Search results for: reduce order aeroelastic model (ROAM)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 31057

Search results for: reduce order aeroelastic model (ROAM)

30187 Defining Methodology for Multi Model Software Process Improvement Framework

Authors: Aedah Abd Rahman

Abstract:

Software organisations may implement single or multiple frameworks in order to remain competitive. There are wide selection of generic Software Process Improvement (SPI) frameworks, best practices and standards implemented with different focuses and goals. Issues and difficulties emerge in the SPI practices from the context of software development and IT Service Management (ITSM). This research looks into the integration of multiple frameworks from the perspective of software development and ITSM. The research question of this study is how to define steps of methodology to solve the multi model software process improvement problem. The objective of this study is to define the research approach and methodologies to produce a more integrated and efficient Multi Model Process Improvement (MMPI) solution. A multi-step methodology is used which contains the case study, framework mapping and Delphi study. The research outcome has proven the usefulness and appropriateness of the proposed framework in SPI and quality practice in Malaysian software industries. This mixed method research approach is used to tackle problems from every angle in the context of software development and services. This methodology is used to facilitate the implementation and management of multi model environment of SPI frameworks in multiple domains.

Keywords: Delphi study, methodology, multi model software process improvement, service management

Procedia PDF Downloads 260
30186 Surface Tension and Bulk Density of Ammonium Nitrate Solutions: A Molecular Dynamics Study

Authors: Sara Mosallanejad, Bogdan Z. Dlugogorski, Jeff Gore, Mohammednoor Altarawneh

Abstract:

Ammonium nitrate (NH­₄NO₃, AN) is commonly used as the main component of AN emulsion and fuel oil (ANFO) explosives, that use extensively in civilian and mining operations for underground development and tunneling applications. The emulsion formulation and wettability of AN prills, which affect the physical stability and detonation of ANFO, highly depend on the surface tension, density, viscosity of the used liquid. Therefore, for engineering applications of this material, the determination of density and surface tension of concentrated aqueous solutions of AN is essential. The molecular dynamics (MD) simulation method have been used to investigate the density and the surface tension of high concentrated ammonium nitrate solutions; up to its solubility limit in water. Non-polarisable models for water and ions have carried out the simulations, and the electronic continuum correction model (ECC) uses a scaling of the charges of the ions to apply the polarisation implicitly into the non-polarisable model. The results of calculated density and the surface tension of the solutions have been compared to available experimental values. Our MD simulations show that the non-polarisable model with full-charge ions overestimates the experimental results while the reduce-charge model for the ions fits very well with the experimental data. Ions in the solutions show repulsion from the interface using the non-polarisable force fields. However, when charges of the ions in the original model are scaled in line with the scaling factor of the ECC model, the ions create a double ionic layer near the interface by the migration of anions toward the interface while cations stay in the bulk of the solutions. Similar ions orientations near the interface were observed when polarisable models were used in simulations. In conclusion, applying the ECC model to the non-polarisable force field yields the density and surface tension of the AN solutions with high accuracy in comparison to the experimental measurements.

Keywords: ammonium nitrate, electronic continuum correction, non-polarisable force field, surface tension

Procedia PDF Downloads 233
30185 Harmonic Pollution Caused by Non-Linear Load: Analysis and Identification

Authors: K. Khlifi, A. Haddouk, M. Hlaili, H. Mechergui

Abstract:

The present paper provides a detailed analysis of prior methods and approaches for non-linear load identification in residential buildings. The main goal of this analysis is to decipher the distorted signals and to estimate the harmonics influence on power systems. We have performed an analytical study of non-linear loads behavior in the residential environment. Simulations have been performed in order to evaluate the distorted rate of the current and follow his behavior. To complete this work, an instrumental platform has been realized to carry out practical tests on single-phase non-linear loads which illustrate the current consumption of some domestic appliances supplied with single-phase sinusoidal voltage. These non-linear loads have been processed and tracked in order to limit their influence on the power grid and to reduce the Joule effect losses. As a result, the study has allowed to identify responsible circuits of harmonic pollution.

Keywords: distortion rate, harmonic analysis, harmonic pollution, non-linear load, power factor

Procedia PDF Downloads 143
30184 Health Belief Model on Smoking Behaviors Causing Lung Cancer: A Cross-Sectional Study in Thailand

Authors: Dujrudee Chinwong, Chanida Prompantakorn, Ubonphan Chaichana, Surarong Chinwong

Abstract:

Objective: Understanding the university students’ perceptions on smoking caused lung cancer based on the Health Belief Model should help health care providers in assisting them to quit smoking. Thus, this study aimed to investigate the University students’ health belief in smoking behaviors caused lung cancer, which based on the Health Belief Model. Methods: Data were collected from voluntary participants using a self-administered questionnaire. Participants were students studying at a University in northern Thailand who were current smokers; they were selected using snowball sampling. Results: Of 361 students, 84% were males; 78% smoked not more than 10 cigarettes a day; 68% intended to quit smoking. Our findings, based on the health belief model, showed that 1) perceived susceptibility: participants strongly believed that if they did not stop smoking, they were at high risk of lung cancer (88%); 2) perceived severity: they strongly believed that they had a high chance of death from lung cancer if they continued smoking (84%); 3) perceived benefits: they strongly believed that quitting smoking could reduce the chance of developing lung cancer; 4) perceived barriers of quitting smoking: they strongly believed in the difficulty of quitting smoking because it needed a high effort and strong intention (69%); 5) perceived self-efficacy: however, they strongly believed that they can quit smoking right away if they had a strong intention to quit smoking (70%); 6) cues to action: they strongly believed in the support of parents (85%) and lovers (78%) in helping them to quit smoking. Further, they believed that limitation on smoking area in the University and smoking cessation services provided by the University can assist them to quit smoking. Conclusion: The Health Belief Model helps us to understand students’ smoking behaviors caused lung cancer. This could lead to designing a smoking cessation program to assist students to quit smoking.

Keywords: health belief model, lung cancer, smoking, Thailand

Procedia PDF Downloads 301
30183 Mitigation of Offshore Piling Noise Effects on Marine Mammals

Authors: Waled A. Dawoud, Abdelazim M. Negm, Nasser M. Saleh

Abstract:

Offshore piling generates underwater sound at level high enough to cause physical damage or hearing impairment to the marine mammals. Several methods can be used to mitigate the effect of underwater noise from offshore pile driving on marine mammals which can be divided into three main approaches. The first approach is to keep the mammal out of the high-risk area by using aversive sound waves produced by acoustic mitigation devices such as playing-back of mammal's natural predator vocalization, alarm or distress sounds, and anthropogenic sound. The second approach is to reduce the amount of underwater noise from pile driving using noise mitigation techniques such as bubble curtains, isolation casing, and hydro-sound dampers. The third approach is to eliminate the overlap of underwater waves by using prolonged construction process. To investigate the effectiveness of different noise mitigation methods; a pile driven with 235 kJ rated energy diesel hammer near Jeddah Coast, Kingdom of Saudi Arabia was used. Using empirical sound exposure model based on Red Sea characteristics and limits of National Oceanic and Atmospheric Administration; it was found that the aversive sound waves should extend to 1.8 km around the pile location. Bubble curtains can reduce the behavioral disturbance area up to 28%; temporary threshold shift up to 36%; permanent threshold shift up to 50%; and physical injury up to 70%. Isolation casing can reduce the behavioral disturbance range up to 12%; temporary threshold shift up to 21%; permanent threshold shift up to 29%; and physical injury up to 46%. Hydro-sound dampers efficiency depends mainly on the used technology and it can reduce the behavioral disturbance range from 10% to 33%; temporary threshold shift from 18% to 25%; permanent threshold shift from 32% to 50%; and physical injury from 46% to 60%. To prolong the construction process, it was found that the single pile construction, use of soft start, and keep time between two successive hammer strikes more than 3 seconds are the most effective techniques.

Keywords: offshore pile driving, sound propagation models, noise effects on marine mammals, Underwater noise mitigation

Procedia PDF Downloads 546
30182 Structure Function and Violation of Scale Invariance in NCSM: Theory and Numerical Analysis

Authors: M. R. Bekli, N. Mebarki, I. Chadou

Abstract:

In this study, we focus on the structure functions and violation of scale invariance in the context of non-commutative standard model (NCSM). We find that this violation appears in the first order of perturbation theory and a non-commutative version of the DGLAP evolution equation is deduced. Numerical analysis and comparison with experimental data imposes a new bound on the non-commutative parameter.

Keywords: NCSM, structure function, DGLAP equation, standard model

Procedia PDF Downloads 611
30181 A Phase Field Approach to Model Crack Interface Interaction in Ceramic Matrix Composites

Authors: Dhaladhuli Pranavi, Amirtham Rajagopal

Abstract:

There are various failure modes in ceramic matrix composites; notable ones are fiber breakage, matrix cracking and fiber matrix debonding. Crack nucleation and propagation in microstructure of such composites requires an understanding of interaction of crack with the multiple inclusion heterogeneous system and interfaces. In order to assess structural integrity, the material parameters especially of the interface that governs the crack growth should be determined. In the present work, a nonlocal phase field approach is proposed to model the crack interface interaction in such composites. Nonlocal approaches help in understanding the complex mechanisms of delamination growth and mitigation and operates at a material length scale. The performance of the proposed formulation is illustrated through representative numerical examples. The model proposed is implemented in the framework of the finite element method. Several parametric studies on interface crack interaction are conducted. The proposed model is easy and simple to implement and works very well in modeling fracture in composite systems.

