Search results for: random routing optimization technique
2187 Design of a Virtual Reality System for Children with Developmental Coordination Disorder
Authors: Ya-Ju Ju, Li-Chen Yang, Yi-Chun Du, Rong-Ju Cherng
Abstract:
Introduction: It is estimated that 5-6% of school-aged children may be diagnosed to have developmental coordination disorder (DCD). Children with DCD are characterized with motor skill difficulty which cannot be explained by any medical or intellectual reasons. Such motor difficulties limit children’s participation to sports activity, further affect their physical fitness, cardiopulmonary function and balance, and may lead to obesity. The purpose of the project was to develop an exergaming system for children with DCD aiming to improve their physical fitness, cardiopulmonary function and balance ability. Methods: This study took five steps to build up the system: system planning, tasks selection, tasks programming, system integration and usability test. The system basically adopted virtual reality technique to integrate self-developed training programs. The training programs were developed to brainstorm among team members and after literature review. The selected tasks for training in the system were a combination of fundamental movement tor skill. Results and Discussion: Based on the theory of motor development, we design the training task from easy ones to hard ones, from single tasks to dual tasks. The tasks included walking, sit to stand, jumping, kicking, weight shifting, side jumping and their combination. Preliminary study showed that the tasks presented an order of development. Further study is needed to examine its effect on motor skill and cardiovascular fitness in children with DCD.Keywords: virtual reality, virtual reality system, developmental coordination disorder, children
Procedia PDF Downloads 1132186 In-Farm Wood Gasification Energy Micro-Generation System in Brazil: A Monte Carlo Viability Simulation
Authors: Erich Gomes Schaitza, Antônio Francisco Savi, Glaucia Aparecida Prates
Abstract:
The penetration of renewable energy into the electricity supply in Brazil is high, one of the highest in the World. Centralized hydroelectric generation is the main source of energy, followed by biomass and wind. Surprisingly, mini and micro-generation are negligible, with less than 2,000 connections to the national grid. In 2015, a new regulatory framework was put in place to change this situation. In the agricultural sector, the framework was complemented by the offer of low interest rate loans to in-farm renewable generation. Brazil proposed to more than double its area of planted forests as part of its INDC- Intended Nationally Determined Contributions to the UNFCCC-U.N. Framework Convention on Climate Change (UNFCCC). This is an ambitious target which will be achieved only if forests are attractive to farmers. Therefore, this paper analyses whether planting forests for in-farm energy generation with a with a woodchip gasifier is economically viable for microgeneration under the new framework and at if they could be an economic driver for forest plantation. At first, a static case was analyzed with data from Eucalyptus plantations in five farms. Then, a broader analysis developed with the use of Monte Carlo technique. Planting short rotation forests to generate energy could be a viable alternative and the low interest loans contribute to that. There are some barriers to such systems such as the inexistence of a mature market for small scale equipment and of a reference network of good practices and examples.Keywords: biomass, distribuited generation, small-scale, Monte Carlo
Procedia PDF Downloads 2852185 Empirical Superpave Mix-Design of Rubber-Modified Hot-Mix Asphalt in Railway Sub-Ballast
Authors: Fernando M. Soto, Gaetano Di Mino
Abstract:
The design of an unmodified bituminous mixture and three rubber-aggregate mixtures containing rubber-aggregate by a dry process (RUMAC) was evaluated, using an empirical-analytical approach based on experimental findings obtained in the laboratory with the volumetric mix design by gyratory compaction. A reference dense-graded bituminous sub-ballast mixture (3% of air voids and a bitumen 4% over the total weight of the mix), and three rubberized mixtures by dry process (1,5 to 3% of rubber by total weight and 5-7% of binder) were used applying the Superpave mix-design for a level 3 (high-traffic) design rail lines. The railway trackbed section analyzed was a granular layer of 19 cm compacted, while for the sub-ballast a thickness of 12 cm has been used. In order to evaluate the effect of increasing the specimen density (as a percent of its theoretical maximum specific gravity), in this article, are illustrated the results obtained after different comparative analysis into the influence of varying the binder-rubber percentages under the sub-ballast layer mix-design. This work demonstrates that rubberized blends containing crumb and ground rubber in bituminous asphalt mixtures behave at least similar or better than conventional asphalt materials. By using the same methodology of volumetric compaction, the densification curves resulting from each mixture have been studied. The purpose is to obtain an optimum empirical parameter multiplier of the number of gyrations necessary to reach the same compaction energy as in conventional mixtures. It has provided some experimental parameters adopting an empirical-analytical method, evaluating the results obtained from the gyratory-compaction of bituminous mixtures with an HMA and rubber-aggregate blends. An extensive integrated research has been carried out to assess the suitability of rubber-modified hot mix asphalt mixtures as a sub-ballast layer in railway underlayment trackbed. Design optimization of the mixture was conducted for each mixture and the volumetric properties analyzed. Also, an improved and complete manufacturing process, compaction and curing of these blends are provided. By adopting this increase-parameters of compaction, called 'beta' factor, mixtures modified with rubber with uniform densification and workability are obtained that in the conventional mixtures. It is found that considering the usual bearing capacity requirements in rail track, the optimal rubber content is 2% (by weight) or 3.95% (by volumetric substitution) and a binder content of 6%.Keywords: empirical approach, rubber-asphalt, sub-ballast, superpave mix-design
Procedia PDF Downloads 3682184 Perceived Effects of Work-Family Balance on Employee’s Job Satisfaction among Extension Agents in Southwest Nigeria
Authors: B. G. Abiona, A. A. Onaseso, T. D. Odetayo, J. Yila, O. E. Fapojuwo, K. G. Adeosun
Abstract:
This study determines the perceived effects of work-family balance on employees’ job satisfaction among Extension Agents in the Agricultural Development Programme (ADP) in southwest Nigeria. A multistage sampling technique was used to select 256 respondents for the study. Data on personal characteristics, work-family balance domain, and job satisfaction were collected. The collected data were analysed using descriptive statistics, Chi-square, Pearson Product Moment Correlation (PPMC), multiple linear regression, and Student T-test. Results revealed that the mean age of the respondents was 40 years; the majority (59.3%) of the respondents were male, and slightly above half (51.6%) of the respondents had MSc as their highest academic qualification. Findings revealed that turnover intention (x ̅ = 3.20) and work-role conflict (x ̅ = 3.06) were the major perceived work-family balance domain in the studied areas. Further, the result showed that the respondents have a high (79%) level of job satisfaction. Multiple linear regression revealed that job involvement (ß=0.167, p<0.01) and work-role conflict (ß= -0.221, p<0.05) contributed significantly to employees’ level of job satisfaction. The results of the Student T-test revealed a significant difference in the perceived work-family balance domain (t = 0.43, p<0.05) between the two studied areas. The study concluded that work-role conflict among employees causes work-family imbalance and, therefore, negatively affects employees’ job satisfaction. The definition of job design among the respondents that will create a balance between work and family is highly recommended.Keywords: work-life, conflict, job satisfaction, extension agent
Procedia PDF Downloads 952183 Bandgap Engineering of CsMAPbI3-xBrx Quantum Dots for Intermediate Band Solar Cell
Authors: Deborah Eric, Abbas Ahmad Khan
Abstract:
Lead halide perovskites quantum dots have attracted immense scientific and technological interest for successful photovoltaic applications because of their remarkable optoelectronic properties. In this paper, we have simulated CsMAPbI3-xBrx based quantum dots to implement their use in intermediate band solar cells (IBSC). These types of materials exhibit optical and electrical properties distinct from their bulk counterparts due to quantum confinement. The conceptual framework provides a route to analyze the electronic properties of quantum dots. This layer of quantum dots optimizes the position and bandwidth of IB that lies in the forbidden region of the conventional bandgap. A three-dimensional MAPbI3 quantum dot (QD) with geometries including spherical, cubic, and conical has been embedded in the CsPbBr3 matrix. Bound energy wavefunction gives rise to miniband, which results in the formation of IB. If there is more than one miniband, then there is a possibility of having more than one IB. The optimization of QD size results in more IBs in the forbidden region. One band time-independent Schrödinger equation using the effective mass approximation with step potential barrier is solved to compute the electronic states. Envelope function approximation with BenDaniel-Duke boundary condition is used in combination with the Schrödinger equation for the calculation of eigen energies and Eigen energies are solved for the quasi-bound states using an eigenvalue study. The transfer matrix method is used to study the quantum tunneling of MAPbI3 QD through neighbor barriers of CsPbI3. Electronic states are computed using Schrödinger equation with effective mass approximation by considering quantum dot and wetting layer assembly. Results have shown the varying the quantum dot size affects the energy pinning of QD. Changes in the ground, first, second state energies have been observed. The QD is non-zero at the center and decays exponentially to zero at boundaries. Quasi-bound states are characterized by envelope functions. It has been observed that conical quantum dots have maximum ground state energy at a small radius. Increasing the wetting layer thickness exhibits energy signatures similar to bulk material for each QD size.Keywords: perovskite, intermediate bandgap, quantum dots, miniband formation
Procedia PDF Downloads 1652182 Comparison of the Factor of Safety and Strength Reduction Factor Values from Slope Stability Analysis of a Large Open Pit
Authors: James Killian, Sarah Cox
Abstract:
The use of stability criteria within geotechnical engineering is the way the results of analyses are conveyed, and sensitivities and risk assessments are performed. Historically, the primary stability criteria for slope design has been the Factor of Safety (FOS) coming from a limit calculation. Increasingly, the value derived from Strength Reduction Factor (SRF) analysis is being used as the criteria for stability analysis. The purpose of this work was to study in detail the relationship between SRF values produced from a numerical modeling technique and the traditional FOS values produced from Limit Equilibrium (LEM) analyses. This study utilized a model of a 3000-foot-high slope with a 45-degree slope angle, assuming a perfectly plastic mohr-coulomb constitutive model with high cohesion and friction angle values typical of a large hard rock mine slope. A number of variables affecting the values of the SRF in a numerical analysis were tested, including zone size, in-situ stress, tensile strength, and dilation angle. This paper demonstrates that in most cases, SRF values are lower than the corresponding LEM FOS values. Modeled zone size has the greatest effect on the estimated SRF value, which can vary as much as 15% to the downside compared to FOS. For consistency when using SRF as a stability criteria, the authors suggest that numerical model zone sizes should not be constructed to be smaller than about 1% of the overall problem slope height and shouldn’t be greater than 2%. Future work could include investigations of the effect of anisotropic strength assumptions or advanced constitutive models.Keywords: FOS, SRF, LEM, comparison
Procedia PDF Downloads 3082181 Antimicrobial Evaluation of Polyphenon 60 and Ciprofloxacin Loaded Nano Emulsion against Uropathogenic Escherichia coli Bacteria and Its in vivo Analysis
Authors: Atinderpal Kaur, Shweta Dang
Abstract:
Our aim is to develop a nanoemulsion-based delivery system containing polyphenon 60 (P60) and ciprofloxacin (Cipro) for intravaginal delivery to treat urinary tract infection. In the present study Polyphenon 60 (P60) and ciprofloxacin (Cipro) were loaded in a single nano emulsion (NE) system via ultra-sonication technique and characterized for particle size, in vitro release and antibacterial efficacy against Bcl-2 level Escherichia coli bacteria. To determine in vivo pharmacokinetic parameters and intravaginal transportation of NE, gamma scintigraphy and biodistribution study was conducted by radiolabelling NE with technetium pertechnetate (99mTc). The preliminary antibacterial investigation showed synergy between these compounds with FICindex of 0.42. The developed formulation showed zeta potential +55.3 and particle size of 151.7 nm, with PDI of 0.196. The in vitro release percentage of P60 at the end of 7th hours was 94.8 ± 0.9 % whereas the release for Cipro was 75.1± 0.15 % in simulated vaginal media. MBC was identified and the findings demonstrated that in both ESBL (Extended Spectrum β- lactamase) and MBL (Metallo β- lactamase) cultures the P60+Cipro NE showed inhibition of growth of all the isolates at 2 mg/ml dilutions. The percentage per gram of radiolabelled drug was found (3.50±0.26) and (3.81±0.30) in kidney and urinary bladder, respectively at 3 h. From the findings, it was concluded that the developed P60+Cipro NE was transported efficiently throughout the target organs, had long duration of action and high biocompatibility via intravaginal administration as compared to oral administration.Keywords: ciprofloxacin, gamma scintigraphy, intravaginal drug delivery, Polyphenon 60
Procedia PDF Downloads 3202180 Assessing the Plant Diversity's Quality, Threats and Opportunities for the Support of Sustainable City Development of the City Raipur, India
Authors: Katharina Lapin, Debashis Sanyal
Abstract:
Worldwide urban areas are growing. Urbanization has a great impact on social and economic development and ecosystem services. This global trend of urbanization also has significant impact on habitat and biodiversity. The impact of urbanization on the biodiversity of cities in Europe and North America is well studied, while there is a lack of data from cities in currently fast growing urban areas. Indian cities are expanding. The scientific community and the governmental authorities are facing the ongoing urbanization process as an opportunity for the environment. This case study supports the evaluation of urban biodiversity of the city Raipur in the North-West of India. The aim of this study is to assess the overview of the environmental and ecological implications of urbanization. The collected data and analysis was used to discuss the challenges for the sustainable city development. Vascular plants were chosen as an appropriate indicator for the assessment of local biodiversity changes. On the one hand, the vegetation cover is sensible to anthropogenic influence, and in the other hand, the local species composition is comparable to changes at the regional and national scale, using the plant index of India. Further information of abiotic situation can be gathered with the determination of indicator species. In order to calculate the influence of urbanization on the native plant diversity, the Shannon diversity index H´ was chosen. The Pielou`s pooled quadrate method was used for estimating diversity when a random sample is not expected. It was used to calculate the Pilou´s index of evenness. The estimated species coverage was used for calculating the H´ and J. Pearson correlation was performed to test the relationship between urbanization pattern and plant diversity. Further, a SWOT analysis was used in for analyzing internal and external factors impinging on a decision making process. The city of Raipur (21.25°N 81.63°E) has a population of 1,010,087 inhabitants living in an urban area of 226km², in the district of the Indian state of Chhattisgarh. Within the last decade, the urban area of Raipur increased. The results show that various novel ecosystems exist in the urban area of Raipur. The high amount of native flora is mainly to find at the shore of urban lakes and along the river Karun. These areas of high Biodiversity Index are to protect as urban biodiversity hot spots. The governmental authorities are well informed about the environmental challenges for the sustainable development of the city. Together with the scientific community of the Technical University of Raipur many engineering solutions are discussed for implementation of the future. The case study helped to point out the importance environmental measures that support the ecosystem services of green infrastructure. The fast process of urbanization is difficult to control. Uncontrolled creation of urban housing leads to difficulties in unsustainable use of natural resources. This is the major threat for the urban biodiversity.Keywords: India, novel ecosystems, plant diversity, urban ecology
Procedia PDF Downloads 2772179 Search of Сompounds with Antimicrobial and Antifungal Activity in the Series of 1-(2-(1H-Tetrazol-5-yl)-R1-phenyl)-3-R2-phenyl(ethyl)ureas
Authors: O. Antypenko, I. Vasilieva, S. Kovalenko
Abstract:
Investigations for new effective and less toxic antimicrobials agents are always up-to-date. The tetrazole derivatives are quite interesting objects as for synthesis as well as for pharmacological screening. Thus, some derivatives of tetrazole demonstrated antimicrobial activity, namely 5-phenyl-tetrazolo[1,5-c]quinazoline was effective one against Staphylococcus aureus and Esherichia faecalis (MIC = 250 mg/L). Besides, investigation of the 9-bromo(chloro)-5-morpholin(piperidine)-4-yl-tetrazolo[1,5-c]quinazoline’s antimicrobial activity against Esherichia coli and Enterococcus faecalis, Pseudomonas aeruginosa and Staphylococcus aureus revealed that sensitivity of Gram-positive bacteria to the compounds was higher than that of Gram-negative bacteria. So, our previously synthesized, 31 derivatives of 1-(2-(1H-tetrazol-5-yl)-R1-phenyl)-3-R2-phenyl(ethyl)ureas were decided to test for their in vitro antibacterial activity against Gram-positive bacteria (Staphylococcus aureus ATCC 25923, Enterobacter aerogenes, Enterococcus faecalis ATCC 29212), Gram-negative bacteria (Pseudomonas aeruginosa ATCC 9027, Escherichia coli ATCC 25922, Klebsiella pneumoniae 68) and antifungal properties against Candida albicans ATCC 885653. Agar-diffusion method was used for determination of the preliminary activity compared to well-known reference antimicrobials. All the compounds were dissolved in DMSO at a concentration of 100 μg/disk, using inhibition zone diameter (IZD, mm) as a measure for the antimicrobial activity. The most active turned to be 3 structures, that inhibited several bacterial strains: 1-ethyl-3-(5-fluoro-2-(1H-tetrazol-5-yl)phenyl)urea (1), 1-(4-bromo-2-(1H-tetrazol-5-yl)-phenyl)-3-(4-(trifluoromethyl)phenyl)urea (2) and 1-(4-chloro-2-(1H-tetrazol-5-yl)phenyl)-3-(3-(trifluoromethyl)phenyl)urea (3). IZM (mm) was 40 (Escherichia coli), 25 (Klebsiella pneumonia) for compound 1; 12 (Pseudomonas aeruginosa), 15 (Staphylococcus aureus), 10 (Enterococcus faecalis) for compound 2; 25 (Staphylococcus aureus), 15 (Enterococcus faecalis) for compound 3. The most sensitive to the activity of the substances were Gram-negative bacteria Pseudomonas aeruginosa. While none of compound effected on Candida albicans. Speaking about, reference drugs: Amikacin (30 µg/disk) showed 27 and Ceftazide (30 µg/disk) 25 against Pseudomonas aeruginosa. That is, unfortunately, higher than studied 1-(2-(1H-tetrazol-5-yl)-R1-phenyl)-3-R2-phenyl(ethyl)ureas. Obtained results will be used for further purposeful optimization of the leading compounds in the more effective antimicrobials because of the ever-mounting problem of microorganism’s resistance.Keywords: antimicrobial, antifungal, compounds, 1-(2-(1H-tetrazol-5-yl)-R1-phenyl)-3-R2-phenyl(ethyl)ureas
Procedia PDF Downloads 3602178 Standardizing and Achieving Protocol Objectives for ChestWall Radiotherapy Treatment Planning Process using an O-ring Linac in High-, Low- and Middle-income Countries
Authors: Milton Ixquiac, Erick Montenegro, Francisco Reynoso, Matthew Schmidt, Thomas Mazur, Tianyu Zhao, Hiram Gay, Geoffrey Hugo, Lauren Henke, Jeff Michael Michalski, Angel Velarde, Vicky de Falla, Franky Reyes, Osmar Hernandez, Edgar Aparicio Ruiz, Baozhou Sun
Abstract:
Purpose: Radiotherapy departments in low- and middle-income countries (LMICs) like Guatemala have recently introduced intensity-modulated radiotherapy (IMRT). IMRT has become the standard of care in high-income countries (HIC) due to reduced toxicity and improved outcomes in some cancers. The purpose of this work is to show the agreement between the dosimetric results shown in the Dose Volume Histograms (DVH) to the objectives proposed in the adopted protocol. This is the initial experience with an O-ring Linac. Methods and Materials: An O-Linac Linac was installed at our clinic in Guatemala in 2019 and has been used to treat approximately 90 patients daily with IMRT. This Linac is a completely Image Guided Device since to deliver each radiotherapy session must take a Mega Voltage Cone Beam Computerized Tomography (MVCBCT). In each MVCBCT, the Linac deliver 9 UM, and they are taken into account while performing the planning. To start the standardization, the TG263 was employed in the nomenclature and adopted a hypofractionated protocol to treat ChestWall, including supraclavicular nodes achieving 40.05Gy in 15 fractions. The planning was developed using 4 semiarcs from 179-305 degrees. The planner must create optimization volumes for targets and Organs at Risk (OARs); the difficulty for the planner was the dose base due to the MVCBCT. To evaluate the planning modality, we used 30 chestwall cases. Results: The plans created manually achieve the protocol objectives. The protocol objectives are the same as the RTOG1005, and the DHV curves look clinically acceptable. Conclusions: Despite the O-ring Linac doesn´t have the capacity to obtain kv images, the cone beam CT was created using MV energy, the dose delivered by the daily image setup process still without affect the dosimetric quality of the plans, and the dose distribution is acceptable achieving the protocol objectives.Keywords: hypofrationation, VMAT, chestwall, radiotherapy planning
