Search results for: innovation maturity models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8585

Search results for: innovation maturity models

7715 Analysis of NFC and Biometrics in the Retail Industry

Authors: Ziwei Xu

Abstract:

The increasing emphasis on mobility has driven the application of innovative communication technologies across various industries. In the retail sector, Near Field Communication (NFC) has emerged as a significant and transformative technology, particularly in the payment and retail supermarket sectors. NFC enables new payment methods, such as electronic wallets, and enhances information management in supermarkets, contributing to the growth of the trade. This report presents a comprehensive analysis of NFC technology, focusing on five key aspects. Firstly, it provides an overview of NFC, including its application methods and development history. Additionally, it incorporates Arthur's work on combinatorial evolution to elucidate the emergence and impact of NFC technology, while acknowledging the limitations of the model in analyzing NFC. The report then summarizes the positive influence of NFC on the retail industry along with its associated constraints. Furthermore, it explores the adoption of NFC from both organizational and individual perspectives, employing the Best Predictors of organizational IT adoption and UTAUT2 models, respectively. Finally, the report discusses the potential future replacement of NFC with biometrics technology, highlighting its advantages over NFC and leveraging Arthur's model to investigate its future development prospects.

Keywords: innovation, NFC, industry, biometrics

Procedia PDF Downloads 75
7714 PM10 Prediction and Forecasting Using CART: A Case Study for Pleven, Bulgaria

Authors: Snezhana G. Gocheva-Ilieva, Maya P. Stoimenova

Abstract:

Ambient air pollution with fine particulate matter (PM10) is a systematic permanent problem in many countries around the world. The accumulation of a large number of measurements of both the PM10 concentrations and the accompanying atmospheric factors allow for their statistical modeling to detect dependencies and forecast future pollution. This study applies the classification and regression trees (CART) method for building and analyzing PM10 models. In the empirical study, average daily air data for the city of Pleven, Bulgaria for a period of 5 years are used. Predictors in the models are seven meteorological variables, time variables, as well as lagged PM10 variables and some lagged meteorological variables, delayed by 1 or 2 days with respect to the initial time series, respectively. The degree of influence of the predictors in the models is determined. The selected best CART models are used to forecast future PM10 concentrations for two days ahead after the last date in the modeling procedure and show very accurate results.

Keywords: cross-validation, decision tree, lagged variables, short-term forecasting

Procedia PDF Downloads 194
7713 JaCoText: A Pretrained Model for Java Code-Text Generation

Authors: Jessica Lopez Espejel, Mahaman Sanoussi Yahaya Alassan, Walid Dahhane, El Hassane Ettifouri

Abstract:

Pretrained transformer-based models have shown high performance in natural language generation tasks. However, a new wave of interest has surged: automatic programming language code generation. This task consists of translating natural language instructions to a source code. Despite the fact that well-known pre-trained models on language generation have achieved good performance in learning programming languages, effort is still needed in automatic code generation. In this paper, we introduce JaCoText, a model based on Transformer neural network. It aims to generate java source code from natural language text. JaCoText leverages the advantages of both natural language and code generation models. More specifically, we study some findings from state of the art and use them to (1) initialize our model from powerful pre-trained models, (2) explore additional pretraining on our java dataset, (3) lead experiments combining the unimodal and bimodal data in training, and (4) scale the input and output length during the fine-tuning of the model. Conducted experiments on CONCODE dataset show that JaCoText achieves new state-of-the-art results.

Keywords: java code generation, natural language processing, sequence-to-sequence models, transformer neural networks

Procedia PDF Downloads 284
7712 The Role Played by Awareness and Complexity through the Use of a Logistic Regression Analysis

Authors: Yari Vecchio, Margherita Masi, Jorgelina Di Pasquale

Abstract:

Adoption of Precision Agriculture (PA) is involved in a multidimensional and complex scenario. The process of adopting innovations is complex and social inherently, influenced by other producers, change agents, social norms and organizational pressure. Complexity depends on factors that interact and influence the decision to adopt. Farm and operator characteristics, as well as organizational, informational and agro-ecological context directly affect adoption. This influence has been studied to measure drivers and to clarify 'bottlenecks' of the adoption of agricultural innovation. Making decision process involves a multistage procedure, in which individual passes from first hearing about the technology to final adoption. Awareness is the initial stage and represents the moment in which an individual learns about the existence of the technology. 'Static' concept of adoption has been overcome. Awareness is a precondition to adoption. This condition leads to not encountering some erroneous evaluations, arose from having carried out analysis on a population that is only in part aware of technologies. In support of this, the present study puts forward an empirical analysis among Italian farmers, considering awareness as a prerequisite for adoption. The purpose of the present work is to analyze both factors that affect the probability to adopt and determinants that drive an aware individual to not adopt. Data were collected through a questionnaire submitted in November 2017. A preliminary descriptive analysis has shown that high levels of adoption have been found among younger farmers, better educated, with high intensity of information, with large farm size and high labor-intensive, and whose perception of the complexity of adoption process is lower. The use of a logit model permits to appreciate the weight played by the intensity of labor and complexity perceived by the potential adopter in PA adoption process. All these findings suggest important policy implications: measures dedicated to promoting innovation will need to be more specific for each phase of this adoption process. Specifically, they should increase awareness of PA tools and foster dissemination of information to reduce the degree of perceived complexity of the adoption process. These implications are particularly important in Europe where is pre-announced the reform of Common Agricultural Policy, oriented to innovation. In this context, these implications suggest to the measures supporting innovation to consider the relationship between various organizational and structural dimensions of European agriculture and innovation approaches.