Keywords: composite, interface, nonlocal, phase field

Procedia PDF Downloads 142
30180 Effect of Geometry on the Aerodynamic Performance of Darrieus H Yype Vertical Axis Wind Turbine

Authors: Belkheir Noura, Rabah Kerfah, Boumehani Abdellah

Abstract:

The influence of solidity variations on the aerodynamic performance of H type vertical axis wind turbine is studied in this paper. The wind turbine model used in this paper is the three-blade wind turbine with the symmetrical airfoil, NACA0021. The length of the chord is 0.265m. Numerical investigations were implemented for the different solidity by changing the radius and blade number. A two-dimensional model of the wind turbine is employed. The approach a Reynolds-Averaged Navier–Stokes equations, completed by the K- ώ SST turbulence model, is used. Motion mesh model capability of a computational fluid dynamics (CFD) solver is used. For each value of the solidity, the aerodynamics performances and the characteristics of the flow field are studied at several values of the tip speed ratio, λ = 0.5 to λ = 3, with an incoming wind speed of 8 m/s. The results show that increasing the number of blades will reduce the maximum value of the power coefficient of the wind turbine. Also, for the VAWT with a lower solidity can obtain the maximum Cp at a high tip speed ratio. The effects of changing the radius and blade number on aerodynamic performance are almost the same. Finally, for the validation, experimental data from the literature and computational results were compared. In conclusion, to study the influence of the solidity in the performances of the wind turbine is to provide the reference for the design of H type vertical axis wind turbines.

Keywords: wind energy, darrieus h type vertical axis wind turbine, computational fluid dynamic, solidity

Procedia PDF Downloads 97
30179 On-Chip Ku-Band Bandpass Filter with Compact Size and Wide Stopband

Authors: Jyh Sheen, Yang-Hung Cheng

Abstract:

This paper presents a design of a microstrip bandpass filter with a compact size and wide stopband by using 0.15-μm GaAs pHEMT process. The wide stop band is achieved by suppressing the first and second harmonic resonance frequencies. The slow-wave coupling stepped impedance resonator with cross coupled structure is adopted to design the bandpass filter. A two-resonator filter was fabricated with 13.5GHz center frequency and 11% bandwidth was achieved. The devices are simulated using the ADS design software. This device has shown a compact size and very low insertion loss of 2.6 dB. Microstrip planar bandpass filters have been widely adopted in various communication applications due to the attractive features of compact size and ease of fabricating. Various planar resonator structures have been suggested. In order to reach a wide stopband to reduce the interference outside the passing band, various designs of planar resonators have also been submitted to suppress the higher order harmonic frequencies of the designed center frequency. Various modifications to the traditional hairpin structure have been introduced to reduce large design area of hairpin designs. The stepped-impedance, slow-wave open-loop, and cross-coupled resonator structures have been studied to miniaturize the hairpin resonators. In this study, to suppress the spurious harmonic bands and further reduce the filter size, a modified hairpin-line bandpass filter with cross coupled structure is suggested by introducing the stepped impedance resonator design as well as the slow-wave open-loop resonator structure. In this way, very compact circuit size as well as very wide upper stopband can be achieved and realized in a Roger 4003C substrate. On the other hand, filters constructed with integrated circuit technology become more attractive for enabling the integration of the microwave system on a single chip (SOC). To examine the performance of this design structure at the integrated circuit, the filter is fabricated by the 0.15 μm pHEMT GaAs integrated circuit process. This pHEMT process can also provide a much better circuit performance for high frequency designs than those made on a PCB board. The design example was implemented in GaAs with center frequency at 13.5 GHz to examine the performance in higher frequency in detail. The occupied area is only about 1.09×0.97 mm2. The ADS software is used to design those modified filters to suppress the first and second harmonics.

Keywords: microstrip resonator, bandpass filter, harmonic suppression, GaAs

Procedia PDF Downloads 326
30178 A Comparison of the Adsorption Mechanism of Arsenic on Iron-Modified Nanoclays

Authors: Michael Leo L. Dela Cruz, Khryslyn G. Arano, Eden May B. Dela Pena, Leslie Joy Diaz

Abstract:

Arsenic adsorbents were continuously being researched to ease the detrimental impact of arsenic to human health. A comparative study on the adsorption mechanism of arsenic on iron modified nanoclays was undertaken. Iron intercalated montmorillonite (Fe-MMT) and montmorillonite supported zero-valent iron (ZVI-MMT) were the adsorbents investigated in this study. Fe-MMT was produced through ion-exchange by replacing the sodium intercalated ions in montmorillonite with iron (III) ions. The iron (III) in Fe-MMT was later reduced to zero valent iron producing ZVI-MMT. Adsorption study was performed by batch technique. Obtained data were fitted to intra-particle diffusion, pseudo-first order, and pseudo-second-order models and the Elovich equation to determine the kinetics of adsorption. The adsorption of arsenic on Fe-MMT followed the intra-particle diffusion model with intra-particle rate constant of 0.27 mg/g-min0.5. Arsenic was found to be chemically bound on ZVI-MMT as suggested by the pseudo-second order and Elovich equation. The derived pseudo-second order rate constant was 0.0027 g/mg-min with initial adsorption rate computed from the Elovich equation was 113 mg/g-min.

