Search results for: least square support vector machine
10641 Using Machine Learning to Enhance Win Ratio for College Ice Hockey Teams
Authors: Sadixa Sanjel, Ahmed Sadek, Naseef Mansoor, Zelalem Denekew
Abstract:
Collegiate ice hockey (NCAA) sports analytics is different from the national level hockey (NHL). We apply and compare multiple machine learning models such as Linear Regression, Random Forest, and Neural Networks to predict the win ratio for a team based on their statistics. Data exploration helps determine which statistics are most useful in increasing the win ratio, which would be beneficial to coaches and team managers. We ran experiments to select the best model and chose Random Forest as the best performing. We conclude with how to bridge the gap between the college and national levels of sports analytics and the use of machine learning to enhance team performance despite not having a lot of metrics or budget for automatic tracking.Keywords: NCAA, NHL, sports analytics, random forest, regression, neural networks, game predictions
Procedia PDF Downloads 11410640 Predicting Groundwater Areas Using Data Mining Techniques: Groundwater in Jordan as Case Study
Authors: Faisal Aburub, Wael Hadi
Abstract:
Data mining is the process of extracting useful or hidden information from a large database. Extracted information can be used to discover relationships among features, where data objects are grouped according to logical relationships; or to predict unseen objects to one of the predefined groups. In this paper, we aim to investigate four well-known data mining algorithms in order to predict groundwater areas in Jordan. These algorithms are Support Vector Machines (SVMs), Naïve Bayes (NB), K-Nearest Neighbor (kNN) and Classification Based on Association Rule (CBA). The experimental results indicate that the SVMs algorithm outperformed other algorithms in terms of classification accuracy, precision and F1 evaluation measures using the datasets of groundwater areas that were collected from Jordanian Ministry of Water and Irrigation.Keywords: classification, data mining, evaluation measures, groundwater
Procedia PDF Downloads 28010639 Two Wheels Differential Type Odometry for Robot
Authors: Abhishek Jha, Manoj Kumar
Abstract:
This paper proposes a new type of two wheels differential type odometry to estimate the next position and orientation of mobile robots. The proposed odometry is composed for two independent wheels with respective encoders. The two wheels rotate independently, and the change is determined by the difference in the velocity of the two wheels. Angular velocities of the two wheels are measured by rotary encoders. A mathematical model is proposed for the mobile robots to precisely move towards the goal. Using measured values of the two encoders, the current displacement vector of a mobile robot is calculated by kinematics of the mathematical model. Using the displacement vector, the next position and orientation of the mobile robot are estimated by proposed odometry. Result of simulator experiment by the developed odometry is shown.Keywords: mobile robot, odometry, unicycle, differential type, encoders, infrared range sensors, kinematic model
Procedia PDF Downloads 45210638 Parallel Random Number Generation for the Modern Supercomputer Architectures
Authors: Roman Snytsar
Abstract:
Pseudo-random numbers are often used in scientific computing such as the Monte Carlo Simulations or the Quantum Inspired Optimization. Requirements for a parallel random number generator running in the modern multi-core vector environment are more stringent than those for sequential random number generators. As well as passing the usual quality tests, the output of the parallel random number generator must be verifiable and reproducible throughout the concurrent execution. We propose a family of vectorized Permuted Congruential Generators. Implementations are available for multiple modern vector modern computer architectures. Besides demonstrating good single core performance, the generators scale easily across many processor cores and multiple distributed nodes. We provide performance and parallel speedup analysis and comparisons between the implementations.Keywords: pseudo-random numbers, quantum optimization, SIMD, parallel computing
Procedia PDF Downloads 12010637 Singular Perturbed Vector Field Method Applied to the Problem of Thermal Explosion of Polydisperse Fuel Spray
Authors: Ophir Nave
Abstract:
In our research, we present the concept of singularly perturbed vector field (SPVF) method, and its application to thermal explosion of diesel spray combustion. Given a system of governing equations, which consist of hidden Multi-scale variables, the SPVF method transfer and decompose such system to fast and slow singularly perturbed subsystems (SPS). The SPVF method enables us to understand the complex system, and simplify the calculations. Later powerful analytical, numerical and asymptotic methods (e.g method of integral (invariant) manifold (MIM), the homotopy analysis method (HAM) etc.) can be applied to each subsystem. We compare the results obtained by the methods of integral invariant manifold and SPVF apply to spray droplets combustion model. The research deals with the development of an innovative method for extracting fast and slow variables in physical mathematical models. The method that we developed called singular perturbed vector field. This method based on a numerical algorithm applied to global quasi linearization applied to given physical model. The SPVF method applied successfully to combustion processes. Our results were compared to experimentally results. The SPVF is a general numerical and asymptotical method that reveals the hierarchy (multi-scale system) of a given system.Keywords: polydisperse spray, model reduction, asymptotic analysis, multi-scale systems