Keywords: adoption, awareness, complexity, precision agriculture

Procedia PDF Downloads 138
7711 Advancing Aviation: A Multidisciplinary Approach to Innovation, Management, and Technology Integration in the 21st Century

Authors: Fatih Frank Alparslan

Abstract:

The aviation industry is at a crucial turning point due to modern technologies, environmental concerns, and changing ways of transporting people and goods globally. The paper examines these challenges and opportunities comprehensively. It emphasizes the role of innovative management and advanced technology in shaping the future of air travel. This study begins with an overview of the current state of the aviation industry, identifying key areas where innovation and technology could be highly beneficial. It explores the latest advancements in airplane design, propulsion, and materials. These technological advancements are shown to enhance aircraft performance and environmental sustainability. The paper also discusses the use of artificial intelligence and machine learning in improving air traffic control, enhancing safety, and making flight operations more efficient. The management of these technologies is critically important. Therefore, the research delves into necessary changes in organization, culture, and operations to support innovation. It proposes a management approach that aligns with these modern technologies, underlining the importance of forward-thinking leaders who collaborate across disciplines and embrace innovative ideas. The paper addresses challenges in adopting these innovations, such as regulatory barriers, the need for industry-wide standards, and the impact of technological changes on jobs and society. It recommends that governments, aviation businesses, and educational institutions collaborate to address these challenges effectively, paving the way for a more innovative and eco-friendly aviation industry. In conclusion, the paper argues that the future of aviation relies on integrating new management practices with innovative technologies. It urges a collective effort to push beyond current capabilities, envisioning an aviation industry that is safer, more efficient, and environmentally responsible. By adopting a broad approach, this research contributes to the ongoing discussion about resolving the complex issues facing today's aviation sector, offering insights and guidance to prepare for future advancements.

Keywords: aviation innovation, technology integration, environmental sustainability, management strategies, multidisciplinary approach

Procedia PDF Downloads 48
7710 Development of a Turbulent Boundary Layer Wall-pressure Fluctuations Power Spectrum Model Using a Stepwise Regression Algorithm

Authors: Zachary Huffman, Joana Rocha

Abstract:

Wall-pressure fluctuations induced by the turbulent boundary layer (TBL) developed over aircraft are a significant source of aircraft cabin noise. Since the power spectral density (PSD) of these pressure fluctuations is directly correlated with the amount of sound radiated into the cabin, the development of accurate empirical models that predict the PSD has been an important ongoing research topic. The sound emitted can be represented from the pressure fluctuations term in the Reynoldsaveraged Navier-Stokes equations (RANS). Therefore, early TBL empirical models (including those from Lowson, Robertson, Chase, and Howe) were primarily derived by simplifying and solving the RANS for pressure fluctuation and adding appropriate scales. Most subsequent models (including Goody, Efimtsov, Laganelli, Smol’yakov, and Rackl and Weston models) were derived by making modifications to these early models or by physical principles. Overall, these models have had varying levels of accuracy, but, in general, they are most accurate under the specific Reynolds and Mach numbers they were developed for, while being less accurate under other flow conditions. Despite this, recent research into the possibility of using alternative methods for deriving the models has been rather limited. More recent studies have demonstrated that an artificial neural network model was more accurate than traditional models and could be applied more generally, but the accuracy of other machine learning techniques has not been explored. In the current study, an original model is derived using a stepwise regression algorithm in the statistical programming language R, and TBL wall-pressure fluctuations PSD data gathered at the Carleton University wind tunnel. The theoretical advantage of a stepwise regression approach is that it will automatically filter out redundant or uncorrelated input variables (through the process of feature selection), and it is computationally faster than machine learning. The main disadvantage is the potential risk of overfitting. The accuracy of the developed model is assessed by comparing it to independently sourced datasets.

Keywords: aircraft noise, machine learning, power spectral density models, regression models, turbulent boundary layer wall-pressure fluctuations

Procedia PDF Downloads 135
7709 Human Resource Utilization Models for Graceful Ageing

Authors: Chuang-Chun Chiou

Abstract:

In this study, a systematic framework of graceful ageing has been used to explore the possible human resource utilization models for graceful ageing purpose. This framework is based on the Chinese culture. We call ‘Nine-old’ target. They are ageing gracefully with feeding, accomplishment, usefulness, learning, entertainment, care, protection, dignity, and termination. This study is focused on two areas: accomplishment and usefulness. We exam the current practices of initiatives and laws of promoting labor participation. That is to focus on how to increase Labor Force Participation Rate of the middle aged as well as the elderly and try to promote the elderly to achieve graceful ageing. Then we present the possible models that support graceful ageing.

Keywords: human resource utilization model, labor participation, graceful ageing, employment

Procedia PDF Downloads 390
7708 Adaptation of Extra Early Maize 'Zea Mays L.' Varieties for Climate Change Mitigation in South Western Nigeria

Authors: Akinwumi Omotayo, Badu-B Apraku, Joseph Olobasola, Petra Abdul Saghir, Yinka Sobowale

Abstract:

In southwestern Nigeria, climate change has led to loss of at least two months of rainfall. Consequently, only one cycle of maize can now be grown because of the shorter duration of rainy season as against two cycles in the past. The Early and Extra-early maturing varieties of maize were originally developed for the semi-arid and arid zones of West and Central Africa where there are seasonal challenges of water threatening optimum performance of the traditional maize grown, which are commonly late in maturity (115 to 120 days). The early varieties of maize mature in 90 to 95 days; while the Extra-Early maize varieties reach physiological maturity in less than 90 days. It was broadly hypothesized that the extra early varieties of maize could mitigate the effects of climate change in southwestern Nigeria with higher levels of rainfall by reinstating the original two cycles of rain-fed maize crop. Trials were therefore carried out in southwestern Nigeria on the possibility of adapting the extra early maize to mitigate the effects of climate change. The trial was the Mother/Baby design. The mother trial involves the evaluation of extra-early varieties following ideal recommendations and closely supervised centrally at the University research farm and the Agricultural Development Programmes (ADPs). This requires farmers to observe and evaluate the technology and the management regime meant to precede the second stage of evaluation at several satellite farmers field managed by selected farmers. The Baby Trial is expected to provide a realistic assessment of the technology by farmers in their own environment. A stratified selection of thirty farmers for the Baby Trial ensured appropriate representation across the different categories of the farming population by age and gender. Data from the trials indicate that extra early maize can be grown in two cycles rain fed in south west Nigeria and a third and fourth cycle could be obtained with irrigation. However the long duration varieties outyielded the extra early maize in both the mother and baby trials. When harvested green, the extra early maize served as source of food between March and May when there was scarcity of food. This represents a major advantage. The study recommends that further work needs to be done to improve the yield of extra early maize to encourage farmers to adopt.

