Search results for: peak expiratory flow rate
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12789

Search results for: peak expiratory flow rate

11919 Heat Transfer Characteristics on Blade Tip with Unsteady Wake

Authors: Minho Bang, Seok Min Choi, Jun Su Park, Hokyu Moon, Hyung Hee Cho

Abstract:

Present study investigates the effect of unsteady wakes on heat transfer in blade tip. Heat/mass transfer was measured in blade tip region depending on a variety of strouhal number by naphthalene sublimation technique. Naphthalene sublimation technique measures heat transfer using a heat/mass transfer analogy. Experiments are performed in linear cascade which is composed of five turbine blades and rotating rods. Strouhal number of inlet flow are changed ranging from 0 to 0.22. Reynolds number is 100,000 based on 11.4 m/s of outlet flow and axial chord length. Three different squealer tip geometries such as base squealer tip, vertical rib squealer tip, and camber line squealer tip are used to study how unsteady wakes affect heat transfer on a blade tip. Depending on squealer tip geometry, different flow patterns occur on a blade tip. Also, unsteady wakes cause reduced tip leakage flow and turbulent flow. As a result, as strouhal number increases, heat/mass transfer coefficients decrease due to the reduced leakage flow. As strouhal number increases, heat/ mass transfer coefficients on a blade tip increase in vertical rib squealer tip.

Keywords: gas turbine, blade tip, heat transfer, unsteady wakes

Procedia PDF Downloads 372
11918 Oxygenation in Turbulent Flows over Block Ramps

Authors: Thendiyath Roshni, Stefano Pagliara

Abstract:

Block ramps (BR) or rock chutes are eco-friendly natural river restoration structures. BR are made of ramp of rocks and flows over BR develop turbulence and helps in the entrainment of ambient air. These act as natural aerators in river flow and therefore leads to oxygenation of water. As many of the hydraulic structures in rivers, hinders the natural path for aquatic habitat. However, flows over BR ascertains a natural rocky flow and ensures safe and natural movement for aquatic habitat. Hence, BR is considered as a better alternative for drop structures. As water quality is concerned, turbulent and aerated flows over BR or macro-roughness conditions improves aeration and thereby oxygenation. Hence, the objective of this paper is to study the oxygenation in the turbulent flows over BR. Experimental data were taken for a slope (S) of 27.5% for three discharges (Q = 9, 15 and 21 lps) conditions. Air concentration were measured with the help of air concentration probe for three different discharges in the uniform flow region. Oxygen concentration is deduced from the air concentration as ambient air is entrained in the flows over BR. Air concentration profiles and oxygen profiles are plotted in the uniform flow region for three discharges and found that air concentration and oxygen concentration does not show any remarkable variation in properties in the longitudinal profile in uniform flow region. An empirical relation is developed for finding the average oxygen concentration (Oₘ) for S = 27.5% in the uniform flow region for 9 < Q < 21 lps. The results show that as the discharge increases over BR, there is a reduction of oxygen concentration in the uniform flow region.

Keywords: aeration, block ramps, oxygenation, turbulent flows

Procedia PDF Downloads 171
11917 Investigation on Unsteady Flow of a Turbine Stage with Negative Bowed Stator

Authors: Keke Gao, Tao Lin, Yonghui Xie, Di Zhang

Abstract:

Complicated unsteady flow in axial turbines produces high-frequency unsteady aerodynamic exciting force, which threatens the safe operation of turbines. This paper illustrates how negative-bowed stator reduces the rotor unsteady aerodynamic exciting force by unsteady flow field. With the support of three-dimensional viscous compressible Navier-Stokes equation, the single axial turbines with 0, -10 and -20 degree bowed stator are comparably investigated, aiming to identify the flow field structure difference caused by various negative-bowed degrees. The results show that negative-bowed stator strengthens the turbulence kinetic energy, which is further strengthened with the increase of negative-bowed degree. Meanwhile, the flow phenomenon including stator wakes and passage vortex is shown. In addition, the interaction of upstream negative-bowed wakes contributes to the reduction of unsteady blade load fluctuation. Furthermore, the aerodynamic exciting force decreases with the increasing negative bowed degree, while the efficiency is correspondingly reduced. This paper provides the reference for the alleviation of the harmful impact caused by unsteady interaction with the method of wake control.

Keywords: unsteady flow, axial turbine, wake, aerodynamic force, loss

Procedia PDF Downloads 293
11916 Analysis of Vortical Structures Generated by the Swirler of Combustion Chamber

Authors: Vladislav A. Nazukin, Valery G. Avgustinovich, Vakhtang V. Tsatiashvili

Abstract:

The most important part of modern lean low NOx combustors is a premixer where swirlers are often used for intensification of mixing processes and further formation of required flow pattern in combustor liner. Swirling flow leads to formation of complex eddy structures causing flow perturbations. It is able to cause combustion instability. Therefore, at design phase, it is necessary to pay great attention to aerodynamics of premixers. Analysis based on unsteady CFD modeling of swirling flow in production combustor swirler showed presence of large number of different eddy structures that can be conditionally divided into three types relative to its location of origin and a propagation path. Further, features of each eddy type were subsequently defined. Comparison of calculated and experimental pressure fluctuations spectrums verified correctness of computations.

Keywords: DES simulation, swirler, vortical structures, combustion chamber

Procedia PDF Downloads 351
11915 Fabrication of Miniature Gear of Hastelloy X by WEDM Process

Authors: Bhupinder Singh, Joy Prakash Misra

Abstract:

This article provides the information regarding machining of hastelloy-X on wire electro spark machining (WEDM). Experimental investigation has been carried out by varying pulse-on time (TON), pulse-off time (TOFF), peak current (IP) and spark gap voltage (SV). Effect of these parameters is studied on material removal rate (MRR). Experiments are designed as per box-behnken design (BBD) technique of response surface methodology (RSM). Analysis of variance (ANOVA) results indicates that TON, TOFF, IP, SV, TON x IP are significant parameters that influenced the MRR, and it is depicted that value of MRR is more at high discharge energy (HDE) and less at low discharge energy (LDE). Furthermore, miniature impeller and miniature gear (OD≤10MM) is fabricated by WEDM at optimized condition.

