Model Using the Discrete Element Method
Authors: Felix Platzer, Eric Fimbinger
Abstract:
In Discrete Element Method (DEM) simulations, the breakage behavior of particles can be simulated based on different principles. In the case of large, complex-shaped particles that show various breakage patterns depending on the scenario leading to the failure and often only break locally instead of fracturing completely, some of these principles do not lead to realistic results. The reason for this is that in said cases, the methods in question, such as the Particle Replacement Method (PRM) or Voronoi Fracture, replace the initial particle (that is intended to break) into several sub-particles when certain breakage criteria are reached, such as exceeding the fracture energy. That is why those methods are commonly used for the simulation of materials that fracture completely instead of breaking locally. That being the case, when simulating local failure, it is advisable to pre-build the initial particle from sub-particles that are bonded together. The dimensions of these sub-particles consequently define the minimum size of the fracture results. This structure of bonded sub-particles enables the initial particle to break at the location of the highest local loads – due to the failure of the bonds in those areas – with several sub-particle clusters being the result of the fracture, which can again also break locally. In this project, different methods for the generation and calibration of complex-shaped particle conglomerates using bonded particle modeling (BPM) to enable the ability to depict more realistic fracture behavior were evaluated based on the example of filter cake. The method that proved suitable for this purpose and which furthermore allows efficient and realistic simulation of breakage behavior of complex-shaped particles applicable to industrial-sized simulations is presented in this paper.Keywords: bonded particle model, DEM, filter cake, particle breakage
Procedia PDF Downloads 2101484 Influence of the Cooking Technique on the Iodine Content of Frozen Hake
Authors: F. Deng, R. Sanchez, A. Beltran, S. Maestre
Abstract:
The high nutritional value associated with seafood is related to the presence of essential trace elements. Moreover, seafood is considered an important source of energy, proteins, and long-chain polyunsaturated fatty acids. Generally, seafood is consumed cooked. Consequently, the nutritional value could be degraded. Seafood, such as fish, shellfish, and seaweed, could be considered as one of the main iodine sources. The deficient or excessive consumption of iodine could cause dysfunction and pathologies related to the thyroid gland. The main objective of this work is to evaluated iodine stability in hake (Merluccius) undergone different culinary techniques. The culinary process considered were: boiling, steaming, microwave cooking, baking, cooking en papillote (twisted cover with the shape of a sweet wrapper) and coating with a batter of flour and deep-frying. The determination of iodine was carried by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Regarding sample handling strategies, liquid-liquid extraction has demonstrated to be a powerful pre-concentration and clean-up approach for trace metal analysis by ICP techniques. Extraction with tetramethylammonium hydroxide (TMAH reagent) was used as a sample preparation method in this work. Based on the results, it can be concluded that the stability of iodine was degraded with the cooking processes. The major degradation was observed for the boiling and microwave cooking processes. The content of iodine in hake decreased up to 60% and 52%, respectively. However, if the boiling cooking liquid is preserved, this loss that has been generated during cooking is reduced. Only when the fish was cooked by following the cooking en papillote process the iodine content was preserved.Keywords: cooking process, ICP-MS, iodine, hake
Procedia PDF Downloads 1421483 Design and Evaluation of a Fully-Automated Fluidized Bed Dryer for Complete Drying of Paddy
Authors: R. J. Pontawe, R. C. Martinez, N. T. Asuncion, R. V. Villacorte
Abstract:
Drying of high moisture paddy remains a major problem in the Philippines, especially during inclement weather condition. To alleviate the problem, mechanical dryers were used like a flat bed and recirculating batch-type dryers. However, drying to 14% (wet basis) final moisture content is long which takes 10-12 hours and tedious which is not the ideal for handling high moisture paddy. Fully-automated pilot-scale fluidized bed drying system with 500 kilograms per hour capacity was evaluated using a high moisture paddy. The developed fluidized bed dryer was evaluated using four drying temperatures and two variations in fluidization time at a constant airflow, static pressure and tempering period. Complete drying of paddy with ≥28% (w.b.) initial MC was attained