Keywords: adaptation, climate change, extra early, maize varieties, mitigation

Procedia PDF Downloads 200
7707 Development of Computational Approach for Calculation of Hydrogen Solubility in Hydrocarbons for Treatment of Petroleum

Authors: Abdulrahman Sumayli, Saad M. AlShahrani

Abstract:

For the hydrogenation process, knowing the solubility of hydrogen (H2) in hydrocarbons is critical to improve the efficiency of the process. We investigated the H2 solubility computation in four heavy crude oil feedstocks using machine learning techniques. Temperature, pressure, and feedstock type were considered as the inputs to the models, while the hydrogen solubility was the sole response. Specifically, we employed three different models: Support Vector Regression (SVR), Gaussian process regression (GPR), and Bayesian ridge regression (BRR). To achieve the best performance, the hyper-parameters of these models are optimized using the whale optimization algorithm (WOA). We evaluated the models using a dataset of solubility measurements in various feedstocks, and we compared their performance based on several metrics. Our results show that the WOA-SVR model tuned with WOA achieves the best performance overall, with an RMSE of 1.38 × 10− 2 and an R-squared of 0.991. These findings suggest that machine learning techniques can provide accurate predictions of hydrogen solubility in different feedstocks, which could be useful in the development of hydrogen-related technologies. Besides, the solubility of hydrogen in the four heavy oil fractions is estimated in different ranges of temperatures and pressures of 150 ◦C–350 ◦C and 1.2 MPa–10.8 MPa, respectively

Keywords: temperature, pressure variations, machine learning, oil treatment

Procedia PDF Downloads 69
7706 Effects of Education on Farmers’ Productivity Outputs in Rural Nigeria

Authors: Thomas Ogilegwu Orohu

Abstract:

This paper highlights the effect of education on farmers’ productivity in rural Nigeria which includes potential to obtain paid employment or generate income through self-help employment using skills learnt in school. The paper emphasizes that education help farmers’ in agro-processing units in production to reduce post harvest wastage. It highlights the benefits of schooling for farmers’ productivity, particularly in terms of efficiency gains and increased farm productivity. As technological innovation spread more widely within the country, the importance of formal education in farm production ought to become more apparent. Education help farmers to improve attitudes, beliefs and habits that may lead to greater willingness to accept risk, adopts innovation, save investment and generally to embrace productive practices. Finally factors affecting farmers’ education and appropriate recommendation were given with the hope that if resolutely implemented would bring the attainment of desired farm education to farmers to improve farm productivity outputs.

Keywords: benefit, education, effect, productivity

Procedia PDF Downloads 319
7705 Environmental Modeling of Storm Water Channels

Authors: L. Grinis

Abstract:

Turbulent flow in complex geometries receives considerable attention due to its importance in many engineering applications. It has been the subject of interest for many researchers. Some of these interests include the design of storm water channels. The design of these channels requires testing through physical models. The main practical limitation of physical models is the so called “scale effect”, that is, the fact that in many cases only primary physical mechanisms can be correctly represented, while secondary mechanisms are often distorted. These observations form the basis of our study, which centered on problems associated with the design of storm water channels near the Dead Sea, in Israel. To help reach a final design decision we used different physical models. Our research showed good coincidence with the results of laboratory tests and theoretical calculations, and allowed us to study different effects of fluid flow in an open channel. We determined that problems of this nature cannot be solved only by means of theoretical calculation and computer simulation. This study demonstrates the use of physical models to help resolve very complicated problems of fluid flow through baffles and similar structures. The study applies these models and observations to different construction and multiphase water flows, among them, those that include sand and stone particles, a significant attempt to bring to the testing laboratory a closer association with reality.

Keywords: open channel, physical modeling, baffles, turbulent flow

Procedia PDF Downloads 284
7704 Application of the Least Squares Method in the Adjustment of Chlorodifluoromethane (HCFC-142b) Regression Models

Authors: L. J. de Bessa Neto, V. S. Filho, J. V. Ferreira Nunes, G. C. Bergamo

Abstract:

There are many situations in which human activities have significant effects on the environment. Damage to the ozone layer is one of them. The objective of this work is to use the Least Squares Method, considering the linear, exponential, logarithmic, power and polynomial models of the second degree, to analyze through the coefficient of determination (R²), which model best fits the behavior of the chlorodifluoromethane (HCFC-142b) in parts per trillion between 1992 and 2018, as well as estimates of future concentrations between 5 and 10 periods, i.e. the concentration of this pollutant in the years 2023 and 2028 in each of the adjustments. A total of 809 observations of the concentration of HCFC-142b in one of the monitoring stations of gases precursors of the deterioration of the ozone layer during the period of time studied were selected and, using these data, the statistical software Excel was used for make the scatter plots of each of the adjustment models. With the development of the present study, it was observed that the logarithmic fit was the model that best fit the data set, since besides having a significant R² its adjusted curve was compatible with the natural trend curve of the phenomenon.

Keywords: chlorodifluoromethane (HCFC-142b), ozone, least squares method, regression models

Procedia PDF Downloads 124
7703 Innovations for Freight Transport Systems

Authors: M. Lu

Abstract:

The paper presents part of the results of EU-funded projects: SoCool@EU (Sustainable Organisation between Clusters Of Optimized Logistics @ Europe), DG-RTD (Research and Innovation), Regions of Knowledge Programme (FP7-REGIONS-2011-1). It will provide an in-depth review of emerging technologies for further improving urban mobility and freight transport systems, such as (information and physical) infrastructure, ICT-based Intelligent Transport Systems (ITS), vehicles, advanced logistics, and services. Furthermore, the paper will provide an analysis of the barriers and will review business models for the market uptake of innovations. From a perspective of science and technology, the challenges of urbanization could be mainly handled through adequate (human-oriented) solutions for urban planning, sustainable energy, the water system, building design and construction, the urban transport system (both physical and information aspects), and advanced logistics and services. Implementation of solutions for these domains should be follow a highly integrated and balanced approach, a silo approach should be avoided. To develop a sustainable urban transport system (for people and goods), including inter-hubs and intra-hubs, a holistic view is needed. To achieve a sustainable transport system for people and goods (in terms of cost-effectiveness, efficiency, environment-friendliness and fulfillment of the mobility, transport and logistics needs of the society), a proper network and information infrastructure, advanced transport systems and operations, as well as ad hoc and seamless services are required. In addition, a road map for an enhanced urban transport system until 2050 will be presented. This road map aims to address the challenges of urban transport, and to provide best practices in inter-city and intra-city environments from various perspectives, including policy, traveler behaviour, economy, liability, business models, and technology.