Keywords: advanced manufacturing, WEDM, super alloy, gear

Procedia PDF Downloads 222
11914 A Conv-Long Short-term Memory Deep Learning Model for Traffic Flow Prediction

Authors: Ali Reza Sattarzadeh, Ronny J. Kutadinata, Pubudu N. Pathirana, Van Thanh Huynh

Abstract:

Traffic congestion has become a severe worldwide problem, affecting everyday life, fuel consumption, time, and air pollution. The primary causes of these issues are inadequate transportation infrastructure, poor traffic signal management, and rising population. Traffic flow forecasting is one of the essential and effective methods in urban congestion and traffic management, which has attracted the attention of researchers. With the development of technology, undeniable progress has been achieved in existing methods. However, there is a possibility of improvement in the extraction of temporal and spatial features to determine the importance of traffic flow sequences and extraction features. In the proposed model, we implement the convolutional neural network (CNN) and long short-term memory (LSTM) deep learning models for mining nonlinear correlations and their effectiveness in increasing the accuracy of traffic flow prediction in the real dataset. According to the experiments, the results indicate that implementing Conv-LSTM networks increases the productivity and accuracy of deep learning models for traffic flow prediction.

Keywords: deep learning algorithms, intelligent transportation systems, spatiotemporal features, traffic flow prediction

Procedia PDF Downloads 171
11913 The Proton Flow Battery for Storing Renewable Energy: A Theoretical Model of Electrochemical Hydrogen Storage in an Activated Carbon Electrode

Authors: Sh. Heidari, A. J. Andrews, A. Oberoi

Abstract:

Electrochemical storage of hydrogen in activated carbon electrodes as part of a reversible fuel cell offers a potentially attractive option for storing surplus electrical energy from inherently variable solar and wind energy resources. Such a system – which we have called a proton flow battery – promises to have a roundtrip energy efficiency comparable to lithium ion batteries, while having higher gravimetric and volumetric energy densities. In this paper, a theoretical model is presented of the process of H+ ion (proton) conduction through an acid electrolyte into a highly porous activated carbon electrode where it is neutralised and absorbed on the inner surfaces of pores. A Butler-Volmer type equation relates the rate of adsorption to the potential difference between the activated carbon surface and the electrolyte. This model for the hydrogen storage electrode is then incorporated into a more general computer model based on MATLAB software of the entire electrochemical cell including the oxygen electrode. Hence a theoretical voltage-current curve is generated for given input parameters for a particular activated carbon electrode. It is shown that theoretical VI curves produced by the model can be fitted accurately to experimental data from an actual electrochemical cell with the same characteristics. By obtaining the best-fit values of input parameters, such as the exchange current density and charge transfer coefficient for the hydrogen adsorption reaction, an improved understanding of the adsorption reaction is obtained. This new model will assist in designing improved proton flow batteries for storing solar and wind energy.

Keywords: electrochemical hydrogen storage, proton flow battery, butler-volmer equation, activated carbon

Procedia PDF Downloads 498
11912 Response Surface Methodology Approach to Defining Ultrafiltration of Steepwater from Corn Starch Industry

Authors: Zita I. Šereš, Ljubica P. Dokić, Dragana M. Šoronja Simović, Cecilia Hodur, Zsuzsanna Laszlo, Ivana Nikolić, Nikola Maravić

Abstract:

In this work the concentration of steep-water from corn starch industry is monitored using ultrafiltration membrane. The aim was to examine the conditions of ultrafiltration of steep-water by applying the membrane of 2.5nm. The parameters that vary during the course of ultrafiltration, were the transmembrane pressure, flow rate, while the permeate flux and the dry matter content of permeate and retentive were the dependent parameter constantly monitored during the process. Experiments of ultrafiltration are conducted on the samples of steep-water, which were obtained from the starch wet milling plant Jabuka, Pancevo. The procedure of ultrafiltration on a single-channel 250mm length, with inner diameter of 6.8mm and outer diameter of 10mm membrane were carried on. The membrane is made of a-Al2O3 with TiO2 layer obtained from GEA (Germany). The experiments are carried out at a flow rate ranging from 100 to 200lh-1 and transmembrane pressure of 1-3 bars. During the experiments of steep-water ultrafiltration, the change of permeate flux, dry matter content of permeate and retentive, as well as the absorbance changes of the permeate and retentive were monitored. The experimental results showed that the maximum flux reaches about 40lm-2h-1. For responses obtained after experiments, a polynomial model of the second degree is established to evaluate and quantify the influence of the variables. The quadratic equitation fits with the experimental values, where the coefficient of determination for flux is 0.96. The dry matter content of the retentive is increased for about 6%, while the dry matter content of permeate was reduced for about 35-40%, respectively. During steep-water ultrafiltration in permeate stays 40% less dry matter compared to the feed.

Keywords: ultrafiltration, steep-water, starch industry, ceramic membrane

Procedia PDF Downloads 282
11911 Investigation of Flow Characteristics on Upstream and Downstream of Orifice Using Computational Fluid Dynamics

Authors: War War Min Swe, Aung Myat Thu, Khin Cho Thet, Zaw Moe Htet, Thuzar Mon

Abstract:

The main parameter of the orifice hole diameter was designed according to the range of throttle diameter ratio which gave the required discharge coefficient. The discharge coefficient is determined by difference diameter ratios. The value of discharge coefficient is 0.958 occurred at throttle diameter ratio 0.5. The throttle hole diameter is 80 mm. The flow analysis is done numerically using ANSYS 17.0, computational fluid dynamics. The flow velocity was analyzed in the upstream and downstream of the orifice meter. The downstream velocity of non-standard orifice meter is 2.5% greater than that of standard orifice meter. The differential pressure is 515.379 Pa in standard orifice.