after 2 passes of fluidized-bed drying at 2 minutes exposure to 70 °C drying temperature and 4.9 m/s superficial air velocity, followed by 60 min ambient air tempering period (30 min without ventilation and 30 min with air ventilation) for a total drying time of 2.07 h. Around 82% from normal mechanical drying time was saved at 70 °C drying temperature. The drying cost was calculated to be P0.63 per kilogram of wet paddy. Specific heat energy consumption was only 2.84 MJ/kg of water removed. The Head Rice Yield recovery of the dried paddy passed the Philippine Agricultural Engineering Standards. Sensory evaluation showed that the color and taste of the samples dried in the fluidized bed dryer were comparable to air dried paddy. The optimum drying parameters of using fluidized bed dryer is 70 oC drying temperature at 2 min fluidization time, 4.9 m/s superficial air velocity, 10.16 cm grain depth and 60 min ambient air tempering period.Keywords: drying, fluidized bed dryer, head rice yield, paddy
Procedia PDF Downloads 3251482 Marketing and Business Intelligence and Their Impact on Products and Services Through Understanding Based on Experiential Knowledge of Customers in Telecommunications Companies
Authors: Ali R. Alshawawreh, Francisco Liébana-Cabanillas, Francisco J. Blanco-Encomienda
Abstract:
Collaboration between marketing and business intelligence (BI) is crucial in today's ever-evolving business landscape. These two domains play pivotal roles in molding customers' experiential knowledge. Marketing insights offer valuable information regarding customer needs, preferences, and behaviors. Conversely, BI facilitates data-driven decision-making, leading to heightened operational efficiency, product quality, and customer satisfaction. Customer experiential knowledge (CEK) encompasses customers' implicit comprehension of consumption experiences influenced by diverse factors, including social and cultural influences. This study primarily focuses on telecommunications companies in Jordan, scrutinizing how experiential customer knowledge mediates the relationship between marketing intelligence and business intelligence. Drawing on theoretical frameworks such as the resource-based view (RBV) and service-dominant logic (SDL), the research aims to comprehend how organizations utilize their resources, particularly knowledge, to foster Evolution. Employing a quantitative research approach, the study collected and analyzed primary data to explore hypotheses. Structural equation modeling (SEM) facilitated by Smart PLS software evaluated the relationships between the constructs, followed by mediation analysis to assess the indirect associations in the model. The study findings offer insights into the intricate dynamics of organizational Creation, uncovering the interconnected relationships between business intelligence, customer experiential knowledge-based innovation (CEK-DI), marketing intelligence (MI), and product and service innovation (PSI), underscoring the pivotal role of advanced intelligence capabilities in developing innovative practices rooted in a profound understanding of customer experiences. Furthermore, the positive impact of BI on PSI reaffirms the significance of data-driven decision-making in shaping the innovation landscape. The significant impact of CEK-DI on PSI highlights the critical role of customer experiences in driving an organization. Companies that actively integrate customer insights into their opportunity creation processes are more likely to create offerings that match customer expectations, which drives higher levels of product and service sophistication. Additionally, the positive and significant impact of MI on CEK-DI underscores the critical role of market insights in shaping evolutionary strategies. While the relationship between MI and PSI is positive, the slightly weaker significance level indicates a subtle association, suggesting that while MI contributes to the development of ideas, In conclusion, the study emphasizes the fundamental role of intelligence capabilities, especially artificial intelligence, emphasizing the need for organizations to leverage market and customer intelligence to achieve effective and competitive innovation practices. Collaborative efforts between marketing and business intelligence serve as pivotal drivers of development, influencing customer experiential knowledge and shaping organizational strategies and practices. Future research could adopt longitudinal designs and gather data from various sectors to offer broader insights. Additionally, the study focuses on the effects of marketing intelligence, business intelligence, customer experiential knowledge, and innovation, but other unexamined variables may also influence innovation processes. Future studies could investigate additional factors, mediators, or moderators, including the role of emerging technologies like AI and machine learning in driving innovation.Keywords: marketing intelligence, business intelligence, product, customer experiential knowledge-driven innovation