Procedia PDF Downloads 22010636 Optimal Location of the I/O Point in the Parking System
Authors: Jing Zhang, Jie Chen
Abstract:
In this paper, we deal with the optimal I/O point location in an automated parking system. In this system, the S/R machine (storage and retrieve machine) travels independently in vertical and horizontal directions. Based on the characteristics of the parking system and the basic principle of AS/RS system (Automated Storage and Retrieval System), we obtain the continuous model in units of time. For the single command cycle using the randomized storage policy, we calculate the probability density function for the system travel time and thus we develop the travel time model. And we confirm that the travel time model shows a good performance by comparing with discrete case. Finally in this part, we establish the optimal model by minimizing the expected travel time model and it is shown that the optimal location of the I/O point is located at the middle of the left-hand above corner.Keywords: parking system, optimal location, response time, S/R machine
Procedia PDF Downloads 40910635 DAG Design and Tradeoff for Full Live Virtual Machine Migration over XIA Network
Authors: Dalu Zhang, Xiang Jin, Dejiang Zhou, Jianpeng Wang, Haiying Jiang
Abstract:
Traditional TCP/IP network is showing lots of shortages and research for future networks is becoming a hotspot. FIA (Future Internet Architecture) and FIA-NP (Next Phase) are supported by US NSF for future Internet designing. Moreover, virtual machine migration is a significant technique in cloud computing. As a network application, it should also be supported in XIA (expressive Internet Architecture), which is in both FIA and FIA-NP projects. This paper is an experimental study aims at verifying the feasibility of VM migration over XIA. We present three ways to maintain VM connectivity and communication states concerning DAG design and routing table modification. VM migration experiments are conducted intra-AD and inter-AD with KVM instances. The procedure is achieved by a migration control protocol which is suitable for the characters of XIA. Evaluation results show that our solutions can well supports full live VM migration over XIA network respectively, keeping services seamless.Keywords: DAG, downtime, virtual machine migration, XIA
Procedia PDF Downloads 85510634 Role of Emotional Support and Work Motivation for Quality of Work Life on Balinese Working Women
Authors: Komang Rahayu Indrawati, Ni Wayan Sinthia Widiastuti, Ratna Dewi Santosa
Abstract:
Today the career of Balinese working women has been highly developed where able to work with loyalty and high professionalism. Career for a woman is one conscious choice and a call of conscience, which provides financial support for her family. Career for women can develop their own potencies, intellectually, and socially, so women feel that their role is meaningful and beneficial for herself and others. Emotional support becomes important to understand certainly for women who have multirole like Balinese working women to meet the demands of their role and also enhancing their work motivation and the quality of work life. This research used quantitative research method with questionnaires dissemination to 120 respondents and analyzed using Multiple Regression Analysis. The purpose of this study was to see the role of emotional support for work motivation and quality of work life in working Balinese women. The results of this study showed that emotional support and work motivation give a significant role in the quality of work life on Balinese working women.Keywords: Balinese working women, emotional support, quality of work life, work motivation
Procedia PDF Downloads 19710633 New Recombinant Netrin-a Protein of Lucilia Sericata Larvae by Bac to Bac Expression Vector System in Sf9 Insect Cell
Authors: Hamzeh Alipour, Masoumeh Bagheri, Abbasali Raz, Javad Dadgar Pakdel, Kourosh Azizi, Aboozar Soltani, Mohammad Djaefar Moemenbellah-Fard
Abstract:
Background: Maggot debridement therapy is an appropriate, effective, and controlled method using sterilized larvae of Luciliasericata (L.sericata) to treat wounds. Netrin-A is an enzyme in the Laminins family which secreted from salivary gland of L.sericata with a central role in neural regeneration and angiogenesis. This study aimed to production of new recombinant Netrin-A protein of Luciliasericata larvae by baculovirus expression vector system (BEVS) in SF9. Material and methods: In the first step, gene structure was subjected to the in silico studies, which were include determination of Antibacterial activity, Prion formation risk, homology modeling, Molecular docking analysis, and Optimization of recombinant protein. In the second step, the Netrin-A gene was cloned and amplified in pTG19 vector. After digestion with BamH1 and EcoR1 restriction enzymes, it was cloned in pFastBac HTA vector. It was then transformed into DH10Bac competent cells, and the recombinant Bacmid was subsequently transfected into insect Sf9 cells. The expressed recombinant Netrin-A