Keywords: CFD-CFX, discharge coefficients, flow characteristics, inclined

Procedia PDF Downloads 142
11910 Non-Reacting Numerical Simulation of Axisymmetric Trapped Vortex Combustor

Authors: Heval Serhat Uluk, Sam M. Dakka, Kuldeep Singh, Richard Jefferson-Loveday

Abstract:

This paper will focus on the suitability of a trapped vortex combustor as a candidate for gas turbine combustor objectives to minimize pressure drop across the combustor and investigate aerodynamic performance. Non-reacting simulation of axisymmetric cavity trapped vortex combustors were simulated to investigate the pressure drop for various cavity aspect ratios of 0.3, 0.6, and 1 and for air mass flow rates of 14 m/s, 28 m/s, and 42 m/s. A numerical study of an axisymmetric trapped vortex combustor was carried out by using two-dimensional and three-dimensional computational domains. A comparison study was conducted between Reynolds Averaged Navier Stokes (RANS) k-ε Realizable with enhanced wall treatment and RANS k-ω Shear Stress Transport (SST) models to find the most suitable turbulence model. It was found that the k-ω SST model gives relatively close results to experimental outcomes. The numerical results were validated and showed good agreement with the experimental data. Pressure drop rises with increasing air mass flow rate, and the lowest pressure drop was observed at 0.6 cavity aspect ratio for all air mass flow rates tested, which agrees with the experimental outcome. A mixing enhancement study showed that 30-degree angle air injectors provide improved fuel-air mixing.

Keywords: aerodynamic, computational fluid dynamics, propulsion, trapped vortex combustor

Procedia PDF Downloads 84
11909 Building Capacity and Personnel Flow Modeling for Operating amid COVID-19

Authors: Samuel Fernandes, Dylan Kato, Emin Burak Onat, Patrick Keyantuo, Raja Sengupta, Amine Bouzaghrane

Abstract:

The COVID-19 pandemic has spread across the United States, forcing cities to impose stay-at-home and shelter-in-place orders. Building operations had to adjust as non-essential personnel worked from home. But as buildings prepare for personnel to return, they need to plan for safe operations amid new COVID-19 guidelines. In this paper we propose a methodology for capacity and flow modeling of personnel within buildings to safely operate under COVID-19 guidelines. We model personnel flow within buildings by network flows with queuing constraints. We study maximum flow, minimum cost, and minimax objectives. We compare our network flow approach with a simulation model through a case study and present the results. Our results showcase various scenarios of how buildings could be operated under new COVID-19 guidelines and provide a framework for building operators to plan and operate buildings in this new paradigm.

Keywords: network analysis, building simulation, COVID-19

Procedia PDF Downloads 158
11908 Investigation of Effects and Hazards of Wind Flow on Buildings in Multiple Arrangements Using CFD

Authors: S. C. Gupta

Abstract:

The wind flow over several buildings lying in close vicinity in urban areas generates flow interference effects causing problems related to pedestrian comfort and ventilation within the buildings. This promoted a lot of research interest in the recent years. Airflow over a building creates a positive pressure zone on the upstream side and negative pressure zones (cavities or eddy zones) on the roof and all other sides. Large eddy simulation model is used along with sub-grid-scale model to numerically simulate turbulence for this purpose. The basis of flow outside the building is the pressure difference (between the wind and building interior). Wind Tunnel models are fabricated and tested in the subsonic wind tunnel. Theoretical results are compared with the experimental data. Newer configuration is tried for favorable effects in recovering static pressure values. Results obtained are seen very encouraging. The proposed exhaustive research investigation through numerical simulations and the experimental work are described and some interesting findings are brought out.

Keywords: wind flow, buildings, static pressure wind tunnel testing, CFD

Procedia PDF Downloads 495
11907 A Study of Factors Affecting the Elapsed Time of Housing Renewal Project Implementation in Seoul

Authors: In Su Na, Gunwon Lee, Seiyong Kim

Abstract:

This study analyzed the effect of area variables and economic variables on the length of each period of the project in order to analyze the effect of agreement rate on project implementation in housing renewal projects. In conclusion, as can be seen from these results, a low agreement rate may not translate into project promotion, and a higher agreement rate may not translate into project delay. The expectation of the policy is that the lower the agreement rate, the more projects would be promoted, but that is not the actual effect. From a policy consistency viewpoint, changing the agreement rate frequently, depending on the decision of the public, is not reasonable. The policy of using agreement rate as a necessary condition for project implementation should be reconsidered.

Keywords: Area and Economic Variables, Elapsed time, Housing Renewal Project

Procedia PDF Downloads 454
11906 Experimental and Numerical Investigation of Flow Control Using a Novel Active Slat

Authors: Basman Elhadidi, Islam Elqatary, Osama Mohamady, Hesham Othman

Abstract:

An active slat is developed to increase the lift and delay the separation for a DU96-W180 airfoil. The active slat is a fixed slat that can be closed, fully opened or intermittently opened by a rotating vane depending on the need. Experimental results show that the active slat has reduced the mean pressure and increased the mean velocity on the suction side of the airfoil for all positive angles of attack, indicating an increase of lift. The experimental data and numerical simulations also show that the direction of actuator vane rotation can influence the mixing of the flow streams on the suction side and hence influence the aerodynamic performance.