Procedia PDF Downloads 331481 Study of the Non-isothermal Crystallization Kinetics of Polypropylene Homopolymer/Impact Copolymer Composites
Authors: Pixiang Wang, Shaoyang Liu, Yucheng Peng
Abstract:
Polypropylene (PP) is an essential material of numerous applications in different industrial sectors, including packaging, construction, and automotive. Because the application of homopolypropylene (HPP) is limited by its relatively low impact strength and high embrittlement temperature, various types of impact copolymer PP (ICPP) that incorporate elastomers/rubbers into HPP to increase impact strength have been successfully commercialized. Crystallization kinetics of an isotactic HPP, an ICPP, and their composites were studied in this work understand the composites’ behaviors better. The Avrami-Jeziorny model was used to describe the crystallization process. For most samples, the Avrami exponent, n, was greater than 3, indicating the crystal grew in three dimensions with spherical geometry. However, the n value could drop below 3 when the ICPP content was 80 wt.% or higher and the cooling rate was 7.5°C/min or lower, implying that the crystals could grow in two dimensions and some lamella structures could be formed under those conditions. The nucleation activity increased with the increase of the ICPP content, demonstrating that the rubber phase in the ICPP acted as a nucleation agent and facilitated the nucleation process. The decrease in crystallization rate after the ICPP content exceeded 60 wt.% might be caused by the excessive amount of crystal nuclei induced by the high ICPP content, which caused strong crystal-crystal interactions and limited the crystal growth space. The nucleation activity and the n value showed high correlations to the mechanical and thermal properties of the materials. The quantitative study of the kinetics of crystallization in this work could be a helpful reference for manufacturing ICPP and HPP/ICPP mixtures.Keywords: polypropylene, crystallization kinetics, Avrami-Jeziorny model, crystallization activation energy, Nucleation activity
Procedia PDF Downloads 861480 Fluid–Structure Interaction Modeling of Wind Turbines
Authors: Andre F. A. Cyrino
Abstract:
Knowing that the technological advance is the focus on the efficient extraction of energy from wind, and therefore in the design of wind turbine structures, this work aims the study of the fluid-structure interaction of an idealized wind turbine. The blade was studied as a beam attached to a cylindrical Hub with rotation axis pointing the air flow that passes through the rotor. Using the calculus of variations and the finite difference method the blade will be simulated by a discrete number of nodes and the aerodynamic forces were evaluated. The study presented here was written on Matlab and performs a numeric simulation of a simplified model of windmill containing a Hub and three blades modeled as Euler-Bernoulli beams for small strains and under the constant and uniform wind. The mathematical approach is done by Hamilton’s Extended Principle with the aerodynamic loads applied on the nodes considering the local relative wind speed, angle of attack and aerodynamic lift and drag coefficients. Due to the wide range of angles of attack, a wind turbine blade operates, the airfoil used on the model was NREL SERI S809 which allowed obtaining equations for Cl and Cd as functions of the angle of attack, based on a NASA study. Tridimensional flow effects were no taken in part, as well as torsion of the beam, which only bends. The results showed the dynamic response of the system in terms of displacement and rotational speed as the turbine reached the final speed. Although the results were not compared to real windmills or more complete models, the resulting values were consistent with the size of the system and wind speed.Keywords: blade aerodynamics, fluid–structure interaction, wind turbine aerodynamics, wind turbine blade
Procedia PDF Downloads 2681479 Bone Mineral Density and Frequency of Low-Trauma Fractures in Ukrainian Women with Metabolic Syndrome
Authors: Vladyslav Povoroznyuk, Larysa Martynyuk, Iryna Syzonenko, Liliya Martynyuk
Abstract:
Osteoporosis is one of the important problems in postmenopausal women due to an increased risk of sudden and unexpected fractures. This study is aimed to determine the connection between bone mineral density (BMD) and trabecular bone score (TBS) in Ukrainian women suffering from metabolic syndrome. Participating in the study, 566 menopausal women aged 50-79 year-old were examined and divided into two groups: Group A included 336 women with no obesity (BMI ≤ 29.9 kg/m2), and Group B – 230 women with metabolic syndrome (diagnosis according to IDF criteria, 2005). Dual-energy X-ray absorptiometry was used for measuring of lumbar spine (L1-L4), femoral neck, total body and forearm BMD and bone quality indexes (last according to Med-Imaps installation). Data were analyzed using Statistical Package 6.0. A significant increase of lumbar spine (L1-L4), femoral neck, total body and ultradistal radius BMD was found in women with metabolic syndrome compared to those without obesity (p < 0.001) both in their totality and in groups of 50-59 years, 60-69 years, and 70-79 years. TBS was significantly higher in non-obese women compared to metabolic syndrome patients of 50-59 years and in the general sample (p < 0.05). Analysis showed significant positive correlation between body mass index (BMI) and BMD at all levels. Significant negative correlation between BMI and TBS (L1-L4) was established. Despite the fact that BMD indexes were significantly higher in women with metabolic syndrome, the frequency of vertebral and non-vertebral fractures did not differ significantly in the groups of patients.Keywords: bone mineral density, trabecular bone score, metabolic syndrome, fracture
Procedia PDF Downloads 2841478 Copper Price Prediction Model for Various Economic Situations
Authors: Haidy S. Ghali, Engy Serag, A. Samer Ezeldin
Abstract:
Copper is an essential raw material used in the construction industry. During the year 2021 and the first half of 2022, the global market suffered from a significant fluctuation in copper raw material prices due to the aftermath of both the COVID-19 pandemic and the Russia-Ukraine war, which exposed its consumers to an unexpected financial risk. Thereto, this paper aims to develop two ANN-LSTM price prediction models, using Python, that can forecast the average monthly copper prices traded in the London Metal Exchange; the first model is a multivariate model that forecasts the copper price of the next 1-month and the second is a univariate model that predicts the copper prices of the upcoming three months. Historical data of average monthly London Metal Exchange copper prices are collected from January 2009 till July 2022, and potential external factors are identified and employed in the multivariate model. These factors lie under three main categories: energy prices and economic indicators of the three major exporting countries of copper, depending on the data availability. Before developing the LSTM models, the collected external parameters are analyzed with respect to the copper prices using correlation and multicollinearity tests in R software; then, the parameters are further screened to select the parameters that influence the copper prices. Then, the two LSTM models are developed, and the dataset is divided into training, validation, and testing sets. The results show that the performance of the 3-Month prediction model is better than the 1-Month prediction model, but still, both models can act as predicting tools for diverse economic situations.Keywords: copper prices, prediction model, neural network, time series forecasting
Procedia PDF Downloads 1131477 Green Computing: Awareness and Practice in a University Information Technology Department
Authors: Samson Temitope Obafemi
Abstract:
The fact that ICTs is pervasive in today’s society paradoxically also calls for the need for green computing. Green computing generally encompasses the study and practice of using Information and Communication Technology (ICT) resources effectively and efficiently without negatively affecting the environment. Since the emergence of this innovation, manufacturers and governmental bodies such as Energy Star and the United State of America’s government have obviously invested many resources in ensuring the reality of green design, manufacture, and disposal of ICTs. However, the level of adherence to green use of ICTs among users have been less accounted for especially in developing ICT consuming nations. This paper, therefore, focuses on examining the awareness and practice of green computing among academics and students of the Information Technology Department of Durban University of Technology, Durban South Africa, in the context of green use of ICTs. This was achieved through a survey that involved the use of a questionnaire with four sections: (a) demography of respondents, (b) Awareness of green computing, (c) practices of green computing, and (d) attitude towards greener computing. One hundred and fifty (150) questionnaires were distributed, one hundred and twenty (125) were completed and collected for data analysis. Out of the one hundred and twenty-five (125) respondents, twenty-five percent (25%) were academics while the remaining seventy-five percent (75%) were students. The result showed a higher level of awareness of green computing among academics when compared to the students. Green computing practices are also shown to be highly adhered to among academics only. However, interestingly, the students were found to be more enthusiastic towards greener computing in the future. The study, therefore, suggests that the awareness of green computing should be further strengthened among students from the curriculum point of view in order to improve on the greener use of ICTs in universities especially in developing countries.Keywords: awareness, green computing, green use, information technology