Keywords: adsorption mechanism, arsenic, montmorillonite, zero valent iron

Procedia PDF Downloads 415
30177 Application of Environmental Justice Concept in Urban Planning, The Peri-Urban Environment of Tehran as the Case Study

Authors: Zahra Khodaee

Abstract:

Environmental Justice (EJ) concept consists of multifaceted movements, community struggles, and discourses in contemporary societies that seek to reduce environmental risks, increase environmental protections, and generally reduce environmental inequalities suffered by minority and poor communities; a term that incorporates ‘environmental racism’ and ‘environmental classism,’ captures the idea that different racial and socioeconomic groups experience differential access to environmental quality. This article explores environmental justice as an urban phenomenon in urban planning and applies it in peri-urban environment of a metropolis. Tehran peri-urban environments which are the result of meeting the city- village- nature systems or «city-village junction» have gradually faced effects such as accelerated environmental decline, changes without land-use plan, and severe service deficiencies. These problems are instances of environmental injustice which make the planners to adjust the problems and use and apply the appropriate strategies and policies by looking for solutions and resorting to theories, techniques and methods related to environmental justice. In order to access to this goal, try to define environmental justice through justice and determining environmental justice indices to analysis environmental injustice in case study. Then, make an effort to introduce some criteria to select case study in two micro and micro levels. Qiyamdasht town as the peri-urban environment of Tehran metropolis is chosen and examined to show the existence of environmental injustice by questionnaire analysis and SPSS software. Finally, use AIDA technique to design a strategic plan and reduce environmental injustice in case study by introducing the better scenario to be used in policy and decision making areas.

Keywords: environmental justice, metropolis of Tehran, Qiyam, Dasht peri, urban settlement, analysis of interconnected decision area (AIDA)

Procedia PDF Downloads 493
30176 How to Reach Net Zero Emissions? On the Permissibility of Negative Emission Technologies and the Danger of Moral Hazards

Authors: Hanna Schübel, Ivo Wallimann-Helmer

Abstract:

In order to reach the goal of the Paris Agreement to not overshoot 1.5°C of warming above pre-industrial levels, various countries including the UK and Switzerland have committed themselves to net zero emissions by 2050. The employment of negative emission technologies (NETs) is very likely going to be necessary for meeting these national objectives as well as other internationally agreed climate targets. NETs are methods of removing carbon from the atmosphere and are thus a means for addressing climate change. They range from afforestation to technological measures such as direct air capture and carbon storage (DACCS), where CO2 is captured from the air and stored underground. As all so-called geoengineering technologies, the development and deployment of NETs are often subject to moral hazard arguments. As these technologies could be perceived as an alternative to mitigation efforts, so the argument goes, they are potentially a dangerous distraction from the main target of mitigating emissions. We think that this is a dangerous argument to make as it may hinder the development of NETs which are an essential element of net zero emission targets. In this paper we argue that the moral hazard argument is only problematic if we do not reflect upon which levels of emissions are at stake in order to meet net zero emissions. In response to the moral hazard argument we develop an account of which levels of emissions in given societies should be mitigated and not be the target of NETs and which levels of emissions can legitimately be a target of NETs. For this purpose, we define four different levels of emissions: the current level of individual emissions, the level individuals emit in order to appear in public without shame, the level of a fair share of individual emissions in the global budget, and finally the baseline of net zero emissions. At each level of emissions there are different subjects to be assigned responsibilities if societies and/or individuals are committed to the target of net zero emissions. We argue that all emissions within one’s fair share do not demand individual mitigation efforts. The same holds with regard to individuals and the baseline level of emissions necessary to appear in public in their societies without shame. Individuals are only under duty to reduce their emissions if they exceed this baseline level. This is different for whole societies. Societies demanding more emissions to appear in public without shame than the individual fair share are under duty to foster emission reductions and are not legitimate to reduce by introducing NETs. NETs are legitimate for reducing emissions only below the level of fair shares and for reaching net zero emissions. Since access to NETs to achieve net zero emissions demands technology not affordable to individuals there are also no full individual responsibilities to achieve net zero emissions. This is mainly a responsibility of societies as a whole.

Keywords: climate change, mitigation, moral hazard, negative emission technologies, responsibility

Procedia PDF Downloads 122
30175 European Countries Challenge’s in Value Added Tax

Authors: Fatbardha Kadiu, Nulifer Caliskan

Abstract:

The value added tax came as a necessity of substituting the old tax on sales. Based on the advantages of this new tax in our days it is used successfully in more than 140 countries around the world. The aim of the paper is to describe the nature of this tax with its advantages and disadvantages. Also it will describe the way how it functions in most of the European countries and the actual challenges of these countries on value added tax. It will be present the types of goods which are exempt from this tax, the reasons and the consequences of those exemptions. The paper will be based on secondary data taken from respective literature. An econometric model will be present in order to identify the dependence of value tax from other parameters. The analyzing most refers to the two main principles of harmonization and billing on the fiscal system and the ways how to restructures the system in order to minimize the fiscal evasion.

