Search results for: renewable energy resource
9854 Feasibility Study of a Solar Solid Desiccant Cooling System in Algerian Areas
Authors: N. Hatraf, l. Merabeti, M. Abbas
Abstract:
The interest in air conditioning using renewable energies is increasing. The Thermal energy produced from the solar energy can be transformed to useful cooling and heating through the thermo chemical or thermo physical processes by using thermally activated energy conversion system. Solid desiccant conditioning systems can represent a reliable alternative solution compared with other thermal cooling technologies. Their basic characteristics refer to the capability to regulate both temperature and humidity of the conditioned space in one side and to its potential in electrical energy saving in the other side. The ambient air contains so much water that very high dehumidification rates are required. For a continuous dehumidification of the process air the water adsorbed on the desiccant material has to be removed, which is done by allowing hot air to flow through the desiccant material (regeneration). Basically, solid desiccant cooling system transfers moisture from the inlet air to the silica gel by using two processes: absorption process and the regeneration process; The silica gel in the desiccant wheel which is the most important device in the system absorbs the moisture from the incoming air to the desiccant material in this case the silica gel, then it changes the heat with an rotary heat exchanger, after that the air passes through an humidifier to have the humidity required before entering to the local. The main aim of this paper is to study how the dehumidification rate, the generation temperature and many other factors influence the efficiency of a solid desiccant system by using TRNSYS software.Keywords: desiccation, dehumidification, TRNSYS, efficiency
Procedia PDF Downloads 4199853 Comparison Approach for Wind Resource Assessment to Determine Most Precise Approach
Authors: Tasir Khan, Ishfaq Ahmad, Yejuan Wang, Muhammad Salam
Abstract:
Distribution models of the wind speed data are essential to assess the potential wind speed energy because it decreases the uncertainty to estimate wind energy output. Therefore, before performing a detailed potential energy analysis, the precise distribution model for data relating to wind speed must be found. In this research, material from numerous criteria goodness-of-fits, such as Kolmogorov Simonov, Anderson Darling statistics, Chi-Square, root mean square error (RMSE), AIC and BIC were combined finally to determine the wind speed of the best-fitted distribution. The suggested method collectively makes each criterion. This method was useful in a circumstance to fitting 14 distribution models statistically with the data of wind speed together at four sites in Pakistan. The consequences show that this method provides the best source for selecting the most suitable wind speed statistical distribution. Also, the graphical representation is consistent with the analytical results. This research presents three estimation methods that can be used to calculate the different distributions used to estimate the wind. In the suggested MLM, MOM, and MLE the third-order moment used in the wind energy formula is a key function because it makes an important contribution to the precise estimate of wind energy. In order to prove the presence of the suggested MOM, it was compared with well-known estimation methods, such as the method of linear moment, and maximum likelihood estimate. In the relative analysis, given to several goodness-of-fit, the presentation of the considered techniques is estimated on the actual wind speed evaluated in different time periods. The results obtained show that MOM certainly provides a more precise estimation than other familiar approaches in terms of estimating wind energy based on the fourteen distributions. Therefore, MOM can be used as a better technique for assessing wind energy.Keywords: wind-speed modeling, goodness of fit, maximum likelihood method, linear moment
Procedia PDF Downloads 849852 Energy Consumption and Energy Conservation Potential for HVAC System in Commercial Buildings Sector in India
Authors: Rishabh Agrawal, S. C. Kaushik, T. S. Bhatti
Abstract:
In order to reduce energy consumption for sustainable development, continuous energy consumption tracking of building energy systems are essential. In this paper an assessment study has been done to identify the energy consumption & energy conservation potential for commercial buildings sector in Karnataka state, India. There are a total of 326 commercial buildings in the state of Karnataka who has qualified as designated consumers (i.e., having a Contract Demand ≥ 600 KVA), was consider for the study. It has estimated that the annual electricity sale to commercial sector is 3.62 Billion Units (BU) in alone Karnataka State, India, which is an account for 9.57 % of the total electricity sold. The commercial sector constitutes Government & private establishments, hospitals, hotels, restaurants, educational institutions, malls etc. Total 326 commercial buildings in the state accounting for annual energy consumption of 1295.72 Million Units (MU) which works out to about 35% of the sectoral consumption. The annual energy savings potential for 326 commercial buildings is assessed to be 0.25 BU.Keywords: commercial buildings, connected load, energy conservation studies, energy savings, energy efficiency, energy conservation strategy, energy efficiency, thermal energy, HVAC system
Procedia PDF Downloads 5809851 Temperature Distribution Inside Hybrid photovoltaic-Thermoelectric Generator Systems and their Dependency on Exposition Angles
Authors: Slawomir Wnuk
Abstract:
Due to widespread implementation of the renewable energy development programs the, solar energy use increasing constantlyacross the world. Accordingly to REN21, in 2020, both on-grid and off-grid solar photovoltaic systems installed capacity reached 760 GWDCand increased by 139 GWDC compared to previous year capacity. However, the photovoltaic solar cells used for primary solar energy conversion into electrical energy has exhibited significant drawbacks. The fundamentaldownside is unstable andlow efficiencythe energy conversion being negatively affected by a rangeof factors. To neutralise or minimise the impact of those factors causing energy losses, researchers have come out withvariedideas. One ofpromising technological solutionsoffered by researchers is PV-MTEG multilayer hybrid system combiningboth photovoltaic cells and thermoelectric generators advantages. A series of experiments was performed on Glasgow Caledonian University laboratory to investigate such a system in operation. In the experiments, the solar simulator Sol3A series was employed as a stable solar irradiation source, and multichannel voltage and temperature data loggers were utilised for measurements. The two layer proposed hybrid systemsimulation model was built up and tested for its energy conversion capability under a variety of the exposure angles to the solar irradiation with a concurrent examination of the temperature distribution inside proposed PV-MTEG structure. The same series of laboratory tests were carried out for a range of various loads, with the temperature and voltage generated being measured and recordedfor each exposure angle and load combination. It was found that increase of the exposure angle of the PV-MTEG structure to an irradiation source