Procedia PDF Downloads 1951476 Multiscale Cohesive Zone Modeling of Composite Microstructure
Authors: Vincent Iacobellis, Kamran Behdinan
Abstract:
A finite element cohesive zone model is used to predict the temperature dependent material properties of a polyimide matrix composite with unidirectional carbon fiber arrangement. The cohesive zone parameters have been obtained from previous research involving an atomistic-to-continuum multiscale simulation of the fiber-matrix interface using the bridging cell multiscale method. The goal of the research was to both investigate the effect of temperature change on the composite behavior with respect to transverse loading as well as the validate the use of cohesive parameters obtained from atomistic-to-continuum multiscale modeling to predict fiber-matrix interfacial cracking. From the multiscale model cohesive zone parameters (i.e. maximum traction and energy of separation) were obtained by modeling the interface between the coarse-grained polyimide matrix and graphite based carbon fiber. The cohesive parameters from this simulation were used in a cohesive zone model of the composite microstructure in order to predict the properties of the macroscale composite with respect to changes in temperature ranging from 21 ˚C to 316 ˚C. Good agreement was found between the microscale RUC model and experimental results for stress-strain response, stiffness, and material strength at low and high temperatures. Examination of the deformation of the composite through localized crack initiation at the fiber-matrix interface also agreed with experimental observations of similar phenomena. Overall, the cohesive zone model was shown to be both effective at modeling the composite properties with respect to transverse loading as well as validated the use of cohesive zone parameters obtained from the multiscale simulation.Keywords: cohesive zone model, fiber-matrix interface, microscale damage, multiscale modeling
Procedia PDF Downloads 4881475 An Experimental Investigation on Productivity and Performance of an Improved Design of Basin Type Solar Still
Authors: Mahmoud S. El-Sebaey, Asko Ellman, Ahmed Hegazy, Tarek Ghonim
Abstract:
Due to population growth, the need for drinkable healthy water is highly increased. Consequently, and since the conventional sources of water are limited, researchers devoted their efforts to oceans and seas for obtaining fresh drinkable water by thermal distillation. The current work is dedicated to the design and fabrication of modified solar still model, as well as conventional solar still for the sake of comparison. The modified still is single slope double basin solar still. The still consists of a lower basin with a dimension of 1000 mm x 1000 mm which contains the sea water, as well as the top basin that made with 4 mm acrylic, was temporarily kept on the supporting strips permanently fixed with the side walls. Equally ten spaced vertical glass strips of 50 mm height and 3 mm thickness were provided at the upper basin for the stagnancy of the water. Window glass of 3 mm was used as the transparent cover with 23° inclination at the top of the still. Furthermore, the performance evaluation and comparison of these two models in converting salty seawater into drinkable freshwater are introduced, analyzed and discussed. The experiments were performed during the period from June to July 2018 at seawater depths of 2, 3, 4 and 5 cm. Additionally, the solar still models were operated simultaneously in the same climatic conditions to analyze the influence of the modifications on the freshwater output. It can be concluded that the modified design of double basin single slope solar still shows the maximum freshwater output at all water depths tested. The results showed that the daily productivity for modified and conventional solar still was 2.9 and 1.8 dm³/m² day, indicating an increase of 60% in fresh water production.Keywords: freshwater output, solar still, solar energy, thermal desalination
Procedia PDF Downloads 1351474 Evaluation of Environmental Disclosures on Financial Performance of Quoted Industrial Goods Manufacturing Sectors in Nigeria (2011 – 2020)
Authors: C. C. Chima, C. J. M. Anumaka
Abstract:
This study evaluates environmental disclosures on the financial performance of quoted industrial goods manufacturing sectors in Nigeria. The study employed a quasi-experimental research design to establish the relationship that exists between the environmental disclosure index and financial performance indices (return on assets - ROA, return on equity - ROE, and earnings per share - EPS). A purposeful sampling technique was employed to select five (5) industrial goods manufacturing sectors quoted on the Nigerian Stock Exchange. Secondary data covering 2011 to 2020 financial years were extracted from annual reports of the study sectors using a content analysis method. The data were analyzed using SPSS, Version 23. Panel Ordinary Least Squares (OLS) regression method was employed in estimating the unknown parameters in the study’s regression model after conducting diagnostic and preliminary tests to ascertain that the data set are reliable and not misleading. Empirical results show that there is an insignificant negative relationship between the environmental disclosure index (EDI) and the performance indices (ROA, ROE, and EPS) of the industrial goods manufacturing sectors in Nigeria. The study recommends that: only relevant information which increases the performance indices should appear on the disclosure checklist; environmental disclosure practices should be country-specific; and company executives in Nigeria should increase and monitor the level of investment (resources, time, and energy) in order to ensure that environmental disclosure has a significant impact on financial performance.Keywords: earnings per share, environmental disclosures, return on assets, return on equity
Procedia PDF Downloads 861473 Simulating the Effect of Chlorine on Dynamic of Main Aquatic Species in Urban Lake with a Mini System Dynamic Model
Authors: Zhiqiang Yan, Chen Fan, Beicheng Xia
Abstract:
Urban lakes play an invaluable role in urban water systems such as flood control, landscape, entertainment, and energy utilization, and have suffered from severe eutrophication over the past few years. To investigate the ecological response of main aquatic species and system stability to chlorine interference in shallow urban lakes, a mini system dynamic model, based on the competition and predation of main aquatic species and TP circulation, was developed. The main species of submerged macrophyte, phytoplankton, zooplankton, benthos and TP in water and sediment were simulated as variables in the model with the interference of chlorine which effect function was attenuation equation. The model was validated by the data which was investigated in the Lotus Lake in Guangzhou from October 1, 2015 to January 31, 2016. Furthermore, the eco-exergy was used to analyze the change in complexity of the shallow urban lake. The results showed the correlation coefficient between observed and simulated values of all components presented significant. Chlorine showed a significant inhibitory effect on Microcystis aeruginosa,Rachionus plicatilis, Diaphanosoma brachyurum Liévin and Mesocyclops leuckarti (Claus).The outbreak of Spiroggra spp. inhibited the growth of Vallisneria natans (Lour.) Hara, caused a gradual decrease of eco-exergy, reflecting the breakdown of ecosystem internal equilibria. It was concluded that the study gives important insight into using chlorine to achieve eutrophication control and understand mechanism process.Keywords: system dynamic model, urban lake, chlorine, eco-exergy
Procedia PDF Downloads 2091472 Computational Investigation of V599 Mutations of BRAF Protein and Its Control over the Therapeutic Outcome under the Malignant Condition
Authors: Mayank, Navneet Kaur, Narinder Singh
Abstract:
The V599 mutations in the BRAF protein are extremely oncogenic, responsible for countless of malignant conditions. Along with wild type, V599E, V599D, and V599R are the important mutated variants of the BRAF proteins. The BRAF inhibitory anticancer agents are continuously developing, and sorafenib is a BRAF inhibitor that is under clinical use. The crystal structure of sorafenib bounded to wild type, and V599 is known, showing a similar interaction pattern in both the case. The mutated 599th residue, in both the case, is also found not interacting directly with the co-crystallized sorafenib molecule. However, the IC50 value of sorafenib was found extremely different in both the case, i.e., 22 nmol/L for wild and 38 nmol/L for V599E protein. Molecular docking study and MMGBSA binding energy results also revealed a significant difference in the binding pattern of sorafenib in both the case. Therefore, to explore the role of distinctively situated 599th residue, we have further conducted comprehensive computational studies. The molecular dynamics simulation, residue interaction network (RIN) analysis, and residue correlation study results revealed the importance of the 599th residue on the therapeutic outcome and overall dynamic of the BRAF protein. Therefore, although the position of 599th residue is very much distinctive from the ligand-binding cavity of BRAF, still it has exceptional control over the overall functional outcome of the protein. The insight obtained here may seem extremely important and guide us while designing ideal BRAF inhibitory anticancer molecules.Keywords: BRAF, oncogenic, sorafenib, computational studies