Keywords: value added tax, revenues, complexity, legal uncertainty

Procedia PDF Downloads 400
30174 Fractional Order Sallen-Key Filters

Authors: Ahmed Soltan, Ahmed G. Radwan, Ahmed M. Soliman

Abstract:

This work aims to generalize the integer order Sallen-Key filters into the fractional-order domain. The analysis in the case of two different fractional-order elements introduced where the general transfer function becomes four terms which are unusual in the conventional case. In addition, the effect of the transfer function parameters on the filter poles and hence the stability is introduced and closed forms for the filter critical frequencies are driven. Finally, different examples of the fractional order Sallen-Key filter design are presented with circuit simulations using ADS where a great matching between the numerical and simulation results is obtained.

Keywords: Sallen-Key, fractance, stability, low-pass filter, analog filter

Procedia PDF Downloads 719
30173 Off-Topic Text Detection System Using a Hybrid Model

Authors: Usama Shahid

Abstract:

Be it written documents, news columns, or students' essays, verifying the content can be a time-consuming task. Apart from the spelling and grammar mistakes, the proofreader is also supposed to verify whether the content included in the essay or document is relevant or not. The irrelevant content in any document or essay is referred to as off-topic text and in this paper, we will address the problem of off-topic text detection from a document using machine learning techniques. Our study aims to identify the off-topic content from a document using Echo state network model and we will also compare data with other models. The previous study uses Convolutional Neural Networks and TFIDF to detect off-topic text. We will rearrange the existing datasets and take new classifiers along with new word embeddings and implement them on existing and new datasets in order to compare the results with the previously existing CNN model.

Keywords: off topic, text detection, eco state network, machine learning

Procedia PDF Downloads 88
30172 Integrating Assurance and Risk Management of Complex Systems

Authors: Odd Ivar Haugen

Abstract:

This paper explores the relationship between assurance, risk, and risk management in the context of complex safety-related systems. It introduces a nuanced understanding of assurance and argues that the foundation for grounds for justified confidence in claims made about a complex system is related to the system behaviour. It emphasises the importance of knowledge as the cornerstone of assurance. The paper addresses the challenges of epistemic and aleatory uncertainties inherent in safety-critical systems. A systems approach is proposed to model emergent properties and complexity using the composition, environment, structure, mechanisms (CESM) metamodel, offering a structured framework for analysing system behaviour. The interplay between assurance and risk management is conceptualised through two models: the domain model and the control model. Assurance and risk management are mutually dependent on each other to reduce uncertainty and control risk levels. This work highlights the dual roles of assurance in risk management, acting as an epistemic actuator on the one side and providing feedback about the strength of the justification on the other. Assurance and risk management have inseparable roles in ensuring safety in complex systems.

Keywords: assurance, CESM metamodel, confidence, emergent properties, knowledge, objectivity, risk, system behaviour, system safety

Procedia PDF Downloads 12
30171 Sorption of Congo Red from Aqueous Solution by Surfactant-Modified Bentonite: Kinetic and Factorial Design Study

Authors: B. Guezzen, M. A. Didi, B. Medjahed

Abstract:

An organoclay (HDTMA-B) was prepared from sodium bentonite (Na-B). The starting material was modified using the hexadecyltrimethylammonium ion (HDTMA+) in the amounts corresponding to 100 % of the CEC value. Batch experiments were carried out in order to model and optimize the sorption of Congo red dye from aqueous solution. The pseudo-first order and pseudo-second order kinetic models have been developed to predict the rate constant and the sorption capacity at equilibrium with the effect of temperature, the solid/solution ratio and the initial dye concentration. The equilibrium time was reached within 60 min. At room temperature (20 °C), optimum dye sorption of 49.4 mg/g (98.9%) was achieved at pH 6.6, sorbent dosage of 1g/L and initial dye concentration of 50 mg/L, using surfactant modified bentonite. The optimization of adsorption parameters mentioned above on dye removal was carried out using Box-Behnken design. The sorption parameters were analyzed statistically by means of variance analysis by using the Statgraphics Centurion XVI software.

Keywords: adsorption, dye, factorial design, kinetic, organo-bentonite

Procedia PDF Downloads 200
30170 A Crop Growth Subroutine for Watershed Resources Management (WRM) Model

Authors: Kingsley Nnaemeka Ogbu, Constantine Mbajiorgu

Abstract:

Vegetation has a marked effect on runoff and has become an important component in hydrologic model. The watershed Resources Management (WRM) model, a process-based, continuous, distributed parameter simulation model developed for hydrologic and soil erosion studies at the watershed scale lack a crop growth component. As such, this model assumes a constant parameter values for vegetation and hydraulic parameters throughout the duration of hydrologic simulation. Our approach is to develop a crop growth algorithm based on the original plant growth model used in the Environmental Policy Integrated Climate Model (EPIC) model. This paper describes the development of a single crop growth model which has the capability of simulating all crops using unique parameter values for each crop. Simulated crop growth processes will reflect the vegetative seasonality of the natural watershed system. An existing model was employed for evaluating vegetative resistance by hydraulic and vegetative parameters incorporated into the WRM model. The improved WRM model will have the ability to evaluate the seasonal variation of the vegetative roughness coefficient with depth of flow and further enhance the hydrologic model’s capability for accurate hydrologic studies