causes the decrease of the temperature gradient ΔT between the system layers as well as reduces overall system heating. The temperature gradient’s reduction influences negatively the voltage generation process. The experiments showed that for the exposureangles in the range from 0° to 45°, the ‘generated voltage – exposure angle’ dependence is reflected closely by the linear characteristics. It was also found that the voltage generated by MTEG structures working with the optimal load determined and applied would drop by approximately 0.82% per each 1° degree of the exposure angle increase. This voltage drop occurs at the higher loads applied, getting more steep with increasing the load over the optimal value, however, the difference isn’t significant. Despite of linear character of the generated by MTEG voltage-angle dependence, the temperature reduction between the system structure layers andat tested points on its surface was not linear. In conclusion, the PV-MTEG exposure angle appears to be important parameter affecting efficiency of the energy generation by thermo-electrical generators incorporated inside those hybrid structures. The research revealedgreat potential of the proposed hybrid system. The experiments indicated interesting behaviour of the tested structures, and the results appear to provide valuable contribution into thedevelopment and technological design process for large energy conversion systems utilising similar structural solutions.Keywords: photovoltaic solar systems, hybrid systems, thermo-electrical generators, renewable energy
Procedia PDF Downloads 909850 Present an Active Solar Energy System to Supply Heating Demands of the Teaching Staff Dormitory of Islamic Azad University of Ramhormoz
Authors: M. Talebzadegan, S. Bina , I. Riazi
Abstract:
The purpose of this paper is to present an active solar energy system to supply heating demands of the teaching staff dormitory of Islamic Azad University of Ramhormoz. The design takes into account the solar radiations and climate data of Ramhormoz town and is based on the daily warm water consumption for health demands of 450 residents of the dormitory, which is equal to 27000 lit of 50 C° water, and building heating requirements with an area of 3500 m² well-protected by heatproof materials. First, heating demands of the building were calculated, then a hybrid system made up of solar and fossil energies was developed and finally, the design was economically evaluated. Since there is only roof space for using 110 flat solar water heaters, the calculations were made to hybridize solar water heating system with heat pumping system in which solar energy contributes 67% of the heat generated. According to calculations, the Net Present Value “N.P.V.” of revenue stream exceeds “N.P.V.” of cash paid off in this project over three years, which makes economically quite promising. The return of investment and payback period of the project is 4 years. Also, the Internal Rate of Return (IRR) of the project was 25%, which exceeds bank rate of interest in Iran and emphasizes the desirability of the project.Keywords: solar energy, heat demand, renewable, pollution
Procedia PDF Downloads 4209849 Predicting COVID-19 Severity Using a Simple Parameters in Resource-Limited Settings
Authors: Sireethorn Nimitvilai, Ussanee Poolvivatchaikarn, Nuchanart Tomeun
Abstract:
Objective: To determine the simple laboratory parameters to predict disease severity among COVID-19 patients in resource-limited settings. Material and methods: A retrospective cohort study was conducted at Nakhonpathom Hospital, a 722-bed tertiary care hospital, with an average of 50,000 admissions per year, during April 15 and May 15, 2021. Eligible patients were adults aged ≥ 15 years who were hospitalized with COVID-19. Baseline characteristics, comorbid conditions ad laboratory findings at admission were collected. Predictive factors for severe COVID-19 infection were analyzed. Result: There were 207 patients (79 male and 128 female) and the mean age was 46.7 (16.8) years. Of these, 39 cases (18.8%) were severe and 168 (81.2%) cases were non-severe. Factors associated with severe COVID-19 were neutrophil to lymphocyte ratio ≥ 4 (OR 8.1, 95%CI 2.3-20.3, P < 0.001) and C-reactive protein to albumin ratio ≥ 10 (OR 3.49, 95%CI 1.3-9.1, p 0.01). Conclusions: Complete blood counts, C-reactive protein and albumin are simple, inexpensive, widely available tests and can be used to predict severe COVID-19 in resource-limited settings.Keywords: COVID-19, predictor of severity, resource-limiting settings, simple laboratory parameters
Procedia PDF Downloads 1809848 Multi-Objective Electric Vehicle Charge Coordination for Economic Network Management under Uncertainty
Authors: Ridoy Das, Myriam Neaimeh, Yue Wang, Ghanim Putrus
Abstract:
Electric vehicles are a popular transportation medium renowned for potential environmental benefits. However, large and uncontrolled charging volumes can impact distribution networks negatively. Smart charging is widely recognized as an efficient solution to achieve both improved renewable energy integration and grid relief. Nevertheless, different decision-makers may pursue diverse and conflicting objectives. In this context, this paper proposes a multi-objective optimization framework to control electric vehicle charging to achieve both energy cost reduction and peak shaving. A weighted-sum method is developed due to its intuitiveness and efficiency. Monte Carlo simulations are implemented to investigate the impact of uncertain electric vehicle driving patterns and provide decision-makers with a robust outcome in terms of prospective cost and network loading. The results demonstrate that there is a conflict between energy cost efficiency and peak shaving, with the decision-makers needing to make a collaborative decision.Keywords: electric vehicles, multi-objective optimization, uncertainty, mixed integer linear programming
Procedia PDF Downloads 1799847 The Proton Flow Battery for Storing Renewable Energy: Hydrogen Storage Capacity of Selected Activated Carbon Electrodes Made from Brown Coal
Authors: Amandeep Singh Oberoi, John Andrews, Alan L. Chaffee, Lachlan Ciddor
Abstract:
Electrochemical storage of hydrogen in activated carbon electrodes as part of a reversible fuel cell offers a potentially attractive option for storing surplus electrical energy from inherently variable solar and wind energy resources. Such a system – which we have called a proton flow battery – promises to have roundtrip energy efficiency comparable to lithium ion batteries, while having higher gravimetric and volumetric energy densities. Activated carbons with high internal surface area, high pore volume, light weight and easy availability have attracted considerable research interest as a solid-state hydrogen storage medium. This paper compares the physical characteristics and hydrogen storage capacities of four activated carbon electrodes made by different methods from brown coal. The fabrication methods for these samples are explained. Their proton conductivity was measured using electrochemical impedance spectroscopy, and their hydrogen storage capacity by galvanostatic charging and discharging in a three-electrode electrolytic cell with 1 mol sulphuric acid as electrolyte. The highest hydrogen storage capacity obtained was 1.29 wt%, which compares favourably with metal hydrides used in commercially available solid-state hydrogen storages. The hydrogen storage capacity of the samples increased monotonically with increasing BET surface area (calculated from CO2 adsorption method). The results point the way towards selecting high-performing electrodes for proton flow batteries that the competitiveness of this energy storage technology.Keywords: activated carbon, electrochemical hydrogen storage, proton flow battery, proton conductivity