Keywords: synchromodality, multimodal transport, logistics, Intelligent Transport Systems (ITS)

Procedia PDF Downloads 316
7702 Production Optimization under Geological Uncertainty Using Distance-Based Clustering

Authors: Byeongcheol Kang, Junyi Kim, Hyungsik Jung, Hyungjun Yang, Jaewoo An, Jonggeun Choe

Abstract:

It is important to figure out reservoir properties for better production management. Due to the limited information, there are geological uncertainties on very heterogeneous or channel reservoir. One of the solutions is to generate multiple equi-probable realizations using geostatistical methods. However, some models have wrong properties, which need to be excluded for simulation efficiency and reliability. We propose a novel method of model selection scheme, based on distance-based clustering for reliable application of production optimization algorithm. Distance is defined as a degree of dissimilarity between the data. We calculate Hausdorff distance to classify the models based on their similarity. Hausdorff distance is useful for shape matching of the reservoir models. We use multi-dimensional scaling (MDS) to describe the models on two dimensional space and group them by K-means clustering. Rather than simulating all models, we choose one representative model from each cluster and find out the best model, which has the similar production rates with the true values. From the process, we can select good reservoir models near the best model with high confidence. We make 100 channel reservoir models using single normal equation simulation (SNESIM). Since oil and gas prefer to flow through the sand facies, it is critical to characterize pattern and connectivity of the channels in the reservoir. After calculating Hausdorff distances and projecting the models by MDS, we can see that the models assemble depending on their channel patterns. These channel distributions affect operation controls of each production well so that the model selection scheme improves management optimization process. We use one of useful global search algorithms, particle swarm optimization (PSO), for our production optimization. PSO is good to find global optimum of objective function, but it takes too much time due to its usage of many particles and iterations. In addition, if we use multiple reservoir models, the simulation time for PSO will be soared. By using the proposed method, we can select good and reliable models that already matches production data. Considering geological uncertainty of the reservoir, we can get well-optimized production controls for maximum net present value. The proposed method shows one of novel solutions to select good cases among the various probabilities. The model selection schemes can be applied to not only production optimization but also history matching or other ensemble-based methods for efficient simulations.

Keywords: distance-based clustering, geological uncertainty, particle swarm optimization (PSO), production optimization

Procedia PDF Downloads 143
7701 Encouraging Collaboration and Innovation: The New Engineering Oriented Educational Reform in Urban Planning, Tianjin University, China

Authors: Tianjie Zhang, Bingqian Cheng, Peng Zeng

Abstract:

Engineering science and technology progress and innovation have become an important engine to promote social development. The reform exploration of "new engineering" in China has drawn extensive attention around the world, with its connotation as "to cultivate future diversified, innovative and outstanding engineering talents by taking ‘fostering character and civic virtue’ as the guide, responding to changes and shaping the future as the construction concept, and inheritance and innovation, crossover and fusion, coordination and sharing as the principal approach". In this context, Tianjin University, as a traditional Chinese university with advantages in engineering, further launched the CCII (Coherent-Collaborative-Interdisciplinary-Innovation) program, raising the cultivation idea of integrating new liberal arts education, multidisciplinary engineering education and personalized professional education. As urban planning practice in China has undergone the evolution of "physical planning -- comprehensive strategic planning -- resource management-oriented planning", planning education has also experienced the transmutation process of "building foundation -- urban scientific foundation -- multi-disciplinary integration". As a characteristic and advantageous discipline of Tianjin University, the major of Urban and Rural Planning, in accordance with the "CCII Program of Tianjin University", aims to build China's top and world-class major, and implements the following educational reform measures: 1. Adding corresponding English courses, such as advanced course on GIS Analysis, courses on comparative studies in international planning involving ecological resources and the sociology of the humanities, etc. 2. Holding "Academician Forum", inviting international academicians to give lectures or seminars to track international frontier scientific research issues. 3. Organizing "International Joint Workshop" to provide students with international exchange and design practice platform. 4. Setting up a business practice base, so that students can find problems from practice and solve them in an innovative way. Through these measures, the Urban and Rural Planning major of Tianjin University has formed a talent training system with multi-disciplinary cross integration and orienting to the future science and technology.

Keywords: China, higher education reform, innovation, new engineering education, rural and urban planning, Tianjin University

Procedia PDF Downloads 121
7700 Currency Exchange Rate Forecasts Using Quantile Regression

Authors: Yuzhi Cai

Abstract:

In this paper, we discuss a Bayesian approach to quantile autoregressive (QAR) time series model estimation and forecasting. Together with a combining forecasts technique, we then predict USD to GBP currency exchange rates. Combined forecasts contain all the information captured by the fitted QAR models at different quantile levels and are therefore better than those obtained from individual models. Our results show that an unequally weighted combining method performs better than other forecasting methodology. We found that a median AR model can perform well in point forecasting when the predictive density functions are symmetric. However, in practice, using the median AR model alone may involve the loss of information about the data captured by other QAR models. We recommend that combined forecasts should be used whenever possible.