Keywords: crop yield, roughness coefficient, PAR, WRM model

Procedia PDF Downloads 411
30169 Calibration of Hybrid Model and Arbitrage-Free Implied Volatility Surface

Authors: Kun Huang

Abstract:

This paper investigates whether the combination of local and stochastic volatility models can be calibrated exactly to any arbitrage-free implied volatility surface of European option. The risk neutral Brownian Bridge density is applied for calibration of the leverage function of our Hybrid model. Furthermore, the tails of marginal risk neutral density are generated by Generalized Extreme Value distribution in order to capture the properties of asset returns. The local volatility is generated from the arbitrage-free implied volatility surface using stochastic volatility inspired parameterization.

Keywords: arbitrage free implied volatility, calibration, extreme value distribution, hybrid model, local volatility, risk-neutral density, stochastic volatility

Procedia PDF Downloads 268
30168 Optimization of Process Parameters and Modeling of Mass Transport during Hybrid Solar Drying of Paddy

Authors: Aprajeeta Jha, Punyadarshini P. Tripathy

Abstract:

Drying is one of the most critical unit operations for prolonging the shelf-life of food grains in order to ensure global food security. Photovoltaic integrated solar dryers can be a sustainable solution for replacing energy intensive thermal dryers as it is capable of drying in off-sunshine hours and provide better control over drying conditions. But, performance and reliability of PV based solar dryers depend hugely on climatic conditions thereby, drastically affecting process parameters. Therefore, to ensure quality and prolonged shelf-life of paddy, optimization of process parameters for solar dryers is critical. Proper moisture distribution within the grains is most detrimental factor to enhance the shelf-life of paddy therefore; modeling of mass transport can help in providing a better insight of moisture migration. Hence, present work aims at optimizing the process parameters and to develop a 3D finite element model (FEM) for predicting moisture profile in paddy during solar drying. Optimization of process parameters (power level, air velocity and moisture content) was done using box Behnken model in Design expert software. Furthermore, COMSOL Multiphysics was employed to develop a 3D finite element model for predicting moisture profile. Optimized model for drying paddy was found to be 700W, 2.75 m/s and 13% wb with optimum temperature, milling yield and drying time of 42˚C, 62%, 86 min respectively, having desirability of 0.905. Furthermore, 3D finite element model (FEM) for predicting moisture migration in single kernel for every time step has been developed. The mean absolute error (MAE), mean relative error (MRE) and standard error (SE) were found to be 0.003, 0.0531 and 0.0007, respectively, indicating close agreement of model with experimental results. Above optimized conditions can be successfully used to dry paddy in PV integrated solar dryer in order to attain maximum uniformity, quality and yield of product to achieve global food and energy security

Keywords: finite element modeling, hybrid solar drying, mass transport, paddy, process optimization

Procedia PDF Downloads 139
30167 BIASS in the Estimation of Covariance Matrices and Optimality Criteria

Authors: Juan M. Rodriguez-Diaz

Abstract:

The precision of parameter estimators in the Gaussian linear model is traditionally accounted by the variance-covariance matrix of the asymptotic distribution. However, this measure can underestimate the true variance, specially for small samples. Traditionally, optimal design theory pays attention to this variance through its relationship with the model's information matrix. For this reason it seems convenient, at least in some cases, adapt the optimality criteria in order to get the best designs for the actual variance structure, otherwise the loss in efficiency of the designs obtained with the traditional approach may be very important.

Keywords: correlated observations, information matrix, optimality criteria, variance-covariance matrix

Procedia PDF Downloads 444
30166 Understanding the 3R's Element in the Creation of Ecological Form That Leads to Ecodesign

Authors: Mohd Hasni Chumiran

Abstract:

The rapid growth of global industrialism over the past few decades has led to various environmental issues and ecological instability, all due to human activity. In order to solve this global issue, the manufacturers alike have begun to embrace the use of ecodesign products. However, when considering a specific field, multiple questions have been raised and industrial designers (the practising designer's R&D group) have been unable to define the ecological cycle methodology. In this paper, we investigate the validation of problematic in the creation of ecodesign products with the 'reduce, reuse and recycle' (3R’s) method, which is an untested product design theory. The aim of this research is to address the 3R’s method can be extracted in order to transmit an ecological form of ecodesign, specifically among Malaysian furniture manufacturers. By operating the Descriptive Study I (DS-I) phase: Design Research Methodology (DRM), the research has applied two research approaches by the methodological triangulation tradition. To achieve the result, this validation of descriptive structure (design theory) shall be matched with the research hypothesis along the use of research questions.