was thus purified in the Ni-NTA agarose. This protein evaluation was done using SDS-PAGE and western blot, respectively. Finally, its concentration was calculated with the Bradford assay method. Results: The Bacmid vector structure with Netrin-A was successfully constructed and then expressed as Netrin-A protein in the Sf9 cell lane. The molecular weight of this protein was 52 kDa with 404 amino acids. In the in silico studies, fortunately, we predicted that recombinant LSNetrin-A have Antibacterial activity and without any prion formation risk.This molecule hasa high binding affinity to the Neogenin and a lower affinity to the DCC-specific receptors. Signal peptide located between amino acids 24 and 25. The concentration of Netrin-A recombinant protein was calculated to be 48.8 μg/ml. it was confirmed that the characterized gene in our previous study codes L. sericata Netrin-A enzyme. Conclusions: Successful generation of the recombinant Netrin-A, a secreted protein in L.sericata salivary glands, and because Luciliasericata larvae are used in larval therapy. Therefore, the findings of the present study could be useful to researchers in future studies on wound healing.Keywords: blowfly, BEVS, gene, immature insect, recombinant protein, Sf9
Procedia PDF Downloads 9310632 The Impact of Experiential Learning on the Success of Upper Division Mechanical Engineering Students
Authors: Seyedali Seyedkavoosi, Mohammad Obadat, Seantorrion Boyle
Abstract:
The purpose of this study is to assess the effectiveness of a nontraditional experiential learning strategy in improving the success and interest of mechanical engineering students, using the Kinematics/Dynamics of Machine course as a case study. This upper-division technical course covers a wide range of topics, including mechanism and machine system analysis and synthesis, yet the complexities of ideas like acceleration, motion, and machine component relationships are hard to explain using standard teaching techniques. To solve this problem, a thorough design project was created that gave students hands-on experience developing, manufacturing, and testing their inventions. The main goals of the project were to improve students' grasp of machine design and kinematics, to develop problem-solving and presenting abilities, and to familiarize them with professional software. A questionnaire survey was done to evaluate the effect of this technique on students' performance and interest in mechanical engineering. The outcomes of the study shed light on the usefulness of nontraditional experiential learning approaches in engineering education.Keywords: experiential learning, nontraditional teaching, hands-on design project, engineering education
Procedia PDF Downloads 9710631 Integrating Natural Language Processing (NLP) and Machine Learning in Lung Cancer Diagnosis
Authors: Mehrnaz Mostafavi
Abstract:
The assessment and categorization of incidental lung nodules present a considerable challenge in healthcare, often necessitating resource-intensive multiple computed tomography (CT) scans for growth confirmation. This research addresses this issue by introducing a distinct computational approach leveraging radiomics and deep-learning methods. However, understanding local services is essential before implementing these advancements. With diverse tracking methods in place, there is a need for efficient and accurate identification approaches, especially in the context of managing lung nodules alongside pre-existing cancer scenarios. This study explores the integration of text-based algorithms in medical data curation, indicating their efficacy in conjunction with machine learning and deep-learning models for identifying lung nodules. Combining medical images with text data has demonstrated superior data retrieval compared to using each modality independently. While deep learning and text analysis show potential in detecting previously missed nodules, challenges persist, such as increased false positives. The presented research introduces a Structured-Query-Language (SQL) algorithm designed for identifying pulmonary nodules in a tertiary cancer center, externally validated at another hospital. Leveraging natural language processing (NLP) and machine learning, the algorithm categorizes lung nodule reports based on sentence features, aiming to facilitate research and assess clinical pathways. The hypothesis posits that the algorithm can accurately identify lung nodule CT scans and predict concerning nodule features using machine-learning classifiers. Through a retrospective observational study spanning a decade, CT scan reports were collected, and an algorithm was developed to extract and classify data. Results underscore the complexity of lung nodule cohorts in cancer centers, emphasizing the importance of careful evaluation before assuming a metastatic origin. The SQL and NLP algorithms demonstrated high accuracy in identifying lung nodule sentences, indicating potential for local service evaluation and research dataset creation. Machine-learning models exhibited strong accuracy in predicting concerning changes in lung nodule scan reports. While limitations include variability in disease group attribution, the potential for correlation rather than causality in clinical findings, and the need for further external validation, the algorithm's accuracy and potential to support clinical decision-making and healthcare automation represent a significant stride in lung nodule management and research.Keywords: lung cancer diagnosis, structured-query-language (SQL), natural language processing (NLP), machine learning, CT scans