Procedia PDF Downloads 5779846 A Geographical Spatial Analysis on the Benefits of Using Wind Energy in Kuwait
Authors: Obaid AlOtaibi, Salman Hussain
Abstract:
Wind energy is associated with many geographical factors including wind speed, climate change, surface topography, environmental impacts, and several economic factors, most notably the advancement of wind technology and energy prices. It is the fastest-growing and least economically expensive method for generating electricity. Wind energy generation is directly related to the characteristics of spatial wind. Therefore, the feasibility study for the wind energy conversion system is based on the value of the energy obtained relative to the initial investment and the cost of operation and maintenance. In Kuwait, wind energy is an appropriate choice as a source of energy generation. It can be used in groundwater extraction in agricultural areas such as Al-Abdali in the north and Al-Wafra in the south, or in fresh and brackish groundwater fields or remote and isolated locations such as border areas and projects away from conventional power electricity services, to take advantage of alternative energy, reduce pollutants, and reduce energy production costs. The study covers the State of Kuwait with an exception of metropolitan area. Climatic data were attained through the readings of eight distributed monitoring stations affiliated with Kuwait Institute for Scientific Research (KISR). The data were used to assess the daily, monthly, quarterly, and annual available wind energy accessible for utilization. The researchers applied the Suitability Model to analyze the study by using the ArcGIS program. It is a model of spatial analysis that compares more than one location based on grading weights to choose the most suitable one. The study criteria are: the average annual wind speed, land use, topography of land, distance from the main road networks, urban areas. According to the previous criteria, the four proposed locations to establish wind farm projects are selected based on the weights of the degree of suitability (excellent, good, average, and poor). The percentage of areas that represents the most suitable locations with an excellent rank (4) is 8% of Kuwait’s area. It is relatively distributed as follows: Al-Shqaya, Al-Dabdeba, Al-Salmi (5.22%), Al-Abdali (1.22%), Umm al-Hayman (0.70%), North Wafra and Al-Shaqeeq (0.86%). The study recommends to decision-makers to consider the proposed location (No.1), (Al-Shqaya, Al-Dabdaba, and Al-Salmi) as the most suitable location for future development of wind farms in Kuwait, this location is economically feasible.Keywords: Kuwait, renewable energy, spatial analysis, wind energy
Procedia PDF Downloads 1479845 Community Participation in Decentralized Management of Natural Resources in the Sudano-Sahelian Zone of West Africa
Authors: Clarisse Umutoni, Augustine Ayantunde, Matthew Turner, Germain J. Sawadogo
Abstract:
Decentralized governance of natural resources is considered one of the key strategies for promoting sustainable management of natural resources at local level. The rationale behind decentralization of natural resources is that local populations are both better situated and more highly motivated than outside agencies to manage the resources in an ecologically and economically sustainable manner. Effective decentralized natural resource management requires strong local natural resource institutions. Therefore, strengthening local institutions governing natural resource management is essential to promoting strong participation of local communities in managing their resources. This paper investigated the existing local institutions (rules, norms and or local conventions) governing the management of natural resources and forms of community participation in the development of these natural resource institutions. Group discussions and individual interviews were conducted to collect data. Our findings showed significant variation within the study sites regarding the level of knowledge of existing local rules and norms governing the management of natural resources by the respondents. The results also show that participation was dominated by a small group of individuals, often community leaders and elites. The results suggest that women are marginalized. In general, factors which influence the level of participation include; age, year of residence in the community, gender and education level. This study also highlights the strengths of local natural resource institutions especially if enforced. Presently, the big challenge that faces the institutions governing natural resource use in the study area is the system of representativeness in the community in the development of local rules and norms as community leaders and household heads often dominate, which does not encourage active participation of community members. Therefore, for effective implementation of local natural resource institutions, the interest of key natural resource users should be taken into account. It is also important to promote rules and norms that attempt to protect or strengthen women’s access to natural resources in the community.Keywords: decentralization, land use plan, local institutions, Mali
Procedia PDF Downloads 3879844 Optimization of Territorial Spatial Functional Partitioning in Coal Resource-based Cities Based on Ecosystem Service Clusters - The Case of Gujiao City in Shanxi Province
Authors: Gu Sihao
Abstract:
The coordinated development of "ecology-production-life" in cities has been highly concerned by the country, and the transformation development and sustainable development of resource-based cities have become a hot research topic at present. As an important part of China's resource-based cities, coal resource-based cities have the characteristics of large number and wide distribution. However, due to the adjustment of national energy structure and the gradual exhaustion of urban coal resources, the development vitality of coal resource-based cities is gradually reduced. In many studies, the deterioration of ecological environment in coal resource-based cities has become the main problem restricting their urban transformation and sustainable development due to the "emphasis on economy and neglect of ecology". Since the 18th National Congress of the Communist Party of China (CPC), the Central Government has been deepening territorial space planning and development. On the premise of optimizing territorial space development pattern, it has completed the demarcation of ecological protection red lines, carried out ecological zoning and ecosystem evaluation, which have become an important basis and scientific guarantee for ecological modernization and ecological civilization construction. Grasp the regional multiple ecosystem services is the precondition of the ecosystem management, and the relationship between the multiple ecosystem services study, ecosystem services cluster can identify the interactions between multiple ecosystem services, and on the basis of the characteristics of the clusters on regional ecological function zoning, to better Social-Ecological system