Keywords: combining forecasts, MCMC, predictive density functions, quantile forecasting, quantile modelling

Procedia PDF Downloads 256
7699 Cultural Innovation in Uruena: A Path Against Depopulation

Authors: S. Sansone-Casaburi

Abstract:

The pandemic that the world is going through is causing important changes in the daily life of all cities, which can translate into opportunities to rearrange pending situations. Among others: the town-city relationship and sustainability. On the one hand, the city continues to be the center of attention, and the countryside is assumed as the supplier of food. However, the temporary closure of cities highlighted the importance of the rural environment, and many people are reassessing this context as an alternative for life. Furthermore, the countryside is not simply the home and the center of activity of the people who inhabit it, but rather constitutes the active group of all citizens, both rural and urban. On the other hand, the pandemic is the opportunity to meet sustainable development goals. Sustainable development is understood as the capital to be transferred to future generations made up of three types of wealth: natural capital (environment), human capital (people, relationships, culture), and artificial or built capital, made up of buildings and infrastructure, or by cities and towns. The 'new normal' can mean going back to the countryside, but not to a merely agricultural place but to a sustainable, affordable, and healthy place, which, with the appropriate infrastructures, allows work from a distance, a new post-COVID-19 modality. The contribution of the research is towards the recovery of traditional villages from the perspective of populations that have managed to maintain their vitality with innovative solutions. It is assumed that innovation is a path for the recovery of traditional villages, so we ask: what conditions are necessary for innovation to be successful and sustainable? In the research, several variables were found, among which culture is named, so the objective of this article is to understand Uruena, a town in the province of Valladolid, which with only 182 inhabitants houses five museums and twelve bookstores that make up the first Villa del Libro in Spain. The methodology used is mixed: inductive and deductive and the results were specified in determining the formula of innovative peoples in culture: PIc = Pt + C [E (Aec) + S (pp) + A (T + s + t + enc)]. Where the innovative villages in culture PIc are the result of traditional villages Pt that from a cultural innovation C, integrates into the economic, economic and cultural activities E (Aec); in the social sphere, the public and private actors S (pp); and in the environmental (A), Territory (T), services (s), technology (t) and natural and built spaces (enc). The results of this analysis will focus on determining what makes the structure of innovative peoples sustainable and understanding what variables make up that structure to verify if they can be applied in other contexts and repower abandoned places to provide a solution for people who migrate to this context. That is, learn from what has been done to replicate it in similar cases.

Keywords: culture as innovation, depopulation, sustainability, traditional villages

Procedia PDF Downloads 88
7698 Innovations and Agricultural Development Potential in Georgia

Authors: Tamar Lazariashvili

Abstract:

Introduction: The growth and development of the economy in the country depend on many factors, the most important of which is the use of innovation. The article analyzes the innovations and the potential of agricultural development in Georgia, presents the problems in the field, justifies the need to introduce innovations, shows the policy of innovation development, evaluates the positive and negative factors of the use of innovations in agriculture. Methodology: The article uses general and specific research methods, namely, analysis, synthesis, induction, deduction, comparison and statistical ones: selection, grouping, observation, trend. All these methods used together in the article reveal the main problems and challenges and their development trends. Main Findings: The introduction of innovations for the country has an impact if there is established state support system for business development and the State creates an effective environment for innovation development. As a result, the appropriate establishment gives incentives to increase budget revenues, create new jobs, increase export turnover and improve the overall economic situation in the country. Georgia has sufficient resource potential to create and develop new businesses in agriculture by introducing innovations and contribute to the further socio-economic development of the country. Political and economic stability, the existing legislation in the country, infrastructure, the proper functioning of financial institutions and the qualification of the workforce are crucial for the development of innovations. These criteria determine the political and economic ratings of all countries of the world, which are of great importance to foreign investors in the implementation of innovations. Conclusion: Enactment of agro-insurance will increase the interest and confidence of financial institutions in the farming sector, financial resources will be accessible to the farmers that will facilitate the stable development of the sector in the country. The size of the agro-insurance market in the country should be increased and the new territories should be covered. The State must have an obligation to ensure the risk of farmers and subsidize insurance companies. Based on an analysis of the insurance market the conclusions on agro-insurance issues and the relevant recommendations are proposed. The introduction of innovations in agriculture will have a great impact on the Georgian economy: it will improve the technological base, establish enterprises equipped with modern equipment and methodologies, retrain existing enterprises, promote to improve skills of workers and improve management systems. Based on the analysis, conclusions are made about the prospects for the development of innovation in agriculture and relevant recommendations are proposed.

Keywords: agriculture, development potential, innovation, optimal environment

Procedia PDF Downloads 180
7697 The Impact of Introspective Models on Software Engineering

Authors: Rajneekant Bachan, Dhanush Vijay

Abstract:

The visualization of operating systems has refined the Turing machine, and current trends suggest that the emulation of 32 bit architectures will soon emerge. After years of technical research into Web services, we demonstrate the synthesis of gigabit switches, which embodies the robust principles of theory. Loam, our new algorithm for forward-error correction, is the solution to all of these challenges.

Keywords: software engineering, architectures, introspective models, operating systems

Procedia PDF Downloads 538
7696 Sustainable Textiles: Innovation through Waste

Authors: Ananya Mitra Pramanik, Anjali Agrawal

Abstract:

This paper traces the waste produced by the textile industry and evaluates the need for this waste to be reused or repurposed. From ancient times the textile industry has been a prominent part of all the economies of the world. It is famous for traditional as well as mill made fabrics. However the beauty and utility radiated by the textiles are juxtaposed by the piling amount of waste that the whole life cycle of a textile production and disposal entails. Waste happens in stages in a textile life cycle. It can be broadly categorised as pre-consumer and post-consumer waste. This research suggests suitable processes and techniques for channelizing post-industrial waste. It explores the scope of textile waste as a raw material for innovation and design. It discusses the role of designers in using waste to create useful and appealing designs. The paper examines the need of designers to create novel ideas to reuse textiles. This paper is based on secondary research. Most of the information used is taken from books and journals. The DEFRA report 2009 is also consulted for comprehensive data on textile waste percentage.