Procedia PDF Downloads 1151471 Limited Component Evaluation of the Effect of Regular Cavities on the Sheet Metal Element of the Steel Plate Shear Wall
Authors: Seyyed Abbas Mojtabavi, Mojtaba Fatzaneh Moghadam, Masoud Mahdavi
Abstract:
Steel Metal Shear Wall is one of the most common and widely used energy dissipation systems in structures, which is used today as a damping system due to the increase in the construction of metal structures. In the present study, the shear wall of the steel plate with dimensions of 5×3 m and thickness of 0.024 m was modeled with 2 floors of total height from the base level with finite element method in Abaqus software. The loading is done as a concentrated load at the upper point of the shear wall on the second floor based on step type buckle. The mesh in the model is applied in two directions of length and width of the shear wall, equal to 0.02 and 0.033, respectively, and the mesh in the models is of sweep type. Finally, it was found that the steel plate shear wall with cavity (CSPSW) compared to the SPSW model, S (Mises), Smax (In-Plane Principal), Smax (In-Plane Principal-ABS), Smax (Min Principal) increased by 53%, 70%, 68% and 43%, respectively. The presence of cavities has led to an increase in the estimated stresses, but their presence has caused critical stresses and critical deformations created to be removed from the inner surface of the shear wall and transferred to the desired sections (regular cavities) which can be suggested as a solution in seismic design and improvement of the structure to transfer possible damage during the earthquake and storm to the desired and pre-designed location in the structure.Keywords: steel plate shear wall, abacus software, finite element method, , boundary element, seismic structural improvement, von misses stress
Procedia PDF Downloads 951470 Evolution of Predator-prey Body-size Ratio: Spatial Dimensions of Foraging Space
Authors: Xin Chen
Abstract:
It has been widely observed that marine food webs have significantly larger predator–prey body-size ratios compared with their terrestrial counterparts. A number of hypotheses have been proposed to account for such difference on the basis of primary productivity, trophic structure, biophysics, bioenergetics, habitat features, energy efficiency, etc. In this study, an alternative explanation is suggested based on the difference in the spatial dimensions of foraging arenas: terrestrial animals primarily forage in two dimensional arenas, while marine animals mostly forage in three dimensional arenas. Using 2-dimensional and 3-dimensional random walk simulations, it is shown that marine predators with 3-dimensional foraging would normally have a greater foraging efficiency than terrestrial predators with 2-dimensional foraging. Marine prey with 3-dimensional dispersion usually has greater swarms or aggregations than terrestrial prey with 2-dimensional dispersion, which again favours a greater predator foraging efficiency in marine animals. As an analytical tool, a Lotka-Volterra based adaptive dynamical model is developed with the predator-prey ratio embedded as an adaptive variable. The model predicts that high predator foraging efficiency and high prey conversion rate will dynamically lead to the evolution of a greater predator-prey ratio. Therefore, marine food webs with 3-dimensional foraging space, which generally have higher predator foraging efficiency, will evolve a greater predator-prey ratio than terrestrial food webs.Keywords: predator-prey, body size, lotka-volterra, random walk, foraging efficiency
Procedia PDF Downloads 771469 Graphene Based Materials as Novel Membranes for Water Desalination and Boron Separation
Authors: Francesca Risplendi, Li-Chiang Lin, Jeffrey C. Grossman, Giancarlo Cicero
Abstract:
Desalination is one of the most employed approaches to supply water in the context of a rapidly growing global water shortage. However, the most popular water filtration method available is the reverse osmosis (RO) technique, still suffers from important drawbacks, such as a large energy demands and high process costs. In addition some serious limitations have been recently discovered, among them, the boron problem seems to have a critical meaning. Boron has been found to have a dual effect on the living systems on Earth and the difference between boron deficiency and boron toxicity levels is quite small. The aim of this project is to develop a new generation of RO membranes based on porous graphene or reduced graphene oxide (rGO) able to remove salts from seawater and to reduce boron concentrations in the permeate to the level that meets the drinking or process water requirements, by means of a theoretical approach based on density functional theory and classical molecular dynamics. Computer