Procedia PDF Downloads 1182177 Simulation of the Collimator Plug Design for Prompt-Gamma Activation Analysis in the IEA-R1 Nuclear Reactor
Authors: Carlos G. Santos, Frederico A. Genezini, A. P. Dos Santos, H. Yorivaz, P. T. D. Siqueira
Abstract:
The Prompt-Gamma Activation Analysis (PGAA) is a valuable technique for investigating the elemental composition of various samples. However, the installation of a PGAA system entails specific conditions such as filtering the neutron beam according to the target and providing adequate shielding for both users and detectors. These requirements incur substantial costs, exceeding $100,000, including manpower. Nevertheless, a cost-effective approach involves leveraging an existing neutron beam facility to create a hybrid system integrating PGAA and Neutron Tomography (NT). The IEA-R1 nuclear reactor at IPEN/USP possesses an NT facility with suitable conditions for adapting and implementing a PGAA device. The NT facility offers a thermal flux slightly colder and provides shielding for user protection. The key additional requirement involves designing detector shielding to mitigate high gamma ray background and safeguard the HPGe detector from neutron-induced damage. This study employs Monte Carlo simulations with the MCNP6 code to optimize the collimator plug for PGAA within the IEA-R1 NT facility. Three collimator models are proposed and simulated to assess their effectiveness in shielding gamma and neutron radiation from nucleon fission. The aim is to achieve a focused prompt-gamma signal while shielding ambient gamma radiation. The simulation results indicate that one of the proposed designs is particularly suitable for the PGAA-NT hybrid system.Keywords: MCNP6.1, neutron, prompt-gamma ray, prompt-gamma activation analysis
Procedia PDF Downloads 752176 Evaluation of Academic Research Projects Using the AHP and TOPSIS Methods
Authors: Murat Arıbaş, Uğur Özcan
Abstract:
Due to the increasing number of universities and academics, the fund of the universities for research activities and grants/supports given by government institutions have increased number and quality of academic research projects. Although every academic research project has a specific purpose and importance, limited resources (money, time, manpower etc.) require choosing the best ones from all (Amiri, 2010). It is a pretty hard process to compare and determine which project is better such that the projects serve different purposes. In addition, the evaluation process has become complicated since there are more than one evaluator and multiple criteria for the evaluation (Dodangeh, Mojahed and Yusuff, 2009). Mehrez and Sinuany-Stern (1983) determined project selection problem as a Multi Criteria Decision Making (MCDM) problem. If a decision problem involves multiple criteria and objectives, it is called as a Multi Attribute Decision Making problem (Ömürbek & Kınay, 2013). There are many MCDM methods in the literature for the solution of such problems. These methods are AHP (Analytic Hierarchy Process), ANP (Analytic Network Process), TOPSIS (Technique for Order Preference by Similarity to Ideal Solution), PROMETHEE (Preference Ranking Organization Method for Enrichment Evaluation), UTADIS (Utilities Additives Discriminantes), ELECTRE (Elimination et Choix Traduisant la Realite), MAUT (Multiattribute Utility Theory), GRA (Grey Relational Analysis) etc. Teach method has some advantages compared with others (Ömürbek, Blacksmith & Akalın, 2013). Hence, to decide which MCDM method will be used for solution of the problem, factors like the nature of the problem, types of choices, measurement scales, type of uncertainty, dependency among the attributes, expectations of decision maker, and quantity and quality of the data should be considered (Tavana & Hatami-Marbini, 2011). By this study, it is aimed to develop a systematic decision process for the grant support applications that are expected to be evaluated according to their scientific adequacy by multiple evaluators under certain criteria. In this context, project evaluation process applied by The Scientific and Technological Research Council of Turkey (TÜBİTAK) the leading institutions in our country, was investigated. Firstly in the study, criteria that will be used on the project evaluation were decided. The main criteria were selected among TÜBİTAK evaluation criteria. These criteria were originality of project, methodology, project management/team and research opportunities and extensive impact of project. Moreover, for each main criteria, 2-4 sub criteria were defined, hence it was decided to evaluate projects over 13 sub-criterion in total. Due to superiority of determination criteria weights AHP method and provided opportunity ranking great number of alternatives TOPSIS method, they are used together. AHP method, developed by Saaty (1977), is based on selection by pairwise comparisons. Because of its simple structure and being easy to understand, AHP is the very popular method in the literature for determining criteria weights in MCDM problems. Besides, the TOPSIS method developed by Hwang and Yoon (1981) as a MCDM technique is an alternative to ELECTRE method and it is used in many areas. In the method, distance from each decision point to ideal and to negative ideal solution point was calculated by using Euclidian Distance Approach. In the study, main criteria and sub-criteria were compared on their own merits by using questionnaires that were developed based on an importance scale by four relative groups of people (i.e. TUBITAK specialists, TUBITAK managers, academics and individuals from business world ) After these pairwise comparisons, weight of the each main criteria and sub-criteria were calculated by using AHP method. Then these calculated criteria’ weights used as an input in TOPSİS method, a sample consisting 200 projects were ranked on their own merits. This new system supported to opportunity to get views of the people that take part of project process including preparation, evaluation and implementation on the evaluation of academic research projects. Moreover, instead of using four main criteria in equal weight to evaluate projects, by using weighted 13 sub-criteria and decision point’s distance from the ideal solution, systematic decision making process was developed. By this evaluation process, new approach was created to determine importance of academic research projects.Keywords: Academic projects, Ahp method, Research projects evaluation, Topsis method.