Procedia PDF Downloads 10110630 Cyber Attacks Management in IoT Networks Using Deep Learning and Edge Computing
Authors: Asmaa El Harat, Toumi Hicham, Youssef Baddi
Abstract:
This survey delves into the complex realm of Internet of Things (IoT) security, highlighting the urgent need for effective cybersecurity measures as IoT devices become increasingly common. It explores a wide array of cyber threats targeting IoT devices and focuses on mitigating these attacks through the combined use of deep learning and machine learning algorithms, as well as edge and cloud computing paradigms. The survey starts with an overview of the IoT landscape and the various types of attacks that IoT devices face. It then reviews key machine learning and deep learning algorithms employed in IoT cybersecurity, providing a detailed comparison to assist in selecting the most suitable algorithms. Finally, the survey provides valuable insights for cybersecurity professionals and researchers aiming to enhance security in the intricate world of IoT.Keywords: internet of things (IoT), cybersecurity, machine learning, deep learning
Procedia PDF Downloads 3110629 The Influence of Different Flux Patterns on Magnetic Losses in Electric Machine Cores
Authors: Natheer Alatawneh
Abstract:
The finite element analysis of magnetic fields in electromagnetic devices shows that the machine cores experience different flux patterns including alternating and rotating fields. The rotating fields are generated in different configurations range between circular and elliptical with different ratios between the major and minor axis of the flux locus. Experimental measurements on electrical steel exposed to different flux patterns disclose different magnetic losses in the samples under test. Consequently, electric machines require special attention during the cores loss calculation process to consider the flux patterns. In this study, a circular rotational single sheet tester is employed to measure the core losses in electric steel sample of M36G29. The sample was exposed to alternating field, circular field, and elliptical fields with axis ratios of 0.2, 0.4, 0.6 and 0.8. The measured data was implemented on 6-4 switched reluctance motor at three different frequencies of interest to the industry as 60 Hz, 400 Hz, and 1 kHz. The results disclose a high margin of error that may occur during the loss calculations if the flux patterns issue is neglected. The error in different parts of the machine associated with considering the flux patterns can be around 50%, 10%, and 2% at 60Hz, 400Hz, and 1 kHz, respectively. The future work will focus on the optimization of machine geometrical shape which has a primary effect on the flux pattern in order to minimize the magnetic losses in machine cores.Keywords: alternating core losses, electric machines, finite element analysis, rotational core losses
Procedia PDF Downloads 25210628 Bioefficacy of Ocimum sanctum on Survival, Development and Reproduction of Dengue Vector Aedes aegypti L. (Diptera: Culicidae)
Authors: Mohd Shazad, K. K. Gupta
Abstract:
Vector borne diseases are a serious global concern. Aedes aegypti, the primary vector for viruses that cause dengue fever, dengue haemorrhagic fever, chikungunya and yellow fever is widespread over large areas of the tropics and subtropics. In last decade, diseases transmitted by Aedes aegypti are of serious concern. In past decade, number of cases of dengue fever, dengue hemorrhagic fever, and chikungunya has increased multifold. Present research work focused on impact of ethanol extract of Ocimum sanctum on dengue vector Aedes aegypti. 0-24 hr. old fourth instar larvae of lab-bred population of Aedes aegypti were exposed to ethanol leaf extract of Ocimum with concentrations ranging from 50 ppm to 400 ppm. Survival and development and the treated larvae and reproductive behaviour of the adults emerged from the treated larvae was evaluated. Our results indicated larvicidal potential of the leaf ethanol extract. The influence of the extract was dose dependent. 77.2% mortality was observed in the larvae exposed to 400 ppm for 24 hr. Treatment at lower concentrations revealed delayed toxicity. The larvae survived after treatment showed severe developmental anomalies. Consequently, there was the significant increase in duration of fourth instar larva. The L4 treated with 400-ppm extract moulted after 4.6 days; this was in sharp contrast to control where the larval period of the fourth instar lasts three days. The treated fourth instar larvae in many cases transformed into larva-pupa intermediates with the combination of larva, pupa characters. The larva-pupa intermediates had reduced life span and failed to moult successfully. The adults emerged from the larvae treated with lower doses had reduced reproductive potential. The females exhibited longer preoviposition period, reduced oviposition rate, abnormal oviposition behaviour and decreased fertility. Our studies indicated the possibility of the presence of JH mimic or JH analogue in the leaf ethanol extract of Ocimum. The present research work explored the potentials of Ocimum sanctum, also known as the queen of herbs, in integrated vector management programme of Aedes aegypti, which is a serious threat to human health.Keywords: Aedes aegypti, development, mortality, Ocimum sanctum reproduction