simulations have been employed to investigate the relationship between the atomic structure of nanoporous graphene or rGO monolayer and its membrane properties in RO applications (i.e. water permeability and resilience at RO pressures). In addition, an emphasis has been given to multilayer nanoporous rGO and rGO flakes based membranes. By means of non-equilibrium MD simulations, we investigated the water transport mechanism permeating through such multilayer membrane focusing on the effect of slit widths and sheet geometries. These simulations allowed us to establish the implications of these graphene based materials as promising membrane properties for desalination plants and as boron filtration.Keywords: boron filtration, desalination, graphene membrane, reduced graphene oxide membrane
Procedia PDF Downloads 2991468 Development of Electrospun Porous Carbon Fibers from Cellulose/Polyacrylonitrile Blend
Authors: Zubair Khaliq, M. Bilal Qadir, Amir Shahzad, Zulfiqar Ali, Ahsan Nazir, Ali Afzal, Abdul Jabbar
Abstract:
Carbon fibers are one of the most demanding materials on earth due to their potential application in energy, high strength materials, and conductive materials. The nanostructure of carbon fibers offers enhanced properties of conductivity due to the larger surface area. The next generation carbon nanofibers demand the porous structure as it offers more surface area. Multiple techniques are used to produce carbon fibers. However, electrospinning followed by carbonization of the polymeric materials is easy to carry process on a laboratory scale. Also, it offers multiple diversity of changing parameters to acquire the desired properties of carbon fibers. Polyacrylonitrile (PAN) is the most used material for the production of carbon fibers due to its promising processing parameters. Also, cellulose is one of the highest yield producers of carbon fibers. However, the electrospinning of cellulosic materials is difficult due to its rigid chain structure. The combination of PAN and cellulose can offer a suitable solution for the production of carbon fibers. Both materials are miscible in the mixed solvent of N, N, Dimethylacetamide and lithium chloride. This study focuses on the production of porous carbon fibers as a function of PAN/Cellulose blend ratio, solution properties, and electrospinning parameters. These single polymer and blend with different ratios were electrospun to give fine fibers. The higher amount of cellulose offered more difficulty in electrospinning of nanofibers. After carbonization, the carbon fibers were studied in terms of their blend ratio, surface area, and texture. Cellulose contents offered the porous structure of carbon fibers. Also, the presence of LiCl contributed to the porous structure of carbon fibers.Keywords: cellulose, polyacrylonitrile, carbon nanofibers, electrospinning, blend
Procedia PDF Downloads 2041467 Synthesis and Properties of Nanosized Mixed Oxide Systems for Environmental Protection
Authors: I. Yordanova, H. Kolev, S. Todorova, Z. Cherkezova-Zheleva
Abstract:
Catalysis plays a key role in solving many environmental problems by establishing efficient catalytic systems for environmental protection and reducing emissions of greenhouse gases from industry. Volatile organic compounds are major air pollutants. There are several ways to dispose of emissions like - adsorption, condensation, absorption, bio-filtration, thermal, catalytic, plasma and ultraviolet oxidation. The catalytic oxidation has more advantages over other methods. For example - lower energy consumption; the concentration of the organic contaminant may be low or may vary within wide limits. Catalysts for complete oxidation of VOCs can be classified into three categories: noble metal, metal oxides or supported metal oxides and mixture of noble metals and metal oxides. Most of the catalysts for the complete catalytic oxidation are based on Pt, Pd, Rh or a combination thereof. The oxides of the transition metal are one of the alternatives to noble metal catalysts for these reactions. They are less active at low temperatures, but at higher - their activity is similar. The properties of the catalyst depend on the distribution of the active phase, the medium type of the pre-treatment, the interaction between the active phase and the support and the interaction between the active phase and the reaction medium. Supported mono-component Mn and bi-component Mn-Co systems are examined in present study. The samples are prepared using co-precipitation method. SiO2 (Aerosil) is used as a support. The studied samples were precipitated by NH4OH. The synthesized samples were characterized by XRD, XPS, TPR and tested in the catalytic reaction of complete oxidation of n-hexane, propane, methanol, ethanol and propanol.Keywords: catalytic oxidation, Co-Mn oxide, oxidation of hydrocarbons and alcohols, environmental protection
Procedia PDF Downloads 387