Procedia PDF Downloads 5902175 Automatic Classification of Lung Diseases from CT Images
Authors: Abobaker Mohammed Qasem Farhan, Shangming Yang, Mohammed Al-Nehari
Abstract:
Pneumonia is a kind of lung disease that creates congestion in the chest. Such pneumonic conditions lead to loss of life of the severity of high congestion. Pneumonic lung disease is caused by viral pneumonia, bacterial pneumonia, or Covidi-19 induced pneumonia. The early prediction and classification of such lung diseases help to reduce the mortality rate. We propose the automatic Computer-Aided Diagnosis (CAD) system in this paper using the deep learning approach. The proposed CAD system takes input from raw computerized tomography (CT) scans of the patient's chest and automatically predicts disease classification. We designed the Hybrid Deep Learning Algorithm (HDLA) to improve accuracy and reduce processing requirements. The raw CT scans have pre-processed first to enhance their quality for further analysis. We then applied a hybrid model that consists of automatic feature extraction and classification. We propose the robust 2D Convolutional Neural Network (CNN) model to extract the automatic features from the pre-processed CT image. This CNN model assures feature learning with extremely effective 1D feature extraction for each input CT image. The outcome of the 2D CNN model is then normalized using the Min-Max technique. The second step of the proposed hybrid model is related to training and classification using different classifiers. The simulation outcomes using the publically available dataset prove the robustness and efficiency of the proposed model compared to state-of-art algorithms.Keywords: CT scan, Covid-19, deep learning, image processing, lung disease classification
Procedia PDF Downloads 1552174 Numerical Investigation of Pressure Drop and Erosion Wear by Computational Fluid Dynamics Simulation
Authors: Praveen Kumar, Nitin Kumar, Hemant Kumar
Abstract:
The modernization of computer technology and commercial computational fluid dynamic (CFD) simulation has given better detailed results as compared to experimental investigation techniques. CFD techniques are widely used in different field due to its flexibility and performance. Evaluation of pipeline erosion is complex phenomenon to solve by numerical arithmetic technique, whereas CFD simulation is an easy tool to resolve that type of problem. Erosion wear behaviour due to solid–liquid mixture in the slurry pipeline has been investigated using commercial CFD code in FLUENT. Multi-phase Euler-Lagrange model was adopted to predict the solid particle erosion wear in 22.5° pipe bend for the flow of bottom ash-water suspension. The present study addresses erosion prediction in three dimensional 22.5° pipe bend for two-phase (solid and liquid) flow using finite volume method with standard k-ε turbulence, discrete phase model and evaluation of erosion wear rate with varying velocity 2-4 m/s. The result shows that velocity of solid-liquid mixture found to be highly dominating parameter as compared to solid concentration, density, and particle size. At low velocity, settling takes place in the pipe bend due to low inertia and gravitational effect on solid particulate which leads to high erosion at bottom side of pipeline.Keywords: computational fluid dynamics (CFD), erosion, slurry transportation, k-ε Model
Procedia PDF Downloads 4082173 Computational Fluid Dynamics (CFD) Simulation Approach for Developing New Powder Dispensing Device
Authors: Revanth Rallapalli
Abstract:
Manually dispensing solids and powders can be difficult as it requires gradually pour and check the amount on the scale to be dispensed. Current systems are manual and non-continuous in nature and are user-dependent and difficult to control powder dispensation. Recurrent dosing of powdered medicines in precise amounts quickly and accurately has been an all-time challenge. Various new powder dispensing mechanisms are being designed to overcome these challenges. A battery-operated screw conveyor mechanism is being innovated to overcome the above problems faced. These inventions are numerically evaluated at the concept development level by employing Computational Fluid Dynamics (CFD) of gas-solids multiphase flow systems. CFD has been very helpful in development of such devices saving time and money by reducing the number of prototypes and testing. Furthermore, this paper describes a simulation of powder dispensation from the trocar’s end by considering the powder as secondary flow in air, is simulated by using the technique called Dense Discrete Phase Model incorporated with Kinetic Theory of Granular Flow (DDPM-KTGF). By considering the volume fraction of powder as 50%, the transportation of powder from the inlet side to trocar’s end side is done by rotation of the screw conveyor. Thus, the performance is calculated for a 1-sec time frame in an unsteady computation manner. This methodology will help designers in developing design concepts to improve the dispensation and also at the effective area within a quick turnaround time frame.Keywords: DDPM-KTGF, gas-solids multiphase flow, screw conveyor, Unsteady
Procedia PDF Downloads 1802172 Investigating Spatial Disparities in Health Status and Access to Health-Related Interventions among Tribals in Jharkhand
Authors: Parul Suraia, Harshit Sosan Lakra
Abstract:
Indigenous communities represent some of the most marginalized populations globally, with India labeled as tribals, experiencing particularly pronounced marginalization and a concerning decline in their numbers. These communities often inhabit geographically challenging regions characterized by low population densities, posing significant challenges to providing essential infrastructure services. Jharkhand, a Schedule 5 state, is infamous for its low-level health status due to disparities in access to health care. The primary objective of this study is to investigate the spatial inequalities in healthcare accessibility among tribal populations within the state and pinpoint critical areas requiring immediate attention. Health indicators were selected based on the tribal perspective and association of Sustainable Goal 3 (Good Health and Wellbeing) with other SDGs. Focused group discussions in which tribal people and tribal experts were done in order to finalize the indicators. Employing Principal Component Analysis, two essential indices were constructed: the Tribal Health Index (THI) and the Tribal Health Intervention Index (THII). Index values were calculated based on the district-wise secondary data for Jharkhand. The bivariate spatial association technique, Moran’s I was used to assess the spatial pattern of the variables to determine if there is any clustering (positive spatial autocorrelation) or dispersion (negative spatial autocorrelation) of values across Jharkhand. The results helped in facilitating targeting policy interventions in deprived areas of Jharkhand.Keywords: tribal health, health spatial disparities, health status, Jharkhand
Procedia PDF Downloads 962171 Automated Video Surveillance System for Detection of Suspicious Activities during Academic Offline Examination
Authors: G. Sandhya Devi, G. Suvarna Kumar, S. Chandini
Abstract:
This research work aims to develop a system that will analyze and identify students who indulge in malpractices/suspicious activities during the course of an academic offline examination. Automated Video Surveillance provides an optimal solution which helps in monitoring the students and identifying the malpractice event immediately. This work is organized into three modules. The first module deals with performing an impersonation check using a PCA-based face recognition method which is done by cross checking his profile with the database. The presence or absence of the student is even determined in this module by implementing an image registration technique wherein a grid is formed by considering all the images registered using the frontal camera at the determined positions. Second, detecting such facial malpractices in which a student gets involved in conversation with another, trying to obtain unauthorized information etc., based on the threshold range evaluated by considering his/her mouth state whether open or closed. The third module deals with identification of unauthorized material or gadgets used in the examination hall by training the positive samples of the object through various stages. Here, a top view camera feed is analyzed to detect the suspicious activities. The system automatically alerts the administration when any suspicious activities are identified, thereby reducing the error rate caused due to manual monitoring. This work is an improvement over our previous work published in identifying suspicious activities done by examinees in an offline examination.Keywords: impersonation, image registration, incrimination, object detection, threshold evaluation
Procedia PDF Downloads 2302170 Deployment of Beyond 4G Wireless Communication Networks with Carrier Aggregation
Authors: Bahram Khan, Anderson Rocha Ramos, Rui R. Paulo, Fernando J. Velez
Abstract:
With the growing demand for a new blend of applications, the users dependency on the internet is increasing day by day. Mobile internet users are giving more attention to their own experiences, especially in terms of communication reliability, high data rates and service stability on move. This increase in the demand is causing saturation of existing radio frequency bands. To address these challenges, researchers are investigating the best approaches, Carrier Aggregation (CA) is one of the newest innovations, which seems to fulfill the demands of the future spectrum, also CA is one the most important feature for Long Term Evolution - Advanced (LTE-Advanced). For this purpose to get the upcoming International Mobile Telecommunication Advanced (IMT-Advanced) mobile requirements (1 Gb/s peak data rate), the CA scheme is presented by 3GPP, which would sustain a high data rate using widespread frequency bandwidth up to 100 MHz. Technical issues such as aggregation structure, its implementations, deployment scenarios, control signal techniques, and challenges for CA technique in LTE-Advanced, with consideration of backward compatibility, are highlighted in this paper. Also, performance evaluation in macro-cellular scenarios through a simulation approach is presented, which shows the benefits of applying CA, low-complexity multi-band schedulers in service quality, system capacity enhancement and concluded that enhanced multi-band scheduler is less complex than the general multi-band scheduler, which performs better for a cell radius longer than 1800 m (and a PLR threshold of 2%).Keywords: component carrier, carrier aggregation, LTE-advanced, scheduling
Procedia PDF Downloads 1992169 Spark Plasma Sintering/Synthesis of Alumina-Graphene Composites
Authors: Nikoloz Jalabadze, Roin Chedia, Lili Nadaraia, Levan Khundadze
Abstract:
Nanocrystalline materials in powder condition can be manufactured by a number of different methods, however manufacture of composite materials product in the same nanocrystalline state is still a problem because the processes of compaction and synthesis of nanocrystalline powders go with intensive growth of particles – the process which promotes formation of pieces in an ordinary crystalline state instead of being crystallized in the desirable nanocrystalline state. To date spark plasma sintering (SPS) has been considered as the most promising and energy efficient method for producing dense bodies of composite materials. An advantage of the SPS method in comparison with other methods is mainly low temperature and short time of the sintering procedure. That finally gives an opportunity to obtain dense material with nanocrystalline structure. Graphene has recently garnered significant interest as a reinforcing phase in composite materials because of its excellent electrical, thermal and mechanical properties. Graphene nanoplatelets (GNPs) in particular have attracted much interest as reinforcements for ceramic matrix composites (mostly in Al2O3, Si3N4, TiO2, ZrB2 a. c.). SPS has been shown to fully densify a variety of ceramic systems effectively including Al2O3 and often with improvements in mechanical and functional behavior. Alumina consolidated by SPS has been shown to have superior hardness, fracture toughness, plasticity and optical translucency compared to conventionally processed alumina. Knowledge of how GNPs influence sintering behavior is important to effectively process and manufacture process. In this study, the effects of GNPs on the SPS processing of Al2O3 are investigated by systematically varying sintering temperature, holding time and pressure. Our experiments showed that SPS process is also appropriate for the synthesis of nanocrystalline powders of alumina-graphene composites. Depending on the size of the molds, it is possible to obtain different amount of nanopowders. Investigation of the structure, physical-chemical, mechanical and performance properties of the elaborated composite materials was performed. The results of this study provide a fundamental understanding of the effects of GNP on sintering behavior, thereby providing a foundation for future optimization of the processing of these promising nanocomposite systems.Keywords: alumina oxide, ceramic matrix composites, graphene nanoplatelets, spark-plasma sintering
Procedia PDF Downloads 3762168 Localization of Frontal and Temporal Speech Areas in Brain Tumor Patients by Their Structural Connections with Probabilistic Tractography
Authors: B.Shukir, H.Woo, P.Barzo, D.Kis
Abstract:
Preoperative brain mapping in tumors involving the speech areas has an important role to reduce surgical risks. Functional magnetic resonance imaging (fMRI) is the gold standard method to localize cortical speech areas preoperatively, but its availability in clinical routine is difficult. Diffusion MRI based probabilistic tractography is available in head MRI. It’s used to segment cortical subregions by their structural connectivity. In our study, we used probabilistic tractography to localize the frontal and temporal cortical speech areas. 15 patients with left frontal tumor were enrolled to our study. Speech fMRI and diffusion MRI acquired preoperatively. The standard automated anatomical labelling atlas 3 (AAL3) cortical atlas used to define 76 left frontal and 118 left temporal potential speech areas. 4 types of tractography were run according to the structural connection of these regions to the left arcuate fascicle (FA) to localize those cortical areas which have speech functions: 1, frontal through FA; 2, frontal with FA; 3, temporal to FA; 4, temporal with FA connections were determined. Thresholds of 1%, 5%, 10% and 15% applied. At each level, the number of affected frontal and temporal regions by fMRI and tractography were defined, the sensitivity and specificity were calculated. At the level of 1% threshold showed the best results. Sensitivity was 61,631,4% and 67,1523,12%, specificity was 87,210,4% and 75,611,37% for frontal and temporal regions, respectively. From our study, we conclude that probabilistic tractography is a reliable preoperative technique to localize cortical speech areas. However, its results are not feasible that the neurosurgeon rely on during the operation.Keywords: brain mapping, brain tumor, fMRI, probabilistic tractography
Procedia PDF Downloads 1662167 Network Based Speed Synchronization Control for Multi-Motor via Consensus Theory
Authors: Liqin Zhang, Liang Yan
Abstract:
This paper addresses the speed synchronization control problem for a network-based multi-motor system from the perspective of cluster consensus theory. Each motor is considered as a single agent connected through fixed and undirected network. This paper presents an improved control protocol from three aspects. First, for the purpose of improving both tracking and synchronization performance, this paper presents a distributed leader-following method. The improved control protocol takes the importance of each motor’s speed into consideration, and all motors are divided into different groups according to speed weights. Specifically, by using control parameters optimization, the synchronization error and tracking error can be regulated and decoupled to some extent. The simulation results demonstrate the effectiveness and superiority of the proposed strategy. In practical engineering, the simplified models are unrealistic, such as single-integrator and double-integrator. And previous algorithms require the acceleration information of the leader available to all followers if the leader has a varying velocity, which is also difficult to realize. Therefore, the method focuses on an observer-based variable structure algorithm for consensus tracking, which gets rid of the leader acceleration. The presented scheme optimizes synchronization performance, as well as provides satisfactory robustness. What’s more, the existing algorithms can obtain a stable synchronous system; however, the obtained stable system may encounter some disturbances that may destroy the synchronization. Focus on this challenging technological problem, a state-dependent-switching approach is introduced. In the presence of unmeasured angular speed and unknown failures, this paper investigates a distributed fault-tolerant consensus tracking algorithm for a group non-identical motors. The failures are modeled by nonlinear functions, and the sliding mode observer is designed to estimate the angular speed and nonlinear failures. The convergence and stability of the given multi-motor system are proved. Simulation results have shown that all followers asymptotically converge to a consistent state when one follower fails to follow the virtual leader during a large enough disturbance, which illustrates the good performance of synchronization control accuracy.Keywords: consensus control, distributed follow, fault-tolerant control, multi-motor system, speed synchronization
Procedia PDF Downloads 1252166 The Relationship between Operating Condition and Sludge Wasting of an Aerobic Suspension-Sequencing Batch Reactor (ASSBR) Treating Phenolic Wastewater
Authors: Ali Alattabi, Clare Harris, Rafid Alkhaddar, Ali Alzeyadi
Abstract:
Petroleum refinery wastewater (PRW) can be considered as one of the most significant source of aquatic environmental pollution. It consists of oil and grease along with many other toxic organic pollutants. In recent years, a new technique was implemented using different types of membranes and sequencing batch reactors (SBRs) to treat PRW. SBR is a fill and draw type sludge system which operates in time instead of space. Many researchers have optimised SBRs’ operating conditions to obtain maximum removal of undesired wastewater pollutants. It has gained more importance mainly because of its essential flexibility in cycle time. It can handle shock loads, requires less area for operation and easy to operate. However, bulking sludge or discharging floating or settled sludge during the draw or decant phase with some SBR configurations are still one of the problems of SBR system. The main aim of this study is to develop and innovative design for the SBR optimising the process variables to result is a more robust and efficient process. Several experimental tests will be developed to determine the removal percentages of chemical oxygen demand (COD), Phenol and nitrogen compounds from synthetic PRW. Furthermore, the dissolved oxygen (DO), pH and oxidation-reduction potential (ORP) of the SBR system will be monitored online to ensure a good environment for the microorganisms to biodegrade the organic matter effectively.Keywords: petroleum refinery wastewater, sequencing batch reactor, hydraulic retention time, Phenol, COD, mixed liquor suspended solids (MLSS)
Procedia PDF Downloads 2602165 Cooperative Learning Promotes Successful Learning. A Qualitative Study to Analyze Factors that Promote Interaction and Cooperation among Students in Blended Learning Environments
Authors: Pia Kastl
Abstract:
Potentials of blended learning are the flexibility of learning and the possibility to get in touch with lecturers and fellow students on site. By combining face-to-face sessions with digital self-learning units, the learning process can be optimized, and learning success increased. To examine wether blended learning outperforms online and face-to-face teaching, a theory-based questionnaire survey was conducted. The results show that the interaction and cooperation among students is poorly provided in blended learning, and face-to-face teaching performs better in this respect. The aim of this article is to identify concrete suggestions students have for improving cooperation and interaction in blended learning courses. For this purpose, interviews were conducted with students from various academic disciplines in face-to-face, online, or blended learning courses (N= 60). The questions referred to opinions and suggestions for improvement regarding the course design of the respective learning environment. The analysis was carried out by qualitative content analysis. The results show that students perceive the interaction as beneficial to their learning. They verbalize their knowledge and are exposed to different perspectives. In addition, emotional support is particularly important in exam phases. Interaction and cooperation were primarily enabled in the face-to-face component of the courses studied, while there was very limited contact with fellow students in the asynchronous component. Forums offered were hardly used or not used at all because the barrier to asking a question publicly is too high, and students prefer private channels for communication. This is accompanied by the disadvantage that the interaction occurs only among people who already know each other. Creating contacts is not fostered in the blended learning courses. Students consider optimization possibilities as a task of the lecturers in the face-to-face sessions: Here, interaction and cooperation should be encouraged through get-to-know-you rounds or group work. It is important here to group the participants randomly to establish contact with new people. In addition, sufficient time for interaction is desired in the lecture, e.g., in the context of discussions or partner work. In the digital component, students prefer synchronous exchange at a fixed time, for example, in breakout rooms or an MS Teams channel. The results provide an overview of how interaction and cooperation can be implemented in blended learning courses. Positive design possibilities are partly dependent on subject area and course. Future studies could tie in here with a course-specific analysis.Keywords: blended learning, higher education, hybrid teaching, qualitative research, student learning
Procedia PDF Downloads 702164 Financial Capacity, Governance, and Corporate Engagement in Environmental Protection
Authors: Lubica Hikkerova, Jean-Michel Sahut
Abstract:
Environmental protection remains a global challenge but, since 2012, there has been a progressive decline in corporate engagement in environmental protection issues. This study seeks to investigate the role of financial capacity and governance in improving the level of environmental engagement of companies. The regression technique is applied to data on 351 large European companies from the ASSET4-ESG database for the 2007-2015 period. Firstly, the results show that the companies in the sample are fairly engaged in environmental protection, with a strong dispersion representing nearly four times the average. This means that the companies in the sample do not share the same level of engagement in matters of environmental protection, some being more committed than others. Secondly, the results reveal that the financial capacity of the company, as assessed through its indicators, has a significant effect on its level of environmental protection engagement in the present sample. This effect is more positive the higher the profits the company makes, and more negative the more heavily indebted or, the higher the rates of dividends it pays per share. Lastly, the results also show that a better quality of governance plays an important role in the decision to undertake actions leading to environmental protection. More specifically, the degree of management implication in the running of the business, the respect of the rights of the shareholders, the effectiveness of the control exerted by the board of directors, and, to a lesser extent, the independence of the audit committee, are variables which have a positive and significant influence on the level of environmental engagement of companies.Keywords: financial capacity, corporate governance, environmental engagement, stakeholder theory, theory of organizational legitimacy, theory of resources and capabilities
Procedia PDF Downloads 1882163 A Case Study on the Condition Monitoring of a Critical Machine in a Tyre Manufacturing Plant
Authors: Ramachandra C. G., Amarnath. M., Prashanth Pai M., Nagesh S. N.
Abstract:
The machine's performance level drops down over a period of time due to the wear and tear of its components. The early detection of an emergent fault becomes very vital in order to obtain uninterrupted production in a plant. Maintenance is an activity that helps to keep the machine's performance at an anticipated level, thereby ensuring the availability of the machine to perform its intended function. At present, a number of modern maintenance techniques are available, such as preventive maintenance, predictive maintenance, condition-based maintenance, total productive maintenance, etc. Condition-based maintenance or condition monitoring is one such modern maintenance technique in which the machine's condition or health is checked by the measurement of certain parameters such as sound level, temperature, velocity, displacement, vibration, etc. It can recognize most of the factors restraining the usefulness and efficacy of the total manufacturing unit. This research work is conducted on a Batch Mill in a tire production unit located in the Southern Karnataka region. The health of the mill is assessed using amplitude of vibration as a parameter of measurement. Most commonly, the vibration level is assessed using various points on the machine bearing. The normal or standard level is fixed using reference materials such as manuals or catalogs supplied by the manufacturers and also by referring vibration standards. The Rio-Vibro meter is placed in different locations on the batch-off mill to record the vibration data. The data collected are analyzed to identify the malfunctioning components in the batch off the mill, and corrective measures are suggested.Keywords: availability, displacement, vibration, rio-vibro, condition monitoring
Procedia PDF Downloads 912162 Effect of Cellular Water Transport on Deformation of Food Material during Drying
Authors: M. Imran Hossen Khan, M. Mahiuddin, M. A. Karim
Abstract:
Drying is a food processing technique where simultaneous heat and mass transfer take place from surface to the center of the sample. Deformation of food materials during drying is a common physical phenomenon which affects the textural quality and taste of the dried product. Most of the plant-based food materials are porous and hygroscopic in nature that contains about 80-90% water in different cellular environments: intercellular environment and intracellular environment. Transport of this cellular water has a significant effect on material deformation during drying. However, understanding of the scale of deformation is very complex due to diverse nature and structural heterogeneity of food material. Knowledge about the effect of transport of cellular water on deformation of material during drying is crucial for increasing the energy efficiency and obtaining better quality dried foods. Therefore, the primary aim of this work is to investigate the effect of intracellular water transport on material deformation during drying. In this study, apple tissue was taken for the investigation. The experiment was carried out using 1H-NMR T2 relaxometry with a conventional dryer. The experimental results are consistent with the understanding that transport of intracellular water causes cellular shrinkage associated with the anisotropic deformation of whole apple tissue. Interestingly, it is found that the deformation of apple tissue takes place at different stages of drying rather than deforming at one time. Moreover, it is found that the penetration rate of heat energy together with the pressure gradient between intracellular and intercellular environments is the responsible force to rupture the cell membrane.Keywords: heat and mass transfer, food material, intracellular water, cell rupture, deformation