management. Based on this cognition, this study optimizes the spatial function zoning of Gujiao, a coal resource-based city, in order to provide a new theoretical basis for its sustainable development. This study is based on the detailed analysis of characteristics and utilization of Gujiao city land space, using SOFM neural networks to identify local ecosystem service clusters, according to the cluster scope and function of ecological function zoning of space partition balance and coordination between different ecosystem services strength, establish a relationship between clusters and land use, and adjust the functions of territorial space within each zone. Then, according to the characteristics of coal resources city and national spatial function zoning characteristics, as the driving factors of land change, by cellular automata simulation program, such as simulation under different restoration strategy situation of urban future development trend, and provides relevant theories and technical methods for the "third-line" demarcations of Gujiao's territorial space planning, optimizes territorial space functions, and puts forward targeted strategies for the promotion of regional ecosystem services, providing theoretical support for the improvement of human well-being and sustainable development of resource-based cities.Keywords: coal resource-based city, territorial spatial planning, ecosystem service cluster, gmop model, geosos-FLUS model, functional zoning optimization and upgrading
Procedia PDF Downloads 619843 Decarbonising Urban Building Heating: A Case Study on the Benefits and Challenges of Fifth-Generation District Heating Networks
Authors: Mazarine Roquet, Pierre Dewallef
Abstract:
The building sector, both residential and tertiary, accounts for a significant share of greenhouse gas emissions. In Belgium, partly due to poor insulation of the building stock, but certainly because of the massive use of fossil fuels for heating buildings, this share reaches almost 30%. To reduce carbon emissions from urban building heating, district heating networks emerge as a promising solution as they offer various assets such as improving the load factor, integrating combined heat and power systems, and enabling energy source diversification, including renewable sources and waste heat recovery. However, mainly for sake of simple operation, most existing district heating networks still operate at high or medium temperatures ranging between 120°C and 60°C (the socalled second and third-generations district heating networks). Although these district heating networks offer energy savings in comparison with individual boilers, such temperature levels generally require the use of fossil fuels (mainly natural gas) with combined heat and power. The fourth-generation district heating networks improve the transport and energy conversion efficiency by decreasing the operating temperature between 50°C and 30°C. Yet, to decarbonise the building heating one must increase the waste heat recovery and use mainly wind, solar or geothermal sources for the remaining heat supply. Fifth-generation networks operating between 35°C and 15°C offer the possibility to decrease even more the transport losses, to increase the share of waste heat recovery and to use electricity from renewable resources through the use of heat pumps to generate low temperature heat. The main objective of this contribution is to exhibit on a real-life test case the benefits of replacing an existing third-generation network by a fifth-generation one and to decarbonise the heat supply of the building stock. The second objective of the study is to highlight the difficulties resulting from the use of a fifth-generation, low-temperature, district heating network. To do so, a simulation model of the district heating network including its regulation is implemented in the modelling language Modelica. This model is applied to the test case of the heating network on the University of Liège's Sart Tilman campus, consisting of around sixty buildings. This model is validated with monitoring data and then adapted for low-temperature networks. A comparison of primary energy consumptions as well as CO2 emissions is done between the two cases to underline the benefits in term of energy independency and GHG emissions. To highlight the complexity of operating a lowtemperature network, the difficulty of adapting the mass flow rate to the heat demand is considered. This shows the difficult balance between the thermal comfort and the electrical consumption of the circulation pumps. Several control strategies are considered and compared to the global energy savings. The developed model can be used to assess the potential for energy and CO2 emissions savings retrofitting an existing network or when designing a new one.Keywords: building simulation, fifth-generation district heating network, low-temperature district heating network, urban building heating
Procedia PDF Downloads 839842 Contribution to the Success of the Energy Audit in the Industrial Environment: A Case Study about Audit of Interior Lighting for an Industrial Site in Morocco
Authors: Abdelkarim Ait Brik, Abdelaziz Khoukh, Mustapha Jammali, Hamid Chaikhy
Abstract:
The energy audit is the essential initial step to ensure a good definition of energy control actions. The in-depth study of the various energy-consuming equipments makes it possible to determine the actions and investments with best cost for the company. The analysis focuses on the energy consumption of production equipment and utilities (lighting, heating, air conditioning, ventilation, transport). Successful implementation of this approach requires, however, to take into account a number of prerequisites. This paper proposes a number of useful recommendations concerning the energy audit in order to achieve better results, and a case study concerning the lighting audit of a Moroccan company by showing the gains that can be made through this audit.Keywords: energy audit, energy diagnosis, consumption, electricity, energy efficiency, lighting audit
Procedia PDF Downloads 6969841 Advancing Net Zero Showcase in Subtropical High-Rise Commercial Building
Authors: Melody Wong
Abstract:
Taikoo Green Ribbon is the winning scheme of International Advancing Net Zero ANZ Ideas Competition 2021 and shortlisted as a finalist of top Architectural Award “AJ100 Sustainability Initiative of the Year, 2022, demonstrating city's aspirations to reach carbon neutrality by 2050. The project showcases total design solutions to blend technology and nature to create a futuristic workplace achieving net zero within a decade. The net zero building design featured with extremely low embodied carbon emission (<250 kgCO2/sqm), significant surplus in renewable energy generation (130% of energy consumption) and various carbon capture technology. The project leverages aesthetics, user-experience, sustainability, and technology to develop over 40 design features. Utilizing AI-controlled Smart Envelope system, the possibility of naturally ventilation was maximized to adjust the microclimate to foster behavourial change. The design principle – healthy and collaborative working environment is realized with a landscaped sky-track with kinetic energy pads, natural ventilated open space with edible plants across floors, and 500-seat open-space rooftop theatre to reshape and redefine the new generation of workplaces.Keywords: NetZero, zero carbon, green, sustainability