Keywords: active slat, flow control, DU96-W180 airfoil, flow streams

Procedia PDF Downloads 375
11905 Computational Study of Passive Scalar Diffusion of a Counterflowing round Jet

Authors: Amani Amamou, Sabra Habli, Nejla Mahjoub Saïd, Georges Le Palec

Abstract:

Round jets have been widely studied due to their important application in industry. Many configurations of round jet were encountered in literature as free jet, co-flow jet, couterflowing jet and cross flow jet. In this paper, we are concerned with turbulent round jet in uniform counterflow stream which is known to enhance mixing and dispersion efficiency owing to flow reversal. This type of flow configuration is a typical application in environmental engineering such as the disposal of wastewater into seas or rivers. A computational study of a turbulent circular jet discharging into a uniform counterflow is conducted in order to investigate the characteristics of the diffusion field of the jet effluent. The investigation is carried out for three different cases of jet-to-current velocity ratios; low, medium and high velocity ratios. The Reynolds Stress Model (RSM) is used in the comparison with available experimental measurements. The decay of the center line velocity and the dynamic proprieties of the flow together with the centerline dilution of the passive scalar and the other characteristics of the concentration field are computationally analyzed in this paper.

Keywords: Counterflow stream, jet, velocity, concentration

Procedia PDF Downloads 384
11904 Determination of the Runoff Coefficient in Urban Regions, an Example from Haifa, Israel

Authors: Ayal Siegel, Moshe Inbar, Amatzya Peled

Abstract:

This study examined the characteristic runoff coefficient in different urban areas. The main area studied is located in the city of Haifa, northern Israel. Haifa spreads out eastward from the Mediterranean seacoast to the top of the Carmel Mountain range with an elevation of 300 m. above sea level. For this research project, four watersheds were chosen, each characterizing a different part of the city; 1) Upper Hadar, a spacious suburb on the upper mountain side; 2) Qiryat Eliezer, a crowded suburb on a level plane of the watershed; 3) Technion, a large technical research university which is located halfway between the top of the mountain range and the coast line. 4) Keret, a remote suburb, on the southwestern outskirts of Haifa. In all of the watersheds found suitable, instruments were installed to continuously measure the water level flowing in the channels. Three rainfall gauges scattered in the study area complete the hydrological requirements for this research project. The runoff coefficient C in peak discharge events was determined by the Rational Formula. The main research finding is the significant relationship between the intensity of rainfall, and the impervious area which is connected to the drainage system of the watershed. For less intense rainfall, the full potential of the connected impervious area will not be exploited. As a result, the runoff coefficient value decreases as do the peak discharge rate and the runoff yield from the storm event. The research results will enable application to other areas by means of hydrological model to be be set up on GIS software that will make it possible to estimate the runoff coefficient of any given city watershed.

Keywords: runoff coefficient, rational method, time of concentration, connected impervious area.

Procedia PDF Downloads 347
11903 Development and Characterization of Ceramic-Filled Composite Filaments and Functional Structures for Fused Deposition Modeling

Authors: B. Khatri, K. Lappe, M. Habedank, T. Müller, C. Megnin, T. Hanemann

Abstract:

We present a process flow for the development of ceramic-filled polymer composite filaments compatible with the fused deposition modeling (FDM) 3D printing process. Thermoplastic-ceramic composites were developed using acrylonitrile butadiene styrene (ABS) and 10- and 20 vol.% barium titanate (BaTiO3) powder (corresponding to 39.47- and 58.23 wt.% respectively) and characterized for their flow properties. To make them compatible with the existing FDM process, the composites were extruded into filaments. These composite filaments were subsequently structured into tensile stress specimens using a commercially available FDM 3D printer and characterized for their mechanical properties. Rheometric characterization of the material composites revealed non-Newtonian behavior with the viscosity logarithmically decreasing over increasing shear rates, as well as higher viscosities for samples with higher BaTiO3 filler content for a given shear rate (with the ABS+20vol.% BaTiO3 composite being over 50% more viscous compared to pure ABS at a shear rate of 1x〖10〗^3 s^(-1)). Mechanical characterization of the tensile stress specimens exhibited increasingly brittle behavior as well as a linearly decreasing ultimate tensile strength of the material composites with increasing volumetric ratio of BaTiO3 (from σ_max=32.4MPa for pure ABS to σ_max=21.3MPa for ABS+20vol.% BaTiO3). Further studies being undertaken include the development of composites with higher filler concentrations, sintering of the printed composites to yield pure dielectric structures and the determination of the dielectric characteristics of the composites.

Keywords: ceramic composites, fused deposition modeling, material characterization, rapid prototyping

Procedia PDF Downloads 330
11902 Oxygen Transport in Blood Flows Pasts Staggered Fiber Arrays: A Computational Fluid Dynamics Study of an Oxygenator in Artificial Lung

Authors: Yu-Chen Hsu, Kuang C. Lin

Abstract:

The artificial lung called extracorporeal membrane oxygenation (ECMO) is an important medical machine that supports persons whose heart and lungs dysfunction. Previously, investigation of steady deoxygenated blood flows passing through hollow fibers for oxygen transport was carried out experimentally and computationally. The present study computationally analyzes the effect of biological pulsatile flow on the oxygen transport in blood. A 2-D model with a pulsatile flow condition is employed. The power law model is used to describe the non-Newtonian flow and the Hill equation is utilized to simulate the oxygen saturation of hemoglobin. The dimensionless parameters for the physical model include Reynolds numbers (Re), Womersley parameters (α), pulsation amplitudes (A), Sherwood number (Sh) and Schmidt number (Sc). The present model with steady-state flow conditions is well validated against previous experiment and simulations. It is observed that pulsating flow amplitudes significantly influence the velocity profile, pressure of oxygen (PO2), saturation of oxygen (SO2) and the oxygen mass transfer rates (m ̇_O2). In comparison between steady-state and pulsating flows, our findings suggest that the consideration of pulsating flow in the computational model is needed when Re is raised from 2 to 10 in a typical range for flow in artificial lung.