Procedia PDF Downloads 2212161 A Business-to-Business Collaboration System That Promotes Data Utilization While Encrypting Information on the Blockchain
Authors: Hiroaki Nasu, Ryota Miyamoto, Yuta Kodera, Yasuyuki Nogami
Abstract:
To promote Industry 4.0 and Society 5.0 and so on, it is important to connect and share data so that every member can trust it. Blockchain (BC) technology is currently attracting attention as the most advanced tool and has been used in the financial field and so on. However, the data collaboration using BC has not progressed sufficiently among companies on the supply chain of manufacturing industry that handle sensitive data such as product quality, manufacturing conditions, etc. There are two main reasons why data utilization is not sufficiently advanced in the industrial supply chain. The first reason is that manufacturing information is top secret and a source for companies to generate profits. It is difficult to disclose data even between companies with transactions in the supply chain. In the blockchain mechanism such as Bitcoin using PKI (Public Key Infrastructure), in order to confirm the identity of the company that has sent the data, the plaintext must be shared between the companies. Another reason is that the merits (scenarios) of collaboration data between companies are not specifically specified in the industrial supply chain. For these problems this paper proposes a Business to Business (B2B) collaboration system using homomorphic encryption and BC technique. Using the proposed system, each company on the supply chain can exchange confidential information on encrypted data and utilize the data for their own business. In addition, this paper considers a scenario focusing on quality data, which was difficult to collaborate because it is a top secret. In this scenario, we show a implementation scheme and a benefit of concrete data collaboration by proposing a comparison protocol that can grasp the change in quality while hiding the numerical value of quality data.Keywords: business to business data collaboration, industrial supply chain, blockchain, homomorphic encryption
Procedia PDF Downloads 1362160 Analysis of Productivity and Poverty Status among Users of Improved Sorghum Varieties in Kano State, Nigeria
Authors: Temitope Adefunsho Olatoye, Julius Olabode Elega
Abstract:
Raising agricultural productivity is an important policy goal for governments and development agencies, and this is central to growth, income distribution, improved food security, and poverty alleviation among practitioners. This study analyzed the productivity and poverty status among users of improved sorghum varieties in Kano State, Nigeria. A multistage sampling technique was adopted in the selection of 131 sorghum farmers who were users of improved sorghum varieties. Data collected were analyzed using both descriptive (frequency distribution and percentage) and inferential (productivity index and FGT model) statistics. The result of the socioeconomic characteristics of the sorghum farmers showed a mean age of 40 years, with about 93.13% of the sorghum farmers being male. Also, as indicated by the result, the majority (82.44%) of the farmers were married, with most of them having qur’anic education with a mean farm size of 3.6 ha, as reported in the study area. Furthermore, the result showed that the mean farming experience of the sorghum farmers in the study area was 19 years, with an average monthly income of about ₦48,794, as reported in the study area. The result of the productivity index showed a ratio of 192,977kg/ha, while the result of poverty status shows that 62.88% were in the non-poor category, 21.21% were poor, and 15.91% were very poor, respectively. The result also showed that the incidence of poverty for sorghum farmers was 16%, indicating that the incidence of poverty was prevalent in the study area. Based on the findings of this study, it was therefore recommended that seed companies should facilitate the spread of improved sorghum varieties as it has an impact on the productivity and poverty status of sorghum farmers in the study area.Keywords: Foster Greer Thorbecke model, improved sorghum varieties, productivity, poverty status
Procedia PDF Downloads 732159 Designing, Preparation and Structural Evaluation of Co-Crystals of Oxaprozin
Authors: Maninderjeet K. Grewal, Sakshi Bhatnor, Renu Chadha
Abstract:
The composition of pharmaceutical entities and the molecular interactions can be altered to optimize drug properties such as solubility and bioavailability by the crystal engineering technique. The present work has emphasized on the preparation, characterization, and biopharmaceutical evaluation of co-crystal of BCS Class II anti-osteoarthritis drug, Oxaprozin (OXA) with aspartic acid (ASPA) as co-former. The co-crystals were prepared through the mechanochemical solvent drop grinding method. Characterization of the prepared co-crystal (OXA-ASPA) was done by using analytical tools such as differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR), powder X-ray diffraction (PXRD). DSC thermogram of OXA-ASPA cocrystal showed a single sharp melting endotherm at 235 ºC, which was between the melting peaks of the drug and the counter molecules suggesting the formation of a new phase which is a co-crystal that was further confirmed by using other analytical techniques. FT-IR analysis of OXA-ASPA cocrystal showed a shift in a hydroxyl, carbonyl, and amine peaks as compared to pure drugs indicating all these functional groups are participating in cocrystal formation. The appearance of new peaks in the PXRD pattern of cocrystals in comparison to individual components showed that a new crystalline entity has been formed. The Crystal structure of cocrystal was determined using material studio software (Biovia) from PXRD. The equilibrium solubility study of OXA-ASPA showed improvement in solubility as compared to pure drug. Therefore, it was envisioned to prepare the co-crystal of oxaprozin with a suitable conformer to modulate its physiochemical properties and consequently, the biopharmaceutical parameters.Keywords: cocrystals, coformer, oxaprozin, solubility
Procedia PDF Downloads 1152158 Extracorporeal Co2 Removal (Ecco2r): An Option for Treatment for Refractory Hypercapnic Respiratory Failure
Authors: Shweh Fern Loo, Jun Yin Ong, Than Zaw Oo
Abstract:
Acute respiratory distress syndrome (ARDS) is a common serious condition of bilateral lung infiltrates that develops secondary to various underlying conditions such as diseases or injuries. ARDS with severe hypercapnia is associated with higher ICU mortality and morbidity. Venovenous Extracorporeal membrane oxygenation (VV-ECMO) support has been established to avert life-threatening hypoxemia and hypercapnic respiratory failure despite optimal conventional mechanical ventilation. However, VV-ECMO is relatively not advisable in particular groups of patients, especially in multi-organ failure, advanced age, hemorrhagic complications and irreversible central nervous system pathology. We presented a case of a 79-year-old Chinese lady without any pre-existing lung disease admitted to our hospital intensive care unit (ICU) after acute presentation of breathlessness and chest pain. After extensive workup, she was diagnosed with rapidly progressing acute interstitial pneumonia with ARDS and hypercapnia respiratory failure. The patient received lung protective strategies of mechanical ventilation and neuromuscular blockage therapy as per clinical guidelines. However, hypercapnia respiratory failure was refractory, and she was deemed not a good candidate for VV-ECMO support given her advanced age and high vasopressor requirements from shock. Alternative therapy with extracorporeal CO2 removal (ECCO2R) was considered and implemented. The patient received 12 days of ECCO2R paired with muscle paralysis, optimization of lung-protective mechanical ventilation and dialysis. Unfortunately, the patient still had refractory hypercapnic respiratory failure with dual vasopressor support despite prolonged therapy. Given failed and futile medical treatment, the family opted for withdrawal of care, a conservative approach, and comfort care, which led to her demise. The effectivity of extracorporeal CO2 removal may depend on disease burden, involvement and severity of the disease. There is insufficient data to make strong recommendations about its benefit-risk ratio for ECCO2R devices, and further studies and data would be required. Nonetheless, ECCO2R can be considered an alternative treatment for refractory hypercapnic respiratory failure patients who are unsuitable for initiating venovenous ECMO.Keywords: extracorporeal CO2 removal (ECCO2R), acute respiratory distress syndrome (ARDS), acute interstitial pneumonia (AIP), hypercapnic respiratory failure
Procedia PDF Downloads 65