Procedia PDF Downloads 24410627 Direct Translation vs. Pivot Language Translation for Persian-Spanish Low-Resourced Statistical Machine Translation System
Authors: Benyamin Ahmadnia, Javier Serrano
Abstract:
In this paper we compare two different approaches for translating from Persian to Spanish, as a language pair with scarce parallel corpus. The first approach involves direct transfer using an statistical machine translation system, which is available for this language pair. The second approach involves translation through English, as a pivot language, which has more translation resources and more advanced translation systems available. The results show that, it is possible to achieve better translation quality using English as a pivot language in either approach outperforms direct translation from Persian to Spanish. Our best result is the pivot system which scores higher than direct translation by (1.12) BLEU points.Keywords: statistical machine translation, direct translation approach, pivot language translation approach, parallel corpus
Procedia PDF Downloads 48710626 Autoignition Delay Characterstic of Hydrocarbon (n-Pentane) from Lean to Rich Mixtures
Authors: Sunil Verma
Abstract:
This report is concerned with study of autoignition delay characterstics of n-pentane. Experiments are done for different equivalents ratio on Rapid compression machine. Dependence of autoignition delay period is clearly explained from lean to rich mixtures. Equivalence ratio is varied from 0.33 to 0.6.Keywords: combustion, autoignition, ignition delay, rapid compression machine
Procedia PDF Downloads 35110625 Temporal Case-Based Reasoning System for Automatic Parking Complex
Authors: Alexander P. Eremeev, Ivan E. Kurilenko, Pavel R. Varshavskiy
Abstract:
In this paper, the problem of the application of temporal reasoning and case-based reasoning in intelligent decision support systems is considered. The method of case-based reasoning with temporal dependences for the solution of problems of real-time diagnostics and forecasting in intelligent decision support systems is described. This paper demonstrates how the temporal case-based reasoning system can be used in intelligent decision support systems of the car access control. This work was supported by RFBR.Keywords: analogous reasoning, case-based reasoning, intelligent decision support systems, temporal reasoning
Procedia PDF Downloads 52910624 Performances Analysis and Optimization of an Adsorption Solar Cooling System
Authors: Nadia Allouache
Abstract:
The use of solar energy in cooling systems is an interesting alternative to the increasing demand of energy in the world and more specifically in southern countries where the needs of refrigeration and air conditioning are tremendous. This technique is even more attractive with regards to environmental issues. This study focuses on performances analysis and optimization of solar reactor of an adsorption cooling machine working with activated carbon-methanol pair. The modeling of the adsorption cooling machine requires the resolution of the equation describing the energy and mass transfer in the tubular adsorber that is the most important component of the machine. The results show the poor heat conduction inside the porous medium and the resistance between the metallic wall and the bed engender the important temperature gradient and a great difference between the metallic wall and the bed temperature; this is considered as the essential causes decreasing the performances of the machine. For fixed conditions of functioning, the total desorbed mass presents a maximum for an optimal value of the height of the adsorber; this implies the existence of an optimal dimensioning of the adsorber.Keywords: solar cooling system, performances Analysis, optimization, heat and mass transfer, activated carbon-methanol pair, numerical modeling
Procedia PDF Downloads 43910623 Design of Structure for a Heavy-Duty Mineral Tow Machine by Evaluating the Dynamic and Static Loads
Authors: M. Akhondizadeh, Mohsen Khajoei, Mojtaba Khajoei
Abstract:
The purpose of the present work was the design of a towing machine which was decided to be manufactured by Arman Gohar-e-Sirjan company in the Gol-e-Gohar iron ore complex in Iran. The load analysis has been conducted to determine the static and dynamic loads at the critical conditions. The inertial forces due to the velocity increment and road bump have been considered in load evaluation. The form of loading of the present machine is hauling and/or conveying the mineral machines on the mini ramp. Several stages of these forms of loading, from the initial touch of the tow and carried machine to the final position, have been assessed to determine the critical state. The stress analysis has been performed by the ANSYS software. Several geometries for the main load-carrying elements have been analyzed to have the optimum design by the minimum weight of the structure. Finally, a structure with a total weight of 38 tons has been designed with a static load-carrying capacity of 80 tons by considering the 40 tons additional capacity for dynamic effects. The stress analysis for 120 tons load gives the minimum safety factor of 1.18.Keywords: mechanical design, stress analysis, tow structure, dynamic load, static load
Procedia PDF Downloads 10810622 Nutritional Allowance Support Affecting Treatment Compliance among TB Patients in Western, Nepal
Authors: Yadav R. K., Baral S.