Procedia PDF Downloads 779840 Measuring Environmental Efficiency of Energy in OPEC Countries
Authors: Bahram Fathi, Seyedhossein Sajadifar, Naser Khiabani
Abstract:
Data envelopment analysis (DEA) has recently gained popularity in energy efficiency analysis. A common feature of the previously proposed DEA models for measuring energy efficiency performance is that they treat energy consumption as an input within a production framework without considering undesirable outputs. However, energy use results in the generation of undesirable outputs as byproducts of producing desirable outputs. Within a joint production framework of both desirable and undesirable outputs, this paper presents several DEA-type linear programming models for measuring energy efficiency performance. In addition to considering undesirable outputs, our models treat different energy sources as different inputs so that changes in energy mix could be accounted for in evaluating energy efficiency. The proposed models are applied to measure the energy efficiency performances of 12 OPEC countries and the results obtained are presented.Keywords: energy efficiency, undesirable outputs, data envelopment analysis
Procedia PDF Downloads 7369839 Evaluating Energy Transition of a complex of buildings in a historic site of Rome toward Zero-Emissions for a Sustainable Future
Authors: Silvia Di Turi, Nicolandrea Calabrese, Francesca Caffari, Giulia Centi, Francesca Margiotta, Giovanni Murano, Laura Ronchetti, Paolo Signoretti, Lisa Volpe, Domenico Palladino
Abstract:
Recent European policies have been set ambitious targets aimed at significantly reducing CO2 emissions by 2030, with a long-term vision of transforming existing buildings into Zero-Emissions Buildings (ZEmB) by 2050. This vision represents a key point for the energy transition as the whole building stock currently accounts for 36% of total energy consumption across the Europe, mainly due to their poor energy performance. The challenge towards Zero-Emissions Buildings is particularly felt in Italy, where a significant number of buildings with historical significance or situated within protected/constrained areas can be found. Furthermore, an estimated 70% of the national building stock are built before 1976, indicating a widespread issue of poor energy performance. Addressing the energy ineƯiciency of these buildings is crucial to refining a comprehensive energy renovation approach aimed at facilitating their energy transition. In this framework the current study focuses on analysing a challenging complex of buildings to be totally restored through significant energy renovation interventions. The goal is to recover these disused buildings situated in a significant archaeological zone of Rome, contributing to the restoration and reintegration of this historically valuable site, while also oƯering insights useful for achieving zeroemission requirements for buildings within such contexts. In pursuit of meeting the stringent zero-emission requirements, a comprehensive study was carried out to assess the complex of buildings, envisioning substantial renovation measures on building envelope and plant systems and incorporating renewable energy system solutions, always respecting and preserving the historic site. An energy audit of the complex of buildings was performed to define the actual energy consumption for each energy service by adopting the hourly calculation methods. Subsequently, significant energy renovation interventions on both building envelope and mechanical systems have been examined respecting the historical value and preservation of site. These retrofit strategies have been investigated with threefold aims: 1) to recover the existing buildings ensuring the energy eƯiciency of the whole complex of buildings, 2) to explore which solutions have allowed achieving and facilitating the ZEmB status, 3) to balance the energy transition requirements with the sustainable aspect in order to preserve the historic value of the buildings and site. This study has pointed out the potentiality and the technical challenges associated with implementing renovation solutions for such buildings, representing one of the first attempt towards realizing this ambitious target for this type of building.Keywords: energy conservation and transition, complex of buildings in historic site, zero-emission buildings, energy efficiency recovery
Procedia PDF Downloads 769838 Experimental and Computational Fluid Dynamics Analysis of Horizontal Axis Wind Turbine
Authors: Saim Iftikhar Awan, Farhan Ali
Abstract:
Wind power has now become one of the most important resources of renewable energy. The machine which extracts kinetic energy from wind is wind turbine. This work is all about the electrical power analysis of horizontal axis wind turbine to check the efficiency of different configurations of wind turbines to get maximum output and comparison of experimental and Computational Fluid Dynamics (CFD) results. Different experiments have been performed to obtain that configuration with the help of which we can get the maximum electrical power output by changing the different parameters like the number of blades, blade shape, wind speed, etc. in first step experimentation is done, and then the similar configuration is designed in 3D CAD software. After a series of experiments, it has been found that the turbine with four blades at an angle of 75° gives maximum power output and increase in wind speed increases the power output. The models designed on CAD software are imported on ANSYS-FLUENT to predict mechanical power. This mechanical power is then converted into electrical power, and the results were approximately the same in both cases. In the end, a comparison has been done to compare the results of experiments and ANSYS-FLUENT.Keywords: computational analysis, power efficiency, wind energy, wind turbine
Procedia PDF Downloads 1599837 Engineered Biopolymers as Novel Sustainable Resin Binder for Wood Composites
Authors: Somaieh Salehpour, Douglas Ireland, Chris Anderson, Charles Markessini
Abstract:
Over the last few years, advancements have been made around improving sustainability for wood composite boards. One of the last and most challenging sustainability hurdles is finding a viable alternative to petroleum-based resin binders. In today’s market, no longer is formaldehyde emission control sufficient to meet the requirements of many architects and end-use consumers. Even the use of highly reactive isocyanates is considered by many as not sustainable enough since these chemicals are manufactured from classical fossil fuel sources. The emergence of biopolymers specifically engineered for usage as wood composite binders has been successfully demonstrated in this paper as a viable option towards a truly renewable wood composite board. Recent technology advancements driven by EcoSynthetix and CHIMAR have exploited the advantages of using an engineered biopolymer. The evidence shows that this renewable technology has the potential to be used as a partial up to full replacement of classical formaldehyde technologies. Numerous trials, both in the lab and at industrial scale, have shown that a renewable binder of the proposed technology can produce a commercially viable board in a traditional industrial setting. The ultimate goal of this work is to provide evidence that a sustainable binder alternative can be used to make a commercial board while at the same time improving the total cost of manufacturing.Keywords: no added formaldehyde, renewable, biopolymers, sustainable wood composites, engineered biopolymers