Keywords: artificial lung, oxygen transport, non-Newtonian flows, pulsating flows

Procedia PDF Downloads 311
11901 Comparative Study on Fire Safety Evaluation Methods for External Cladding Systems: ISO 13785-2 and BS 8414

Authors: Kyungsuk Cho, H. Y. Kim, S. U. Chae, J. H. Choi

Abstract:

Technological development has led to the construction of super-tall buildings and insulators are increasingly used as exterior finishing materials to save energy. However, insulators are usually combustible and vulnerable to fire. Fires like that at Wooshin Golden Suite Building in Busan, Korea in 2010 and that at CCTV Building in Beijing, China are the major examples of fire spread accelerated by combustible insulators. The exterior finishing materials of a high-rise building are not made of insulators only, but they are integrated with the building’s external cladding system. There is a limit in evaluating the fire safety of a cladding system with a single small-unit material such as a cone calorimeter. Therefore, countries provide codes to evaluate the fire safety of exterior finishing materials using full-scale tests. This study compares and to examine the applicability of the methods to Korea. Standard analysis showed differences in the type and size of fire sources and duration and exterior finishing materials also differed in size. In order to confirm the differences, fire tests were conducted on identical external cladding systems to compare fire safety. Although the exterior finishing materials were identical, varying degrees of fire spread were observed, which could be considered as differences in the type and size of the fire sources and duration. Therefore, it is deduced that extended studies should be conducted before the evaluation methods and standards are employed in Korea. The two standards for evaluating fire safety provided different results. Peak heat release rate was 5.5MW in ISO method and 3.0±0.5MW in BS method. Peak heat release rate in ISO method continued for 15 minutes. Fire ignition, growth, full development and decay evolved for 30 minutes in BS method where wood cribs were used as fire sources. Therefore, follow-up studies should be conducted to determine which of the two standards provides fire sources that approximate the size of flames coming out from the openings or those spreading to the outside when a fire occurs at a high-rise building.

Keywords: external cladding systems, fire safety evaluation, ISO 13785-2, BS 8414

Procedia PDF Downloads 241
11900 Preliminary Study of Water-Oil Separation Process in Three-Phase Separators Using Factorial Experimental Designs and Simulation

Authors: Caroline M. B. De Araujo, Helenise A. Do Nascimento, Claudia J. Da S. Cavalcanti, Mauricio A. Da Motta Sobrinho, Maria F. Pimentel

Abstract:

Oil production is often followed by the joint production of water and gas. During the journey up to the surface, due to severe conditions of temperature and pressure, the mixing between these three components normally occurs. Thus, the three phases separation process must be one of the first steps to be performed after crude oil extraction, where the water-oil separation is the most complex and important step, since the presence of water into the process line can increase corrosion and hydrates formation. A wide range of methods can be applied in order to proceed with oil-water separation, being more commonly used: flotation, hydrocyclones, as well as the three phase separator vessels. Facing what has been presented so far, it is the aim of this paper to study a system consisting of a three-phase separator, evaluating the influence of three variables: temperature, working pressure and separator type, for two types of oil (light and heavy), by performing two factorial design plans 23, in order to find the best operating condition. In this case, the purpose is to obtain the greatest oil flow rate in the product stream (m3/h) as well as the lowest percentage of water in the oil stream. The simulation of the three-phase separator was performed using Aspen Hysys®2006 simulation software in stationary mode, and the evaluation of the factorial experimental designs was performed using the software Statistica®. From the general analysis of the four normal probability plots of effects obtained, it was observed that interaction effects of two and three factors did not show statistical significance at 95% confidence, since all the values were very close to zero. Similarly, the main effect "separator type" did not show significant statistical influence in any situation. As in this case, it has been assumed that the volumetric flow of water, oil and gas were equal in the inlet stream, the effect separator type, in fact, may not be significant for the proposed system. Nevertheless, the main effect “temperature” was significant for both responses (oil flow rate and mass fraction of water in the oil stream), considering both light and heavy oil, so that the best operation condition occurs with the temperature at its lowest level (30oC), since the higher the temperature, the liquid oil components pass into the vapor phase, going to the gas stream. Furthermore, the higher the temperature, the higher the formation water vapor, so that ends up going into the lighter stream (oil stream), making the separation process more difficult. Regarding the “working pressure”, this effect showed to be significant only for the oil flow rate, so that the best operation condition occurs with the pressure at its highest level (9bar), since a higher operating pressure, in this case, indicated a lower pressure drop inside the vessel, generating lower level of turbulence inside the separator. In conclusion, the best-operating condition obtained for the proposed system, at the studied range, occurs for temperature is at its lowest level and the working pressure is at its highest level.

Keywords: factorial experimental design, oil production, simulation, three-phase separator

Procedia PDF Downloads 286
11899 Vortex Flows under Effects of Buoyant-Thermocapillary Convection

Authors: Malika Imoula, Rachid Saci, Renee Gatignol

Abstract:

A numerical investigation is carried out to analyze vortex flows in a free surface cylinder, driven by the independent rotation and differentially heated boundaries. As a basic uncontrolled isothermal flow, we consider configurations which exhibit steady axisymmetric toroidal type vortices which occur at the free surface; under given rates of the bottom disk uniform rotation and for selected aspect ratios of the enclosure. In the isothermal case, we show that sidewall differential rotation constitutes an effective kinematic means of flow control: the reverse flow regions may be suppressed under very weak co-rotation rates, while an enhancement of the vortex patterns is remarked under weak counter-rotation. However, in this latter case, high rates of counter-rotation reduce considerably the strength of the meridian flow and cause its confinement to a narrow layer on the bottom disk, while the remaining bulk flow is diffusion dominated and controlled by the sidewall rotation. The main control parameters in this case are the rotational Reynolds number, the cavity aspect ratio and the rotation rate ratio defined. Then, the study proceeded to consider the sensitivity of the vortex pattern, within the Boussinesq approximation, to a small temperature gradient set between the ambient fluid and an axial thin rod mounted on the cavity axis. Two additional parameters are introduced; namely, the Richardson number Ri and the Marangoni number Ma (or the thermocapillary Reynolds number). Results revealed that reducing the rod length induces the formation of on-axis bubbles instead of toroidal structures. Besides, the stagnation characteristics are significantly altered under the combined effects of buoyant-thermocapillary convection. Buoyancy, induced under sufficiently high Ri, was shown to predominate over the thermocapillay motion; causing the enhancement (suppression) of breakdown when the rod is warmer (cooler) than the ambient fluid. However, over small ranges of Ri, the sensitivity of the flow to surface tension gradients was clearly evidenced and results showed its full control over the occurrence and location of breakdown. In particular, detailed timewise evolution of the flow indicated that weak thermocapillary motion was sufficient to prevent the formation of toroidal patterns. These latter detach from the surface and undergo considerable size reduction while moving towards the bulk flow before vanishing. Further calculations revealed that the pattern reappears with increasing time as steady bubble type on the rod. However, in the absence of the central rod and also in the case of small rod length l, the flow evolved into steady state without any breakdown.