Abstract:
Introduction: Nepal is one of the world’s least developed countries and has a high incidence of tuberculosis (TB). The TB prevalence survey in 2019 showed 69,000 Nepalese is developing TB and 4,000 die every year. Given its disproportionate impact on the impoverished segments of society, TB often thrusts patients into extreme poverty or exacerbates their existing economic struggles. Consequently, not only the patients but also their families suffer from the loss of livelihood. This study aims to assess the support of nutritional allowance on treatment compliance among retreatment tuberculosis patients in Nepal. This is a secondary analysis of data from HMIS (Health Management Information System) to investigate treatment compliance among tuberculosis patients and its association with nutritional allowance. The study population consisted of all individuals (N=2972) who had received services from July 16, 2021, to December 14, 2022. The SPSS 21version was used to conduct descriptive and bivariate analysis. Out of the total TB patients (n=2972), a third-fourth (65.9%) of TB patients were male. More than one-tenth (12.3%) of respondents received a nutrition support allowance. The TB treatment compliance rate was more (89.91%) in the nutrition support allowance group compared to the non-nutritional support group (87.98%). TB patients who received the nutritional support allowance were nearly twice as likely to have a higher TB treatment compliance rate compared to those who did not receive the nutritional support allowance. Providing nutritional allowance support to tuberculosis (TB) patients can play a significant role in improving treatment compliance and outcomes. Age and the type of TB are important factors that have shown statistical significance in relation to treatment compliance. Therefore, it is recommended to provide nutritional allowance support to both new and retreatment TB patients. To enhance treatment compliance among TB patients, it is beneficial to provide timely nutrition allowances and arrange home visits by TB focal persons.Keywords: nutrition, support, treatment compliance, TB, Nepal
Procedia PDF Downloads 14210621 Data-Driven Insights Into Juvenile Recidivism: Leveraging Machine Learning for Rehabilitation Strategies
Authors: Saiakhil Chilaka
Abstract:
Juvenile recidivism presents a significant challenge to the criminal justice system, impacting both the individuals involved and broader societal safety. This study aims to identify the key factors influencing recidivism and successful rehabilitation outcomes by utilizing a dataset of over 25,000 individuals from the NIJ Recidivism Challenge. We employed machine learning techniques, particularly Random Forest Classification, combined with SHAP (SHapley Additive exPlanations) for model interpretability. Our findings indicate that supervision risk score, percent days employed, and education level are critical factors affecting recidivism, with higher levels of supervision, successful employment, and education contributing to lower recidivism rates. Conversely, Gang Affiliation emerged as a significant risk factor for reoffending. The model achieved an accuracy of 68.8%, highlighting its utility in identifying high-risk individuals and informing targeted interventions. These results suggest that a comprehensive approach involving personalized supervision, vocational training, educational support, and anti-gang initiatives can significantly reduce recidivism and enhance rehabilitation outcomes for juveniles, providing critical insights for policymakers and juvenile justice practitioners.Keywords: juvenile, justice system, data analysis, SHAP
Procedia PDF Downloads 2310620 Major Factors That Enhance Economic Growth in South Africa: A Re-Examination Using a Vector Error Correction Mechanism
Authors: Temitope L. A. Leshoro
Abstract:
This study explored several variables that enhance economic growth in South Africa, based on different growth theories while using the vector error correction model (VECM) technique. The impacts and contributions of each of these variables on GDP in South Africa were investigated. The motivation for this study was as a result of the weak economic growth that the country has been experiencing lately, as well as the continuous increase in unemployment rate and deteriorating health care system. Annual data spanning over the period 1974 to 2013 was employed. The results showed that the major determinants of GDP are trade openness, government spending, and health indicator; as these variables are not only economically significant but also statistically significant in explaining the changes in GDP in South Africa. Policy recommendations for economic growth enhancement are suggested based on the findings of this study.Keywords: economic growth, GDP, investment, health indicator, VECM
Procedia PDF Downloads 27610619 A Machine Learning Approach for Intelligent Transportation System Management on Urban Roads
Authors: Ashish Dhamaniya, Vineet Jain, Rajesh Chouhan
Abstract:
Traffic management is one of the gigantic issue in most of the urban roads in al-most all metropolitan cities in India. Speed is one of the critical traffic parameters for effective Intelligent Transportation System (ITS) implementation as it decides the arrival rate of vehicles on an intersection which are majorly the point of con-gestions. The study aimed to leverage Machine Learning (ML) models to produce precise predictions of speed on urban roadway links. The research objective was to assess how categorized traffic volume and road width, serving as variables, in-fluence speed prediction. Four tree-based regression models namely: Decision Tree (DT), Random Forest (RF), Extra Tree (ET), and Extreme Gradient Boost (XGB)are employed for this purpose. The models' performances were validated using test data, and the results demonstrate that Random Forest surpasses other machine learning techniques and a conventional utility theory-based model in speed prediction. The study is useful for managing the urban roadway network performance under mixed traffic conditions and effective implementation of ITS.Keywords: stream speed, urban roads, machine learning, traffic flow