Keywords: design research methodology, ecodesign, ecological form, industrial design

Procedia PDF Downloads 232
30165 [Keynote Speech]: Simulation Studies of Pulsed Voltage Effects on Cells

Authors: Jiahui Song

Abstract:

In order to predict or explain a complicated biological process, it is important first to construct mathematical models that can be used to yield analytical solutions. Through numerical simulation, mathematical model results can be used to test scenarios that might not be easily attained in a laboratory experiment, or to predict parameters or phenomena. High-intensity, nanosecond pulse electroporation has been a recent development in bioelectrics. The dynamic pore model can be achieved by including a dynamic aspect and a dependence on the pore population density into pore formation energy equation to analyze and predict such electroporation effects. For greater accuracy, with inclusion of atomistic details, molecular dynamics (MD) simulations were also carried out during this study. Besides inducing pores in cells, external voltages could also be used in principle to modulate action potential generation in nerves. This could have an application in electrically controlled ‘pain management’. Also a simple model-based rate equation treatment of the various cellular bio-chemical processes has been used to predict the pulse number dependent cell survival trends.

Keywords: model, high-intensity, nanosecond, bioelectrics

Procedia PDF Downloads 228
30164 The Use of Thermally Modified Diatomite to Remove Lead Ions

Authors: Hilary Limo Rutto

Abstract:

To better understand the application of diatomite as an adsorbent for the removal of Pb2+ from heavy metal-contaminated water, in this paper, diatomite was used to adsorb Pb2+ from aqueous solution under various conditions. The intrinsic exchange properties were further improved by heating the raw diatomite with fluxing agent at different temperatures and modification with manganese oxides. It is evident that the mass of the adsorbed Pb2+ generally increases after thermal treatment and modification with manganese oxides. The adsorption characteristics of lead on diatomite were studied at pH range of 2.5–12. The favourable pH range was found to be 7.5-8.5. The thermodynamic parameters (i.e.,∆H° ∆G° ∆S°) were evaluated from the temperature dependent adsorption isotherms. The results indicated that the adsorption process of Pb2+ on diatomite was spontaneous, endothermic and physical in nature. The equilibrium data have been analyzed using Langmuir and freundlich isotherm. The Langmuir isotherm was demonstrated to provide the best correlation for the adsorption of lead onto diatomite. The kinetics was studied using Pseudo- first and second-order model on the adsorption of lead onto diatomite. The results give best fit in second-order studies and it can be concluded that the adsorption of lead onto diatomite is second order reaction.

Keywords: thermally modified, diatomite, adsorption, lead

Procedia PDF Downloads 235
30163 Emergence of New Development Bank: Analyzing the Impact on BRICS Nations and the World Order

Authors: Urvi Shah, Anmol Jain

Abstract:

The talks of a New Global Order have been doing rounds since the advent of 21st century. Similar change in global scenario was witnessed when the Bretton Woods System came up post the World War II. The changing world order has been analyzed by using the Purchasing Power Parity (PPP) and Nominal Gross Domestic Product (GDP) estimates. The PPP and Nominal GDP methods show the purchasing power and financial background of the countries respectively, which helps in knowing both real and nominal financial strength of the country. Today, the rising powers of BRICS are posing new challenges to the world order shaped by the West. BRICS, i.e. Brazil, Russia, India, China and South Africa, countries have at various instances represented the interests of developing countries at world forums. The pooled population of these nations accounts for 41.6% of the total world population which gives a very resilient idea of the workforce or human resources which is mobilized by them. They have a combined GDP (PPP) of around 30.57% of the total world GDP (PPP). The paper tries to analyze the prospects and impact of the New Development Bank (NDB) formerly known as the BRICS Bank, on world economy, which has the potential to act as a rival to West dominated IMF and World Bank. The paper studies the paradigm shift in the global order, impact of the NDB on third world nations and the developed nations. The study concluded that the relative positions of BRICS countries in the world economy are changing, irrespective of the measurement methodology being US$ or the PPP model.

Keywords: BRICS, New Development Bank, Nominal GDP, purchasing power parity

Procedia PDF Downloads 322
30162 Design of Tube Expanders with Groove Shapes to Reduce Deformation of Tube Inner Grooves in Copper Tube Expansion

Authors: I. Sin, H. Kim, S. Park

Abstract:

Fin-tube heat exchangers have grooves inside tubes to improve heat exchange performance. However, during the tube expansion process, heat exchange efficiency is decreased due to large deformation of tube inner grooves. Therefore, the objective of this study is to design a tube expander with groove shapes on its outer surface to minimize deformation of the inner grooves in copper tube expansion for fin-tube heat exchangers. In order to achieve this goal, first, we have tried to calculate tube inner groove deformation by the currently used tube expander without groove shapes on its surface. The tube inner groove deformation was acquired by elastoplastic finite element analysis from the boundary conditions with one tube end fixed and friction between the tube and tube expander (friction coefficient: 0.15). The tube expansion process was simulated by inserting the tube expander into the tube with a speed of 90 mm/s. The analysis results showed that tube inner groove heights were decreased by approximately 8 % from 0.15 mm to 0.138 mm with stress concentrations observed at the groove end, consistent with experimental results. Based on the current results, we are trying to design a novel shape of the tube expander with grooves to further reduce deformation tube inner grooves in copper tube expansion. For this, we will select major design variables of tube expander groove shapes by conducting sensitivity analysis and then optimize the design variables using the Taguchi method.