Keywords: buoyancy, cylinder, surface tension, toroidal vortex

Procedia PDF Downloads 358
11898 Air Flow Characteristics and Pressure Distributions for Staggered Wing Shaped Tubes Bundle

Authors: Sayed A. Elsayed, Emad Z. Ibrahim, Osama M. Mesalhy, Mohamed A. Abdelatief

Abstract:

An experimental and numerical study has been conducted to clarify fluid flow characteristics and pressure drop distributions of a cross-flow heat exchanger employing staggered wing-shaped tubes at different angels of attack. The water-side Rew and the air-side Rea were at 5 x 102 and at from 1.8 x 103 to 9.7 x 103, respectively. Three cases of the tubes arrangements with various angles of attack, row angles of attack and 90° cone angles were employed at the considered Rea range. Correlation of pressure drop coefficient Pdc in terms of Rea, design parameters for the studied cases were presented. The flow pattern around the staggered wing-shaped tubes bundle were predicted by using commercial CFD FLUENT 6.3.26 software package. Results indicated that the values of Pdc were increased by increasing the angle of attack from 0° to 45°, while the opposite was true for angles of attack from 135° to 180°. Comparisons between the experimental and numerical results of the present study and those, previously, obtained for similar available studies showed good agreements.

Keywords: wing-shaped tubes, cross-flow cooling, staggered arrangement, CFD

Procedia PDF Downloads 374
11897 Effect of Exit Annular Area on the Flow Field Characteristics of an Unconfined Premixed Annular Swirl Burner

Authors: Vishnu Raj, Chockalingam Prathap

Abstract:

The objective of this study was to explore the impact of variation in the exit annular area on the local flow field features and the flame stability of an annular premixed swirl burner (unconfined) operated with premixed n-butane air mixture at equivalence ratio (ϕ) = 1, 1 bar, and 300K. A swirl burner with an axial swirl generator having a swirl number of 1.5 was used. Three different burner heads were chosen to have the exit area increased from 100%, 160%, and 220% resulting in inner and outer diameters and cross-sectional areas as (1) 10mm&15mm, 98mm2 (2) 17.5mm&22.5mm, 157mm2 and (3) 25mm & 30mm, 216mm2. The bulk velocity and Reynolds number based on the hydraulic diameter and unburned gas properties were kept constant at 12 m/s and 4000. (i) Planar PIV with TiO2 seeding particles and (ii) OH* chemiluminescence were used to measure the velocity fields and reaction zones of the swirl flames at 5Hz, respectively. Velocity fields and the jet spreading rates measured at the isothermal and reactive conditions revealed that the presence of a flame significantly altered the flow field in the radial direction due to the gas expansion. Important observations from the flame measurements were: the height and maximum width of the recirculation bubbles normalized by the hydraulic diameter, and the jet spreading angles for the flames for the three exit area cases were: (a) 4.52, 1.95, 28ᵒ, (b) 6.78, 2.37, 34ᵒ, and (c) 8.73, 2.32, 37ᵒ. The lean blowout was also measured, and the respective equivalence ratios were: 0.80, 0.92, and 0.82. LBO was relatively narrow for the 157mm2 case. For this case, particle image velocimetry (PIV) measurements showed that Turbulent Kinetic Energy and turbulent intensity were relatively high compared to the other two cases, resulting in higher stretch rates and narrower lean blowout (LBO).

Keywords: chemiluminescence, jet spreading rate, lean blowout, swirl flow

Procedia PDF Downloads 66
11896 1-g Shake Table Tests to Study the Impact of PGA on Foundation Settlement in Liquefiable Soil

Authors: Md. Kausar Alam, Mohammad Yazdi, Peiman Zogh, Ramin Motamed

Abstract:

The liquefaction-induced ground settlement has caused severe damage to structures in the past decades. However, the amount of building settlement caused by liquefaction is directly proportional to the intensity of the ground shaking. To reduce this soil liquefaction effect, it is essential to examine the influence of peak ground acceleration (PGA). Unfortunately, limited studies have been carried out on this issue. In this study, a series of moderate scale 1g shake table experiments were conducted at the University of Nevada Reno to evaluate the influence of PGA with the same duration in liquefiable soil layers. The model is prepared based on a large-scale shake table with a scaling factor of N = 5, which has been conducted at the University of California, San Diego. The model ground has three soil layers with relative densities of 50% for crust, 30% for liquefiable, and 90% for dense layer, respectively. In addition, a shallow foundation is seated over an unsaturated crust layer. After preparing the model, the input motions having various peak ground accelerations (i.e., 0.16g, 0.25g, and 0.37g) for the same duration (10 sec) were applied. Based on the experimental results, when the PGA increased from 0.16g to 0.37g, the foundation increased from 20 mm to 100 mm. In addition, the expected foundation settlement based on the scaling factor was 25 mm, while the actual settlement for PGA 0.25g for 10 seconds was 50 mm.