Procedia PDF Downloads 4009836 Synergy Effect of Energy and Water Saving in China's Energy Sectors: A Multi-Objective Optimization Analysis
Authors: Yi Jin, Xu Tang, Cuiyang Feng
Abstract:
The ‘11th five-year’ and ‘12th five-year’ plans have clearly put forward to strictly control the total amount and intensity of energy and water consumption. The synergy effect of energy and water has rarely been considered in the process of energy and water saving in China, where its contribution cannot be maximized. Energy sectors consume large amounts of energy and water when producing massive energy, which makes them both energy and water intensive. Therefore, the synergy effect in these sectors is significant. This paper assesses and optimizes the synergy effect in three energy sectors under the background of promoting energy and water saving. Results show that: From the perspective of critical path, chemical industry, mining and processing of non-metal ores and smelting and pressing of metals are coupling points in the process of energy and water flowing to energy sectors, in which the implementation of energy and water saving policies can bring significant synergy effect. Multi-objective optimization shows that increasing efforts on input restructuring can effectively improve synergy effects; relatively large synergetic energy saving and little water saving are obtained after solely reducing the energy and water intensity of coupling sectors. By optimizing the input structure of sectors, especially the coupling sectors, the synergy effect of energy and water saving can be improved in energy sectors under the premise of keeping economy running stably.Keywords: critical path, energy sector, multi-objective optimization, synergy effect, water
Procedia PDF Downloads 3609835 Updating Stochastic Hosting Capacity Algorithm for Voltage Optimization Programs and Interconnect Standards
Authors: Nicholas Burica, Nina Selak
Abstract:
The ADHCAT (Automated Distribution Hosting Capacity Assessment Tool) was designed to run Hosting Capacity Analysis on the ComEd system via a stochastic DER (Distributed Energy Resource) placement on multiple power flow simulations against a set of violation criteria. The violation criteria in the initial version of the tool captured a limited amount of issues that individual departments design against for DER interconnections. Enhancements were made to the tool to further align with individual department violation and operation criteria, as well as the addition of new modules for use for future load profile analysis. A reporting engine was created for future analytical use based on the simulations and observations in the tool.Keywords: distributed energy resources, hosting capacity, interconnect, voltage optimization
Procedia PDF Downloads 1909834 Mathematical Modelling of a Low Tip Speed Ratio Wind Turbine for System Design Evaluation
Authors: Amir Jalalian-Khakshour, T. N. Croft
Abstract:
Vertical Axis Wind Turbine (VAWT) systems are becoming increasingly popular as they have a number of advantages over traditional wind turbines. The advantages are reliability, ease of transportation and manufacturing. These attributes could make these technologies useful in developing economies. The performance characteristics of a VAWT are different from a horizontal axis wind turbine, which can be attributed to the low tip speed ratio operation. To unlock the potential of these VAWT systems, the operational behaviour in a number of system topologies and environmental conditions needs to be understood. In this study, a non-linear dynamic simulation method was developed in Matlab and validated against in field data of a large scale, 8-meter rotor diameter prototype. This simulation method has been utilised to determine the performance characteristics of a number of control methods and system topologies. The motivation for this research was to develop a simulation method which accurately captures the operating behaviour and is computationally inexpensive. The model was used to evaluate the performance through parametric studies and optimisation techniques. The study gave useful insights into the applications and energy generation potential of this technology.Keywords: power generation, renewable energy, rotordynamics, wind energy
Procedia PDF Downloads 3049833 Life Cycle Assessment of Todays and Future Electricity Grid Mixes of EU27
Authors: Johannes Gantner, Michael Held, Rafael Horn, Matthias Fischer
Abstract:
At the United Nations Climate Change Conference 2015 a global agreement on the reduction of climate change was achieved stating CO₂ reduction targets for all countries. For instance, the EU targets a reduction of 40 percent in emissions by 2030 compared to 1990. In order to achieve this ambitious goal, the environmental performance of the different European electricity grid mixes is crucial. First, the electricity directly needed for everyone’s daily life (e.g. heating, plug load, mobility) and therefore a reduction of the environmental impacts of the electricity grid mix reduces the overall environmental impacts of a country. Secondly, the manufacturing of every product depends on electricity. Thereby a reduction of the environmental impacts of the electricity mix results in a further decrease of environmental impacts of every product. As a result, the implementation of the two-degree goal highly depends on the decarbonization of the European electricity mixes. Currently the production of electricity in the EU27 is based on fossil fuels and therefore bears a high GWP impact per kWh. Due to the importance of the environmental impacts of the electricity mix, not only today but also in future, within the European research projects, CommONEnergy and Senskin, time-dynamic Life Cycle Assessment models for all EU27 countries were set up. As a methodology, a combination of scenario modeling and life cycle assessment according to ISO14040 and ISO14044 was conducted. Based on EU27 trends regarding energy, transport, and buildings, the different national electricity mixes were investigated taking into account future changes such as amount of electricity generated in the country, change in electricity carriers, COP of the power plants and distribution losses, imports and exports. As results, time-dynamic environmental profiles for the electricity mixes of each country and for Europe overall were set up. Thereby for each European country, the decarbonization strategies of the electricity mix are critically investigated in order to identify decisions, that can lead to negative environmental effects, for instance on the reduction of the global warming of the electricity mix. For example, the withdrawal of the nuclear energy program in Germany and at the same time compensation of the missing energy by non-renewable energy carriers like lignite and natural gas is resulting in an increase in global warming potential of electricity grid mix. Just after two years this increase countervailed by the higher share of renewable energy carriers such as wind power and photovoltaic. Finally, as an outlook a first qualitative picture is provided, illustrating from environmental perspective, which country has the highest potential for low-carbon electricity production and therefore how investments in a connected European electricity grid could decrease the environmental impacts of the electricity mix in Europe.Keywords: electricity grid mixes, EU27 countries, environmental impacts, future trends, life cycle assessment, scenario analysis