Procedia PDF Downloads 7010618 Predicting Potential Protein Therapeutic Candidates from the Gut Microbiome
Authors: Prasanna Ramachandran, Kareem Graham, Helena Kiefel, Sunit Jain, Todd DeSantis
Abstract:
Microbes that reside inside the mammalian GI tract, commonly referred to as the gut microbiome, have been shown to have therapeutic effects in animal models of disease. We hypothesize that specific proteins produced by these microbes are responsible for this activity and may be used directly as therapeutics. To speed up the discovery of these key proteins from the big-data metagenomics, we have applied machine learning techniques. Using amino acid sequences of known epitopes and their corresponding binding partners, protein interaction descriptors (PID) were calculated, making a positive interaction set. A negative interaction dataset was calculated using sequences of proteins known not to interact with these same binding partners. Using Random Forest and positive and negative PID, a machine learning model was trained and used to predict interacting versus non-interacting proteins. Furthermore, the continuous variable, cosine similarity in the interaction descriptors was used to rank bacterial therapeutic candidates. Laboratory binding assays were conducted to test the candidates for their potential as therapeutics. Results from binding assays reveal the accuracy of the machine learning prediction and are subsequently used to further improve the model.Keywords: protein-interactions, machine-learning, metagenomics, microbiome
Procedia PDF Downloads 37610617 Comparison of Different Data Acquisition Techniques for Shape Optimization Problems
Authors: Attila Vámosi, Tamás Mankovits, Dávid Huri, Imre Kocsis, Tamás Szabó
Abstract:
Non-linear FEM calculations are indispensable when important technical information like operating performance of a rubber component is desired. Rubber bumpers built into air-spring structures may undergo large deformations under load, which in itself shows non-linear behavior. The changing contact range between the parts and the incompressibility of the rubber increases this non-linear behavior further. The material characterization of an elastomeric component is also a demanding engineering task. The shape optimization problem of rubber parts led to the study of FEM based calculation processes. This type of problems was posed and investigated by several authors. In this paper the time demand of certain calculation methods are studied and the possibilities of time reduction is presented.Keywords: rubber bumper, data acquisition, finite element analysis, support vector regression
Procedia PDF Downloads 47110616 Study and Simulation of the Thrust Vectoring in Supersonic Nozzles
Authors: Kbab H, Hamitouche T
Abstract:
In recent years, significant progress has been accomplished in the field of aerospace propulsion and propulsion systems. These developments are associated with efforts to enhance the accuracy of the analysis of aerothermodynamic phenomena in the engine. This applies in particular to the flow in the nozzles used. One of the most remarkable processes in this field is thrust vectoring by means of devices able to orientate the thrust vector and control the deflection of the exit jet in the engine nozzle. In the study proposed, we are interested in the fluid thrust vectoring using a second injection in the nozzle divergence. This fluid injection causes complex phenomena, such as boundary layer separation, which generates a shock wave in the primary jet upstream of the fluid interacting zone (primary jet - secondary jet). This will cause the deviation of the main flow, and therefore of the thrust vector with reference to the axis nozzle. In the modeling of the fluidic thrust vector, various parameters can be used. The Mach number of the primary jet and the injected fluid, the total pressures ratio, the injection rate, the thickness of the upstream boundary layer, the injector position in the divergent part, and the nozzle geometry are decisive factors in this type of phenomenon. The complexity of the latter challenges researchers to understand the physical phenomena of the turbulent boundary layer encountered in supersonic nozzles, as well as the calculation of its thickness and the friction forces induced on the walls. The present study aims to numerically simulate the thrust vectoring by secondary injection using the ANSYS-FLUENT, then to analyze and validate the results and the performances obtained (angle of deflection, efficiency...), which will then be compared with those obtained by other authors.Keywords: CD Nozzle, TVC, SVC, NPR, CFD, NPR, SPR
Procedia PDF Downloads 13310615 Analysis of the Result for the Accelerated Life Cycle Test of the Motor for Washing Machine by Using Acceleration Factor
Authors: Youn-Sung Kim, Jin-Ho Jo, Mi-Sung Kim, Jae-Kun Lee
Abstract:
Accelerated life cycle test is applied to various products or components in order to reduce the time of life cycle test in industry. It must be considered for many test conditions according to the product characteristics for the test and the selection of acceleration parameter is especially very important. We have carried out the general life cycle test and the accelerated life cycle test by applying the acceleration factor (AF) considering the characteristics of brushless DC (BLDC) motor for washing machine. The final purpose of this study is to verify the validity by analyzing the results of the general life cycle test and the accelerated life cycle test. It will make it possible to reduce the life test time through the reasonable accelerated life cycle test.Keywords: accelerated life cycle test, reliability test, motor for washing machine, brushless dc motor test