Keywords: foundation settlement, liquefaction, peak ground acceleration, shake table test

Procedia PDF Downloads 75
11895 Fluvial Stage-Discharge Rating of a Selected Reach of Jamuna River

Authors: Makduma Zahan Badhan, M. Abdul Matin

Abstract:

A study has been undertaken to develop a fluvial stage-discharge rating curve for Jamuna River. Past Cross-sectional survey of Jamuna River reach within Sirajgonj and Tangail has been analyzed. The analysis includes the estimation of discharge carrying capacity, possible maximum scour depth and sediment transport capacity of the selected reaches. To predict the discharge and sediment carrying capacity, stream flow data which include cross-sectional area, top width, water surface slope and median diameter of the bed material of selected stations have been collected and some are calculated from reduced level data. A well-known resistance equation has been adopted and modified to a simple form in order to be used in the present analysis. The modified resistance equation has been used to calculate the mean velocity through the channel sections. In addition, a sediment transport equation has been applied for the prediction of transport capacity of the various sections. Results show that the existing drainage sections of Jamuna channel reach under study have adequate carrying capacity under existing bank-full conditions, but these reaches are subject to bed erosion even in low flow situations. Regarding sediment transport rate, it can be estimated that the channel flow has a relatively high range of bed material concentration. Finally, stage­ discharge curves for various sections have been developed. Based on stage-discharge rating data of various sections, water surface profile and sediment-rating curve of Jamuna River have been developed and also the flooding conditions have been analyzed from predicted water surface profile.

Keywords: discharge rating, flow profile, fluvial, sediment rating

Procedia PDF Downloads 183
11894 Thermodynamic Properties of Calcium-Containing DPPA and DPPC Liposomes

Authors: Tamaz Mdzinarashvili, Mariam Khvedelidze, Eka Shekiladze, Salome Chinchaladze, Mariam Mdzinarashvili

Abstract:

The work is about the preparation of calcium-containing 1,2-Dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-Dipalmitoyl-sn-glycero-3-phosphatidic acid (DPPA) and their calorimetric study. In order to prepare these complex liposomes, for the first stage it is necessary for ligands and lipids to directly interact, followed by the addition of pH-buffered water or solvent at temperatures slightly above the liposome phase transition temperature. The resulting mixture is briefly but vigorously shaken and then transformed into liposomes of the desired size using an extruder. Particle sizing and calorimetry were used to evaluate liposome formation. We determined the possible structure of calcium-containing liposomes made by our new technology and determined their thermostability. The paper provides calculations showing how many phospholipid molecules are required to make a 200 nm diameter liposome. Calculations showed that 33x10³ lipid molecules are needed to prepare one DPPA and DPPC liposome. Based on the calorimetric experiments, we determined that the structure of uncomplexed DPPA liposomes is unilaminar (one double layer), while DPPC liposome is a nanoparticle with a multilaminar (multilayer) structure. This was determined by the cooperativity of the heat absorption peak. Calorimetric studies of calcium liposomes made by our technology showed that calcium ions are placed in the multilaminar structure of the DPPC liposome. Calcium ions also formed a complex in the DPPA liposome structure, moreover, calcium made the DPPA liposome multilaminar, since the cooperative narrow heat absorption peak was transformed into a three-peak heat absorption peak. Since both types of liposomes in complex with calcium ions present a multilaminar structure, where the number of lipid heads in one particle is large, the number of calcium ions in one particle will also be increased. That makes it possible to use these nanoparticles as transporters of a large amount of calcium ions in a living organism.

Keywords: calcium, liposomes, thermodynamic parameters, calorimetry

Procedia PDF Downloads 35
11893 Land Use and Natal Multimammate Mouse Abundance in Lassa Fever Endemic Villages of Eastern Sierra Leone

Authors: J. T. Koininga, J. E. Teigen, A. Wilkinson, D. Kanneh, F. Kanneh, M. Foday, D. S. Grant, M. Leach, L. M. Moses

Abstract:

Lassa fever (LF) is a severe febrile illness endemic to West Africa. While human-to-human transmission occurs, evidence suggests most LF cases originate from exposure to rodents, particularly the Natal multimammate mouse, Mastomys natalensis. Within West Africa, LF occurs primarily in rural communities where agriculture is the main economic activity. Seasonality of LF has also been linked to agricultural cycles, with peak incidence occurring in the dry season when fields are burned and plowed. To investigate this pattern of seasonality, four agricultural communities were selected for this two-year longitudinal study. Each community was to be sampled four times each year, but this was interrupted by the Ebola virus disease outbreak. Agricultural land use, forested, and fallow areas were identified through participatory mapping. Transects were plotted in each area and Sherman traps were set for four nights. Captured small mammals were identified, ear tagged, and released. Mastomys natalensis abundance was found to be highest in areas of converted fallow land and rice swamps in the dry season and upland mixed crop areas toward the onset of the rainy season. All peak times were associated with heavy perturbation of soil. All ages and genders were present during these time points. These results suggest that peak abundance of the Mastomys natalensis in agricultural areas coincides with peak incidence of LF reported in this region. Although contact with rodents may be higher in villages, our study suggests human behaviors in agricultural areas may increase risk of transmission of Lassa virus.