Procedia PDF Downloads 1869832 Task Scheduling and Resource Allocation in Cloud-based on AHP Method
Authors: Zahra Ahmadi, Fazlollah Adibnia
Abstract:
Scheduling of tasks and the optimal allocation of resources in the cloud are based on the dynamic nature of tasks and the heterogeneity of resources. Applications that are based on the scientific workflow are among the most widely used applications in this field, which are characterized by high processing power and storage capacity. In order to increase their efficiency, it is necessary to plan the tasks properly and select the best virtual machine in the cloud. The goals of the system are effective factors in scheduling tasks and resource selection, which depend on various criteria such as time, cost, current workload and processing power. Multi-criteria decision-making methods are a good choice in this field. In this research, a new method of work planning and resource allocation in a heterogeneous environment based on the modified AHP algorithm is proposed. In this method, the scheduling of input tasks is based on two criteria of execution time and size. Resource allocation is also a combination of the AHP algorithm and the first-input method of the first client. Resource prioritization is done with the criteria of main memory size, processor speed and bandwidth. What is considered in this system to modify the AHP algorithm Linear Max-Min and Linear Max normalization methods are the best choice for the mentioned algorithm, which have a great impact on the ranking. The simulation results show a decrease in the average response time, return time and execution time of input tasks in the proposed method compared to similar methods (basic methods).Keywords: hierarchical analytical process, work prioritization, normalization, heterogeneous resource allocation, scientific workflow
Procedia PDF Downloads 1459831 Numerical Study on Response of Polymer Electrolyte Fuel Cell (PEFCs) with Defects under Different Load Conditions
Authors: Muhammad Faizan Chinannai, Jaeseung Lee, Mohamed Hassan Gundu, Hyunchul Ju
Abstract:
Fuel cell is known to be an effective renewable energy resource which is commercializing in the present era. It is really important to know about the improvement in performance even when the system faces some defects. This study was carried out to analyze the performance of the Polymer electrolyte fuel cell (PEFCs) under different operating conditions such as current density, relative humidity and Pt loadings considering defects with load changes. The purpose of this study is to analyze the response of the fuel cell system with defects in Balance of Plants (BOPs) and catalyst layer (CL) degradation by maintaining the coolant flow rate as such to preserve the cell temperature at the required level. Multi-Scale Simulation of 3D two-phase PEFC model with coolant was carried out under different load conditions. For detailed analysis and performance comparison, extensive contours of temperature, current density, water content, and relative humidity are provided. The simulation results of the different cases are compared with the reference data. Hence the response of the fuel cell stack with defects in BOP and CL degradations can be analyzed by the temperature difference between the coolant outlet and membrane electrode assembly. The results showed that the Failure of the humidifier increases High-Frequency Resistance (HFR), air flow defects and CL degradation results in the non-uniformity of current density distribution and high cathode activation overpotential, respectively.Keywords: PEM fuel cell, fuel cell modeling, performance analysis, BOP components, current density distribution, degradation
Procedia PDF Downloads 2149830 Guadua Bamboo as Eco-Friendly Element in Interior Design and Architecture
Authors: Sarah Noaman
Abstract:
Utilizing renewable resources has become extensive solution for most problems in Egypt nowadays. It plays role in environmental issues such as energy crisis, lake of natural resources and climate change. This paper focuses on the importance of working with the key concepts of creating eco-friendly spaces in Egypt by using traditional perennial plants, such as Guadua bamboo as renewable resources in structures manufacture. Egypt is in critical need to search for alternative raw materials. Thus, this paper focuses on studying the usage of neglected yet affordable materials, such as Guadua bamboo in light weight structures and digital fabrication. Guadua bamboo has been cultivated throughout in tropical and subtropical areas. In Egypt, they exist in many rural areas where people try to control their growth by using pesticides as it serves no economic purpose. This paper aims to discuss the usage of Guadua bamboo either in its original state or after fabrication in the context of interior design and architecture. The results will show the applicability of using perennial plants as complementary materials in the manufacturing processes; also the conclusion will focus the lights on the importance of re-forming shallow water plants in interior design and architecture.Keywords: digital fabrication, Guadua bamboo, zero-waste material, sustainable material, interior architecture
Procedia PDF Downloads 1529829 Scheduling Residential Daily Energy Consumption Using Bi-criteria Optimization Methods
Authors: Li-hsing Shih, Tzu-hsun Yen
Abstract:
Because of the long-term commitment to net zero carbon emission, utility companies include more renewable energy supply, which generates electricity with time and weather restrictions. This leads to time-of-use electricity pricing to reflect the actual cost of energy supply. From an end-user point of view, better residential energy management is needed to incorporate the time-of-use prices and assist end users in scheduling their daily use of electricity. This study uses bi-criteria optimization methods to schedule daily energy consumption by minimizing the electricity cost and maximizing the comfort of end users. Different from most previous research, this study schedules users’ activities rather than household appliances to have better measures of users’ comfort/satisfaction. The relation between each activity and the use of different appliances could be defined by users. The comfort level is at the highest when the time and duration of an activity completely meet the user’s expectation, and the comfort level decreases when the time and duration do not meet expectations. A questionnaire survey was conducted to collect data for establishing regression models that describe users’ comfort levels when the execution time and duration of activities are different from user expectations. Six regression models representing the comfort levels for six types of activities were established using the responses to the questionnaire survey. A computer program is developed to evaluate electricity cost and the comfort level for each feasible schedule and then find the non-dominated schedules. The Epsilon constraint method is used to find the optimal schedule out of the non-dominated schedules. A hypothetical case is presented to demonstrate the effectiveness of the proposed approach and the computer program. Using the program, users can obtain the optimal schedule of daily energy consumption by inputting the intended time and duration of activities and the given time-of-use electricity prices.Keywords: bi-criteria optimization, energy consumption, time-of-use price, scheduling