Keywords: designers, repurposing, textiles, waste

Procedia PDF Downloads 215
7695 Design and Development of an Algorithm to Predict Fluctuations of Currency Rates

Authors: Nuwan Kuruwitaarachchi, M. K. M. Peiris, C. N. Madawala, K. M. A. R. Perera, V. U. N Perera

Abstract:

Dealing with businesses with the foreign market always took a special place in a country’s economy. Political and social factors came into play making currency rate changes fluctuate rapidly. Currency rate prediction has become an important factor for larger international businesses since large amounts of money exchanged between countries. This research focuses on comparing the accuracy of mainly three models; Autoregressive Integrated Moving Average (ARIMA), Artificial Neural Networks(ANN) and Support Vector Machines(SVM). series of data import, export, USD currency exchange rate respect to LKR has been selected for training using above mentioned algorithms. After training the data set and comparing each algorithm, it was able to see that prediction in SVM performed better than other models. It was improved more by combining SVM and SVR models together.

Keywords: ARIMA, ANN, FFNN, RMSE, SVM, SVR

Procedia PDF Downloads 212
7694 Modelling Phase Transformations in Zircaloy-4 Fuel Cladding under Transient Heating Rates

Authors: Jefri Draup, Antoine Ambard, Chi-Toan Nguyen

Abstract:

Zirconium alloys exhibit solid-state phase transformations under thermal loading. These can lead to a significant evolution of the microstructure and associated mechanical properties of materials used in nuclear fuel cladding structures. Therefore, the ability to capture effects of phase transformation on the material constitutive behavior is of interest during conditions of severe transient thermal loading. Whilst typical Avrami, or Johnson-Mehl-Avrami-Kolmogorov (JMAK), type models for phase transformations have been shown to have a good correlation with the behavior of Zircaloy-4 under constant heating rates, the effects of variable and fast heating rates are not fully explored. The present study utilises the results of in-situ high energy synchrotron X-ray diffraction (SXRD) measurements in order to validate the phase transformation models for Zircaloy-4 under fast variable heating rates. These models are used to assess the performance of fuel cladding structures under loss of coolant accident (LOCA) scenarios. The results indicate that simple Avrami type models can provide a reasonable indication of the phase distribution in experimental test specimens under variable fast thermal loading. However, the accuracy of these models deteriorates under the faster heating regimes, i.e., 100Cs⁻¹. The studies highlight areas for improvement of simple Avrami type models, such as the inclusion of temperature rate dependence of the JMAK n-exponent.

Keywords: accident, fuel, modelling, zirconium

Procedia PDF Downloads 142
7693 A Pedagogical Case Study on Consumer Decision Making Models: A Selection of Smart Phone Apps

Authors: Yong Bum Shin

Abstract:

This case focuses on Weighted additive difference, Conjunctive, Disjunctive, and Elimination by aspects methodologies in consumer decision-making models and the Simple additive weighting (SAW) approach in the multi-criteria decision-making (MCDM) area. Most decision-making models illustrate that the rank reversal phenomenon is unpreventable. This paper presents that rank reversal occurs in popular managerial methods such as Weighted Additive Difference (WAD), Conjunctive Method, Disjunctive Method, Elimination by Aspects (EBA) and MCDM methods as well as such as the Simple Additive Weighting (SAW) and finally Unified Commensurate Multiple (UCM) models which successfully addresses these rank reversal problems in most popular MCDM methods in decision-making area.

Keywords: multiple criteria decision making, rank inconsistency, unified commensurate multiple, analytic hierarchy process

Procedia PDF Downloads 81
7692 A Comparative Evaluation of the SIR and SEIZ Epidemiological Models to Describe the Diffusion Characteristics of COVID-19 Polarizing Viewpoints on Online

Authors: Maryam Maleki, Esther Mead, Mohammad Arani, Nitin Agarwal

Abstract:

This study is conducted to examine how opposing viewpoints related to COVID-19 were diffused on Twitter. To accomplish this, six datasets using two epidemiological models, SIR (Susceptible, Infected, Recovered) and SEIZ (Susceptible, Exposed, Infected, Skeptics), were analyzed. The six datasets were chosen because they represent opposing viewpoints on the COVID-19 pandemic. Three of the datasets contain anti-subject hashtags, while the other three contain pro-subject hashtags. The time frame for all datasets is three years, starting from January 2020 to December 2022. The findings revealed that while both models were effective in evaluating the propagation trends of these polarizing viewpoints, the SEIZ model was more accurate with a relatively lower error rate (6.7%) compared to the SIR model (17.3%). Additionally, the relative error for both models was lower for anti-subject hashtags compared to pro-subject hashtags. By leveraging epidemiological models, insights into the propagation trends of polarizing viewpoints on Twitter were gained. This study paves the way for the development of methods to prevent the spread of ideas that lack scientific evidence while promoting the dissemination of scientifically backed ideas.

Keywords: mathematical modeling, epidemiological model, seiz model, sir model, covid-19, twitter, social network analysis, social contagion

Procedia PDF Downloads 62
7691 Innovation in the Provision of Medical Services in the Field of Qualified Sports and Services Related to the Therapy of Metabolism Disorders and the Treatment of Obesity

Authors: Jerzy Slowik, Elzbieta Grochowska-Niedworok

Abstract:

The analysis of the market needs and trends in both treatment and prophylaxis shows the growing need to implement comprehensive solutions that would enable safe contact of the beneficiaries with the therapeutic and diagnostic support group. Based on the evaluation of the medical and sports industry services market, projects co-financed by the EFRR in the form of comprehensive care systems using IT tools for patients under treatment in the field of obesity and metabolism using the system were implemented under the Regional Operational Program of the Silesian Voivodeship for 2014-2020. SFAO 1.0 (Support for the Fight Against Obesity) number of the WND-RPSL project. 01.02.00-24-06EA / 16) as well as for competitors in qualified sports SK system (qualified sports) project number WND-RPSL. 01.02.00-24-0630 / 17-002. The service provided in accordance with SFAO 1.0 has shown a wide range of therapy possibilities - from monitoring the body's reactions during sports activities of healthy people to remote care for sick patients. As a result of the introduction of an innovative service, it was possible to increase the effectiveness of the therapy, which was manifested in the reduction of the starting doses of drugs by 10%, improvement of the efficiency of the respiratory and blood circulation system, and a 10% increase in bone density. Innovation in the provision of medical services in the field of qualified sports SK was a response to the needs of the athletes and their parents, coaches, physiotherapists, dieticians, and doctors who take care of people actively practicing qualified sports. The creation of the platform made it possible to constantly monitor the trainers necessary for both the proper training process and the control over the health of patients. Monitoring the patient's health by a specialized team in the field of various specialties allows for the proper targeting of the treatment and training process due to the increase in the availability of medical counseling. Specialists taking care of the patient can provide additional advice and modify the medical treatment of the patient on an ongoing basis, which is why we are dealing with a holistic approach.