Procedia PDF Downloads 61110614 Study on the Prediction of Serviceability of Garments Based on the Seam Efficiency and Selection of the Right Seam to Ensure Better Serviceability of Garments
Authors: Md Azizul Islam
Abstract:
Seam is the line of joining two separate fabric layers for functional or aesthetic purposes. Different kinds of seams are used for assembling the different areas or parts of the garment to increase serviceability. To empirically support the importance of seam efficiency on serviceability of garments, this study is focused on choosing the right type of seams for particular sewing parts of the garments based on the seam efficiency to ensure better serviceability. Seam efficiency is the ratio of seam strength and fabric strength. Single jersey knitted finished fabrics of four different GSMs (gram per square meter) were used to make the test garments T-shirt. Three distinct types of the seam: superimposed, lapped and flat seam was applied to the side seams of T-shirt and sewn by lockstitch (stitch class- 301) in a flat-bed plain sewing machine (maximum sewing speed: 5000 rpm) to make (3x4) 12 T-shirts. For experimental purposes, needle thread count (50/3 Ne), bobbin thread count (50/2 Ne) and the stitch density (stitch per inch: 8-9), Needle size (16 in singer system), stitch length (31 cm), and seam allowance (2.5cm) were kept same for all specimens. The grab test (ASTM D5034-08) was done in the Universal tensile tester to measure the seam strength and fabric strength. The produced T-shirts were given to 12 soccer players who wore the shirts for 20 soccer matches (each match of 90 minutes duration). Serviceability of the shirt were measured by visual inspection of a 5 points scale based on the seam conditions. The study found that T-shirts produced with lapped seam show better serviceability and T-shirts made of flat seams perform the lowest score in serviceability score. From the calculated seam efficiency (seam strength/ fabric strength), it was obvious that the performance (in terms of strength) of the lapped and bound seam is higher than that of the superimposed seam and the performance of superimposed seam is far better than that of the flat seam. So it can be predicted that to get a garment of high serviceability, lapped seams could be used instead of superimposed or other types of the seam. In addition, less stressed garments can be assembled by others seems like superimposed seams or flat seams.Keywords: seam, seam efficiency, serviceability, T-shirt
Procedia PDF Downloads 20210613 Design of an Automatic Bovine Feeding Machine
Authors: Huseyin A. Yavasoglu, Yusuf Ziya Tengiz, Ali Göksenli
Abstract:
In this study, an automatic feeding machine for different type and class of bovine animals is designed. Daily nutrition of a bovine consists of grass, corn, straw, silage, oat, wheat and different vitamins and minerals. The amount and mixture amount of each of the nutrition depends on different parameters of the bovine. These parameters are; age, sex, weight and maternity of the bovine, also outside temperature. The problem in a farm is to constitute the correct mixture and amount of nutrition for each animal. Faulty nutrition will cause an insufficient feeding of the animal concluding in an unhealthy bovine. To solve this problem, a new automatic feeding machine is designed. Travelling of the machine is performed by four tires, which is pulled by a tractor. The carrier consists of eight bins, which each of them carries a nutrition type. Capacity of each unit is 250 kg. At the bottom of each chamber is a sensor measuring the weight of the food inside. A funnel is at the bottom of each chamber by which open/close function is controlled by a valve. Each animal will carry a RFID tag including ID on its ear. A receiver on the feeding machine will read this ID and by given previous information by the operator (veterinarian), the system will detect the amount of each nutrition unit which will be given to the selected animal for feeding. In the system, each bin will open its exit gate by the help of the valve under the control of PLC (Programmable Logic Controller). The amount of each nutrition type will be controlled by measuring the open/close time. The exit canals of the bins are collected in a reservoir. To achieve a homogenous nitration, the collected feed will be mixed by a worm gear. Further the mixture will be transported by a help of a funnel to the feeding unit of the animal. The feeding process can be performed in 100 seconds. After feeding of the animal, the tractor pulls the travelling machine to the next animal. By the help of this system animals can be feeded by right amount and mixture of nutritionKeywords: bovine, feeding, nutrition, transportation, automatic
Procedia PDF Downloads 34210612 Econometric Analysis of West African Countries’ Container Terminal Throughput and Gross Domestic Products
Authors: Kehinde Peter Oyeduntan, Kayode Oshinubi
Abstract:
The west African ports have been experiencing large inflow and outflow of containerized cargo in the last decades, and this has created a quest amongst the countries to attain the status of hub port for the sub-region. This study analyzed the relationship between the container throughput and Gross Domestic Products (GDP) of nine west African countries, using Simple Linear Regression (SLR), Polynomial Regression Model (PRM) and Support Vector Machines (SVM) with a time series of 20 years. The results showed that there exists a high correlation between the GDP and container throughput. The model also predicted the container throughput in west Africa for the next 20 years. The findings and recommendations presented in this research will guide policy makers and help improve the management of container ports and terminals in west Africa, thereby boosting the economy.Keywords: container, ports, terminals, throughput
Procedia PDF Downloads 215