Procedia PDF Downloads 609828 Training 'Green Ambassadors' in the Community-Action Learning Course
Authors: Friman Hen, Banner Ifaa, Shalom-Tuchin Bosmat, Einav Yulia
Abstract:
The action learning course is an academic course which involves academic learning and social activities. The courses deal with processes and social challenges, reveal different ideologies, and develop critical thinking and pragmatic ideas. Students receive course credits and a grade for being part of such courses. Participating students enroll in courses that involve action and activities to engage in the experiential learning process, thereby creating a dialogue and cross-fertilization between being taught in the classroom and experiencing the reality in the real world. A learning experience includes meeting with social organizations, institutions, and state authorities and carrying out practical work with diverse populations. Through experience, students strengthen their academic skills, formulate ethical attitudes toward reality, develop professional and civilian perspectives, and realize how they can influence their surrounding in the present and the hereafter. Under the guidance and supervision of Dr. Hen Friman, H.I.T. has built an innovative course that combines action and activities to increase the awareness and accessibility of the community in an experiential way. The end goal is to create Green Ambassadors—children with a high level of environmental awareness. This course is divided into two parts. The first part, focused on frontal teaching, delivers knowledge from extensive environmental fields to students. These areas include introduction to ecology, the process of electricity generation, air pollution, renewable energy, water economy, waste and recycling, and energy efficiency (first stage). In addition to the professional content in the environment field, students learn the method of effective and experiential teaching to younger learners (4 to 8 years old). With the attainment of knowledge, students are divided into operating groups. The second part of the course shows how the theory becomes practical and concrete. At this stage, students are asked to introduce to the first- and second-graders of ‘Revivim’ School in Holon a lesson of 90 minutes focused on presenting the issues and their importance during the course (second stage). This course is the beginning of a paradigm shift regarding energy usage in the modern society in Israel. The objective of the course is to expand worldwide and train the first and second-graders, and even pre-schoolers, in a wide scope to increase population awareness rate, both in Israel and all over the world, for a green future.Keywords: air pollution, green ambassador, recycling, renewable energy
Procedia PDF Downloads 2429827 Eco-Hammam Initiative: Replicating the FSAC Model for Sustainable Wastewater Treatment and Resource Reuse in Dar Bouazza, Morocco
Authors: Nihad Chakri, Btissam El Amrani, Faouzi Berrada, Halima Jounaid, Fouad Amraoui
Abstract:
In the context of the increasing water resource scarcity in Morocco in recent years, the use of unconventional resources has become imperative. Although efforts have been made in the field of sanitation in urban areas, rural areas, due to their specificities, such as scattered dwellings and limited accessibility, suffer from a lack of basic infrastructure. This work focuses on replicating the Faculty of Sciences Ain Chock (FSAC) model for the treatment and reuse of wastewater from a peri-urban traditional hammam in Casablanca, specifically in the municipality of Dar Bouazza. This initiative is part of the Eco-Hammam project, which aims to minimize the negative impacts of traditional hammams in terms of irrational and uncontrolled consumption of water and wood energy resources. To achieve this, a comprehensive environmental diagnosis of all hammams in the municipality of Dar Bouazza, our study site, has been undertaken. Then, a feasibility study is also conducted to assess the possibility of replicating the FSAC mini-station to treat the wastewater of the selected pilot hammam, namely, My Yacoub II.Keywords: water resource scarcity, unconventional resources, sanitation, per-urban areas, rural areas, basic infrastructure, replication, reuse of wastewater, traditional hammam, Casablanca, Municipality of Dar Bouazza, negative impacts, environmental diagnosis, feasibility study, pilot hammam, My Yacoub II
Procedia PDF Downloads 639826 Controlling the Oxygen Vacancies in the Structure of Anode Materials for Improved Electrochemical Performance in Lithium-Ion Batteries
Authors: Moustafa M. S. Sanad
Abstract:
The worsening of energy supply crisis and the exacerbation of climate change by environmental pollution problems have become the greatest threat to human life. One of the ways to confront these problems is to rely on renewable energy and its storage systems. Nowadays, huge attention has been directed to the development of lithium-ion batteries (LIBs) as efficient tools for storing the clean energy produced by green sources like solar and wind energies. Accordingly, the demand for powerful electrode materials with excellent electrochemical characteristics has been progressively increased to meet fast and continuous growth in the market of energy storage systems. Therefore, the electronic and electrical properties of conversion anode materials for rechargeable lithium-ion batteries (LIBs) can be enhanced by introducing lattice defects and oxygen vacancies in the crystal structure. In this regard, the intended presentation will demonstrate new insights and effective ways for enhancing the electrical conductivity and improving the electrochemical performance of different anode materials such as MgFe₂O₄, CdFe₂O₄, Fe₃O₄, LiNbO₃ and Nb₂O₅. The changes in the physicochemical and morphological properties have been deeply investigated via structural and spectroscopic analyses (e.g., XRD, FESEM, HRTEM, and XPS). Moreover, the enhancement in the electrochemical properties of these anode materials will be discussed through Galvanostatic Cycling (GC), Cyclic Voltammetry (CV) and Electrochemical Impedance Spectroscopy (EIS) techniques.Keywords: structure modification, cationic substitution, non-stoichiometric synthesis, plasma treatment, lithium-ion batteries
Procedia PDF Downloads 619825 An Electromechanical Device to Use in Road Pavements to Convert Vehicles Mechanical Energy into Electrical Energy
Authors: Francisco Duarte, Adelino Ferreira, Paulo Fael
Abstract:
With the growing need for alternative energy sources, research into energy harvesting technologies has increased considerably in recent years. The particular case of energy harvesting on road pavements is a very recent area of research, with different technologies having been developed in recent years. However, none of them have presented high conversion efficiencies nor technical or economic viability. This paper deals with the development of a mechanical system to implement on a road pavement energy harvesting electromechanical device, to transmit energy from the device surface to an electrical generator. The main goal is to quantify the energy harvesting, transmission and conversion efficiency of the proposed system and compare it with existing systems. Conclusions about the system’s efficiency are presented.Keywords: road pavement, energy harvesting, energy conversion, system modelling
Procedia PDF Downloads 325