Keywords: agriculture, land use, Lassa Fever, rodent abundance

Procedia PDF Downloads 118
11892 Earnings vs Cash Flows: The Valuation Perspective

Authors: Megha Agarwal

Abstract:

The research paper is an effort to compare the earnings based and cash flow based methods of valuation of an enterprise. The theoretically equivalent methods based on either earnings such as Residual Earnings Model (REM), Abnormal Earnings Growth Model (AEGM), Residual Operating Income Method (ReOIM), Abnormal Operating Income Growth Model (AOIGM) and its extensions multipliers such as price/earnings ratio, price/book value ratio; or cash flow based models such as Dividend Valuation Method (DVM) and Free Cash Flow Method (FCFM) all provide different estimates of valuation of the Indian giant corporate Reliance India Limited (RIL). An ex-post analysis of published accounting and financial data for four financial years from 2008-09 to 2011-12 has been conducted. A comparison of these valuation estimates with the actual market capitalization of the company shows that the complex accounting based model AOIGM provides closest forecasts. These different estimates may be derived due to inconsistencies in discount rate, growth rates and the other forecasted variables. Although inputs for earnings based models may be available to the investor and analysts through published statements, precise estimation of free cash flows may be better undertaken by the internal management. The estimation of value from more stable parameters as residual operating income and RNOA could be considered superior to the valuations from more volatile return on equity.

Keywords: earnings, cash flows, valuation, Residual Earnings Model (REM)

Procedia PDF Downloads 375
11891 Interfacial Instability and Mixing Behavior between Two Liquid Layers Bounded in Finite Volumes

Authors: Lei Li, Ming M. Chai, Xiao X. Lu, Jia W. Wang

Abstract:

The mixing process of two liquid layers in a cylindrical container includes the upper liquid with higher density rushing into the lower liquid with lighter density, the lower liquid rising into the upper liquid, meanwhile the two liquid layers having interactions with each other, forming vortices, spreading or dispersing in others, entraining or mixing with others. It is a complex process constituted of flow instability, turbulent mixing and other multiscale physical phenomena and having a fast evolution velocity. In order to explore the mechanism of the process and make further investigations, some experiments about the interfacial instability and mixing behavior between two liquid layers bounded in different volumes are carried out, applying the planar laser induced fluorescence (PLIF) and the high speed camera (HSC) techniques. According to the results, the evolution of interfacial instability between immiscible liquid develops faster than theoretical rate given by the Rayleigh-Taylor Instability (RTI) theory. It is reasonable to conjecture that some mechanisms except the RTI play key roles in the mixture process of two liquid layers. From the results, it is shown that the invading velocity of the upper liquid into the lower liquid does not depend on the upper liquid's volume (height). Comparing to the cases that the upper and lower containers are of identical diameter, in the case that the lower liquid volume increases to larger geometric space, the upper liquid spreads and expands into the lower liquid more quickly during the evolution of interfacial instability, indicating that the container wall has important influence on the mixing process. In the experiments of miscible liquid layers’ mixing, the diffusion time and pattern of the liquid interfacial mixing also does not depend on the upper liquid's volumes, and when the lower liquid volume increases to larger geometric space, the action of the bounded wall on the liquid falling and rising flow will decrease, and the liquid interfacial mixing effects will also attenuate. Therefore, it is also concluded that the volume weight of upper heavier liquid is not the reason of the fast interfacial instability evolution between the two liquid layers and the bounded wall action is limited to the unstable and mixing flow. The numerical simulations of the immiscible liquid layers’ interfacial instability flow using the VOF method show the typical flow pattern agree with the experiments. However the calculated instability development is much slower than the experimental measurement. The numerical simulation of the miscible liquids’ mixing, which applying Fick’s diffusion law to the components’ transport equation, shows a much faster mixing rate than the experiments on the liquids’ interface at the initial stage. It can be presumed that the interfacial tension plays an important role in the interfacial instability between the two liquid layers bounded in finite volume.

Keywords: interfacial instability and mixing, two liquid layers, Planar Laser Induced Fluorescence (PLIF), High Speed Camera (HSC), interfacial energy and tension, Cahn-Hilliard Navier-Stokes (CHNS) equations

Procedia PDF Downloads 248
11890 The Effectiveness of Multiphase Flow in Well- Control Operations

Authors: Ahmed Borg, Elsa Aristodemou, Attia Attia

Abstract:

Well control involves managing the circulating drilling fluid within the wells and avoiding kicks and blowouts as these can lead to losses in human life and drilling facilities. Current practices for good control incorporate predictions of pressure losses through computational models. Developing a realistic hydraulic model for a good control problem is a very complicated process due to the existence of a complex multiphase region, which usually contains a non-Newtonian drilling fluid and the miscibility of formation gas in drilling fluid. The current approaches assume an inaccurate flow fluid model within the well, which leads to incorrect pressure loss calculations. To overcome this problem, researchers have been considering the more complex two-phase fluid flow models. However, even these more sophisticated two-phase models are unsuitable for applications where pressure dynamics are important, such as in managed pressure drilling. This study aims to develop and implement new fluid flow models that take into consideration the miscibility of fluids as well as their non-Newtonian properties for enabling realistic kick treatment. furthermore, a corresponding numerical solution method is built with an enriched data bank. The research work considers and implements models that take into consideration the effect of two phases in kick treatment for well control in conventional drilling. In this work, a corresponding numerical solution method is built with an enriched data bank. Software STARCCM+ for the computational studies to study the important parameters to describe wellbore multiphase flow, the mass flow rate, volumetric fraction, and velocity of each phase. Results showed that based on the analysis of these simulation studies, a coarser full-scale model of the wellbore, including chemical modeling established. The focus of the investigations was put on the near drill bit section. This inflow area shows certain characteristics that are dominated by the inflow conditions of the gas as well as by the configuration of the mud stream entering the annulus. Without considering the gas solubility effect, the bottom hole pressure could be underestimated by 4.2%, while the bottom hole temperature is overestimated by 3.2%. and without considering the heat transfer effect, the bottom hole pressure could be overestimated by 11.4% under steady flow conditions. Besides, larger reservoir pressure leads to a larger gas fraction in the wellbore. However, reservoir pressure has a minor effect on the steady wellbore temperature. Also as choke pressure increases, less gas will exist in the annulus in the form of free gas.

Keywords: multiphase flow, well- control, STARCCM+, petroleum engineering and gas technology, computational fluid dynamic

Procedia PDF Downloads 117