Keywords: innovation of medical services, sport, obesity, innovation

Procedia PDF Downloads 127
7690 Effects of a Dwarfing Gene sd1-d (Dee-Geo-Woo-Gen Dwarf) on Yield and Related Traits in Rice: Preliminary Report

Authors: M. Bhattarai, B. B. Rana, M. Kamimukai, I. Takamure, T. Kawano, M. Murai

Abstract:

The sd1-d allele at the sd1 locus on chromosome 1, originating from Taiwanese variety Dee-geo-woo-gen, has been playing important role for developing short-culm and lodging-resistant indica varieties such as IR36 in rice. The dominant allele SD1 for long culm at the locus is differentiated into SD1-in and SD1-ja which are harbored in indica and japonica subspecies’s, respectively. The sd1-d of an indica variety IR36 was substituted with SD1-in or SD1-ja by recurrent backcrosses of 17 times with IR36, and two isogenic tall lines regarding the respective dominant alleles were developed by using an indica variety IR5867 and a japonica one ‘Koshihikari’ as donors, which were denoted by '5867-36' and 'Koshi-36', respectively. The present study was conducted to examine the effect of sd1-d on yield and related traits as compared with SD1-in and SD1-ja, by using the two isogenic tall lines. Seedlings of IR36 and the two isogenic lines were transplanted on an experimental field of Kochi University, by the planting distance of 30 cm × 15 cm with two seedlings per hill, on May 3, 2017. Chemical fertilizers were supplied by basal application and top-dressing at a rate of 8.00, 6.57 and 7.52 g/m², respectively, for N, P₂O₅ and K₂O in total. Yield, yield components, and other traits were measured. Culm length (cm) was in the order of 5867-36 (101.9) > Koshi-36 (80.1) > IR36 (60.0), where '>' indicates statistically significant difference at the 5% level. Accordingly, sd1-d reduced culm by 41.9 and 20.1 cm, compared with SD1-in and SD1-ja, respectively, and the effect of elongating culm was higher in the former allele than in the latter one. Total brown rice yield (g/m²), including unripened grains, was in the order of IR36 (611) ≧ 5867-36 (586) ≧ Koshi-36 (572), indicating non-significant differences among them. Yield-1.5mm sieve (g/m²) was in the order of IR36 (596) ≧ 5867-36 (575) ≧ Koshi-36 (558). Spikelet number per panicle was in the order of 5867-36 (89.2) ≧ IR36 (84.7) ≧ Koshi-36 (79.8), and 5867-36 > Koshi-36. Panicle number per m² was in the order of IR36 (428) ≧ Koshi-36 (403) ≧ 5867-36 (353), and IR36 > 5867-36, suggesting that sd1-d increased number of panicles compared with SD1-in. Ripened-grain percentage-1.5mm sieve was in the order of Koshi-36 (86.0) ≧ 5867-36 (85.0) ≧ IR36 (82.7), and Koshi-36 > IR36. Thousand brown-rice-grain weight-1.5mm sieve (g) was in the order of 5867-36 (21.5) > Koshi-36 (20.2) ≧ IR36 (19.9). Total dry weight at maturity (g/m²) was in the order of 5867-36 (1404 ) ≧ IR36 (1310) ≧ Kosihi-36 (1290). Harvest index of total brown rice (%) was in the order of IR36 (39.6) > Koshi-36 (37.7) > 5867-36 (35.5). Hence, sd1-d did not exert significant effect on yield in indica genetic background. However, lodging was observed from the late stage of maturity in 5867-36 and Koshi-36, particularly in the former, which was principally due to their long culms. Consequently, sd1-d enables higher yield with higher fertilizer application, by enhancing lodging resistance, particularly in indica subspecies.

Keywords: rice, dwarfing gene, sd1-d, SD1-in, SD1-ja, yield

Procedia PDF Downloads 170
7689 Comparative Sustainability Performance Analysis of Australian Companies Using Composite Measures

Authors: Ramona Zharfpeykan, Paul Rouse

Abstract:

Organizational sustainability is important to both organizations themselves and their stakeholders. Despite its increasing popularity and increasing numbers of organizations reporting sustainability, research on evaluating and comparing the sustainability performance of companies is limited. The aim of this study was to develop models to measure sustainability performance for both cross-sectional and longitudinal comparisons across companies in the same or different industries. A secondary aim was to see if sustainability reports can be used to evaluate sustainability performance. The study used both a content analysis of Australian sustainability reports in mining and metals and financial services for 2011-2014 and a survey of Australian and New Zealand organizations. Two methods ranging from a composite index using uniform weights to data envelopment analysis (DEA) were employed to analyze the data and develop the models. The results show strong statistically significant relationships between the developed models, which suggests that each model provides a consistent, systematic and reasonably robust analysis. The results of the models show that for both industries, companies that had sustainability scores above or below the industry average stayed almost the same during the study period. These indices and models can be used by companies to evaluate their sustainability performance and compare it with previous years, or with other companies in the same or different industries. These methods can also be used by various stakeholders and sustainability ranking companies such as the Global Reporting Initiative (GRI).