Keywords: tube expansion, tube expander, heat exchanger, finite element

Procedia PDF Downloads 328
30161 Adsorption and Selective Determination Ametryne in Food Sample Using of Magnetically Separable Molecular Imprinted Polymers

Authors: Sajjad Hussain, Sabir Khan, Maria Del Pilar Taboada Sotomayor

Abstract:

This work demonstrates the synthesis of magnetic molecularly imprinted polymers (MMIPs) for determination of a selected pesticide (ametryne) using high performance liquid chromatography (HPLC). Computational simulation can assist the choice of the most suitable monomer for the synthesis of polymers. The (MMIPs) were polymerized at the surface of Fe3O4@SiO2 magnetic nanoparticles (MNPs) using 2-vinylpyradine as functional monomer, ethylene-glycol-dimethacrylate (EGDMA) is a cross-linking agent and 2,2-Azobisisobutyronitrile (AIBN) used as radical initiator. Magnetic non-molecularly imprinted polymer (MNIPs) was also prepared under the same conditions without analyte. The MMIPs were characterized by scanning electron microscopy (SEM), Brunauer, Emmett and Teller (BET) and Fourier transform infrared spectroscopy (FTIR). Pseudo first order and pseudo second order model were applied to study kinetics of adsorption and it was found that adsorption process followed the pseudo first order kinetic model. Adsorption equilibrium data was fitted to Freundlich and Langmuir isotherms and the sorption equilibrium process was well described by Langmuir isotherm mode. The selectivity coefficients (α) of MMIPs for ametryne with respect to atrazine, ciprofloxacin and folic acid were 4.28, 12.32, and 14.53 respectively. The spiked recoveries ranged between 91.33 and 106.80% were obtained. The results showed high affinity and selectivity of MMIPs for pesticide ametryne in the food samples.

Keywords: molecularly imprinted polymer, pesticides, magnetic nanoparticles, adsorption

Procedia PDF Downloads 486
30160 Nonlinear Modelling and Analysis of Piezoelectric Smart Thin-Walled Structures in Supersonic Flow

Authors: Shu-Yang Zhang, Shun-Qi Zhang, Zhan-Xi Wang, Xian-Sheng Qin

Abstract:

Thin-walled structures are used more and more widely in modern aircrafts and some other structures in aerospace field nowadays. Accompanied by the wider applications, the vibration of the structures has been a bigger problem. Because of the direct and converse piezoelectric effect, piezoelectric materials combined to host thin-walled structures, named as piezoelectric smart structures, can be an effective way to suppress the vibration. So, an accurate model for piezoelectric thin-walled structures in air flow is necessary and important. In our recent work, an electromechanical coupling nonlinear aerodynamic finite element model of piezoelectric smart thin-walled structures is built based on the Reissner-Mindlin plate theory and first-order piston theory for aerodynamic pressure of supersonic flow. Von Kármán type nonlinearity is considered in the present model. Finally, the model is validated by experimental and numerical results from the literature, which can describe the vibration of the structures in supersonic flow precisely.

Keywords: piezoelectric smart structures, aerodynamic, geometric nonlinearity, finite element analysis

Procedia PDF Downloads 390
30159 Numerical Modeling of the Depth-Averaged Flow over a Hill

Authors: Anna Avramenko, Heikki Haario

Abstract:

This paper reports the development and application of a 2D depth-averaged model. The main goal of this contribution is to apply the depth averaged equations to a wind park model in which the treatment of the geometry, introduced on the mathematical model by the mass and momentum source terms. The depth-averaged model will be used in future to find the optimal position of wind turbines in the wind park. K-E and 2D LES turbulence models were consider in this article. 2D CFD simulations for one hill was done to check the depth-averaged model in practise.

Keywords: depth-averaged equations, numerical modeling, CFD, wind park model

Procedia PDF Downloads 603
30158 The Origins of Inflation in Tunisia

Authors: Narimen Rdhaounia Mohamed Kouni

Abstract:

Our aim in this paper is to identify the origins of inflation in Tunisia on the period from 1988 to 2018. In order to estimate the model, an ARDL methodology is used. We studied also the effect of informal economy on inflation. Indeed, we estimated the size of the informal economy in Tunisia based on Gutmann method. The results showed that there are three main origins of inflation. In fact, the first origin is the fiscal policy adopted by Tunisia, particularly after revolution. The second origin is the increase of monetary variables. Finally, informal economy played an important role in inflation.

Keywords: inflation, consumer price index, informal, gutmann method, ARDL model

Procedia PDF Downloads 85