Keywords: data envelopment analysis, sustainability, sustainability performance measurement system, sustainability performance index, global reporting initiative

Procedia PDF Downloads 181
7688 A Study of High Viscosity Oil-Gas Slug Flow Using Gamma Densitometer

Authors: Y. Baba, A. Archibong-Eso, H. Yeung

Abstract:

Experimental study of high viscosity oil-gas flows in horizontal pipelines published in literature has indicated that hydrodynamic slug flow is the dominant flow pattern observed. Investigations have shown that hydrodynamic slugging brings about high instabilities in pressure that can damage production facilities thereby making it inherent to study high viscous slug flow regime so as to improve the understanding of its flow dynamics. Most slug flow models used in the petroleum industry for the design of pipelines together with their closure relationships were formulated based on observations of low viscosity liquid-gas flows. New experimental investigations and data are therefore required to validate these models. In cases where these models underperform, improving upon or building new predictive models and correlations will also depend on the new experimental dataset and further understanding of the flow dynamics in high viscous oil-gas flows. In this study conducted at the Flow laboratory, Oil and Gas Engineering Centre of Cranfield University, slug flow variables such as pressure gradient, mean liquid holdup, frequency and slug length for oil viscosity ranging from 1..0 – 5.5 Pa.s are experimentally investigated and analysed. The study was carried out in a 0.076m ID pipe, two fast sampling gamma densitometer and pressure transducers (differential and point) were used to obtain experimental measurements. Comparison of the measured slug flow parameters to the existing slug flow prediction models available in the literature showed disagreement with high viscosity experimental data thus highlighting the importance of building new predictive models and correlations.

Keywords: gamma densitometer, mean liquid holdup, pressure gradient, slug frequency and slug length

Procedia PDF Downloads 329
7687 Investigating the Governance of Engineering Services in the Aerospace and Automotive Industries

Authors: Maria Jose Granero Paris, Ana Isabel Jimenez Zarco, Agustin Pablo Alvarez Herranz

Abstract:

In the industrial sector collaboration with suppliers is key to the development of innovations in the field of processes. Access to resources and expertise that are not available in the business, obtaining a cost advantage, or the reduction of the time needed to carry out innovation are some of the benefits associated with the process. However, the success of this collaborative process is compromised, when from the beginning not clearly rules have been established that govern the relationship. Abundant studies developed in the field of innovation emphasize the strategic importance of the concept of “Goverance”. Despite this, there have been few papers that have analyzed how the governance process of the relationship must be designed and managed to ensure the success of the cooperation process. The lack of literature in this area responds to the wide diversity of contexts where collaborative processes to innovate take place. Thus, in sectors such as the car industry there is a strong collaborative tradition between manufacturers and suppliers being part of the value chain. In this case, it is common to establish mechanisms and procedures that fix formal and clear objectives to regulate the relationship, and establishes the rights and obligations of each of the parties involved. By contrast, in other sectors, collaborative relationships to innovate are not a common way of working, particularly when their aim is the development of process improvements. It is in this case, it is when the lack of mechanisms to establish and regulate the behavior of those involved, can give rise to conflicts, and the failure of the cooperative relationship. Because of this the present paper analyzes the similarities and differences in the processes of governance in collaboration with service providers in engineering R & D in the European aerospace industry. With these ideas in mind, we present research is twofold: - Understand the importance of governance as a key element of the success of the cooperation in the development of process innovations, - Establish the mechanisms and procedures to ensure the proper management of the processes of cooperation. Following the methodology of the case study, we analyze the way in which manufacturers and suppliers cooperate in the development of new processes in two industries with different levels of technological intensity and collaborative tradition: the automotive and aerospace. The identification of those elements playing a key role to establish a successful governance and relationship management and the compression of the mechanisms of regulation and control in place at the automotive sector can be use to propose solutions to some of the conflicts that currently arise in aerospace industry. The paper concludes by analyzing the strategic implications for the aerospace industry entails the adoption of some of the practices traditionally used in other industrial sectors. Finally, it is important to highlight that in this paper are presented the first results of a research project currently in progress describing a model of governance that explains the way to manage outsourced engineering services to suppliers in the European aerospace industry, through the analysis of companies in the sector located in Germany, France and Spain.

Keywords: innovation management, innovation governance, managing collaborative innovation, process innovation

Procedia PDF Downloads 300
7686 Simulation of Optimal Runoff Hydrograph Using Ensemble of Radar Rainfall and Blending of Runoffs Model

Authors: Myungjin Lee, Daegun Han, Jongsung Kim, Soojun Kim, Hung Soo Kim

Abstract:

Recently, the localized heavy rainfall and typhoons are frequently occurred due to the climate change and the damage is becoming bigger. Therefore, we may need a more accurate prediction of the rainfall and runoff. However, the gauge rainfall has the limited accuracy in space. Radar rainfall is better than gauge rainfall for the explanation of the spatial variability of rainfall but it is mostly underestimated with the uncertainty involved. Therefore, the ensemble of radar rainfall was simulated using error structure to overcome the uncertainty and gauge rainfall. The simulated ensemble was used as the input data of the rainfall-runoff models for obtaining the ensemble of runoff hydrographs. The previous studies discussed about the accuracy of the rainfall-runoff model. Even if the same input data such as rainfall is used for the runoff analysis using the models in the same basin, the models can have different results because of the uncertainty involved in the models. Therefore, we used two models of the SSARR model which is the lumped model, and the Vflo model which is a distributed model and tried to simulate the optimum runoff considering the uncertainty of each rainfall-runoff model. The study basin is located in Han river basin and we obtained one integrated runoff hydrograph which is an optimum runoff hydrograph using the blending methods such as Multi-Model Super Ensemble (MMSE), Simple Model Average (SMA), Mean Square Error (MSE). From this study, we could confirm the accuracy of rainfall and rainfall-runoff model using ensemble scenario and various rainfall-runoff model and we can use this result to study flood control measure due to climate change. Acknowledgements: This work is supported by the Korea Agency for Infrastructure Technology Advancement(KAIA) grant funded by the Ministry of Land, Infrastructure and Transport (Grant 18AWMP-B083066-05).

Keywords: radar rainfall ensemble, rainfall-runoff models, blending method, optimum runoff hydrograph

Procedia PDF Downloads 280