Search results for: early detection of violence
6480 Predicting Factors for Occurrence of Cardiac Arrest in Critical, Emergency and Urgency Patients in an Emergency Department
Authors: Angkrit Phitchayangkoon, Ar-Aishah Dadeh
Abstract:
Background: A key aim of triage is to identify the patients with high risk of cardiac arrest because they require intensive monitoring, resuscitation facilities, and early intervention. We aimed to identify the predicting factors such as initial vital signs, serum pH, serum lactate level, initial capillary blood glucose, and Modified Early Warning Score (MEWS) which affect the occurrence of cardiac arrest in an emergency department (ED). Methods: We conducted a retrospective data review of ED patients in an emergency department (ED) from 1 August 2014 to 31 July 2016. Significant variables in univariate analysis were used to create a multivariate analysis. Differentiation of predicting factors between cardiac arrest patient and non-cardiac arrest patients for occurrence of cardiac arrest in an emergency department (ED) was the primary outcome. Results: The data of 527 non-trauma patients with Emergency Severity Index (ESI) 1-3 were collected. The factors found to have a significant association (P < 0.05) in the non-cardiac arrest group versus the cardiac arrest group at the ED were systolic BP (mean [IQR] 135 [114,158] vs 120 [90,140] mmHg), oxygen saturation (mean [IQR] 97 [89,98] vs 82.5 [78,95]%), GCS (mean [IQR] 15 [15,15] vs 11.5 [8.815]), normal sinus rhythm (mean 59.8 vs 30%), sinus tachycardia (mean 46.7 vs 21.7%), pH (mean [IQR] 7.4 [7.3,7.4] vs 7.2 [7,7.3]), serum lactate (mean [IQR] 2 [1.1,4.2] vs 7 [5,10.8]), and MEWS score (mean [IQR] 3 [2,5] vs 5 [3,6]). A multivariate analysis was then performed. After adjusting for multiple factors, ESI level 2 patients were more likely to have cardiac arrest in the ER compared with ESI 1 (odds ratio [OR], 1.66; P < 0.001). Furthermore, ESI 2 patients were more likely than ESI 1 patients to have cardiovascular disease (OR, 1.89; P = 0.01), heart rate < 55 (OR, 6.83; P = 0.18), SBP < 90 (OR, 3.41; P = 0.006), SpO2 < 94 (OR, 4.76; P = 0.012), sinus tachycardia (OR, 4.32; P = 0.002), lactate > 4 (OR, 10.66; P = < 0.001), and MEWS > 4 (OR, 4.86; P = 0.028). These factors remained predictive of cardiac arrest at the ED. Conclusion: The factors related to cardiac arrest in the ED are ESI 1 patients, ESI 2 patients, patients diagnosed with cardiovascular disease, SpO2 < 94, lactate > 4, and a MEWS > 4. These factors can be used as markers in the event of simultaneous arrival of many patients and can help as a pre-state for patients who have a tendency to develop cardiac arrest. The hemodynamic status and vital signs of these patients should be closely monitored. Early detection of potentially critical conditions to prevent critical medical intervention is mandatory.Keywords: cardiac arrest, predicting factor, emergency department, emergency patient
Procedia PDF Downloads 1636479 Autonomous Vehicle Detection and Classification in High Resolution Satellite Imagery
Authors: Ali J. Ghandour, Houssam A. Krayem, Abedelkarim A. Jezzini
Abstract:
High-resolution satellite images and remote sensing can provide global information in a fast way compared to traditional methods of data collection. Under such high resolution, a road is not a thin line anymore. Objects such as cars and trees are easily identifiable. Automatic vehicles enumeration can be considered one of the most important applications in traffic management. In this paper, autonomous vehicle detection and classification approach in highway environment is proposed. This approach consists mainly of three stages: (i) first, a set of preprocessing operations are applied including soil, vegetation, water suppression. (ii) Then, road networks detection and delineation is implemented using built-up area index, followed by several morphological operations. This step plays an important role in increasing the overall detection accuracy since vehicles candidates are objects contained within the road networks only. (iii) Multi-level Otsu segmentation is implemented in the last stage, resulting in vehicle detection and classification, where detected vehicles are classified into cars and trucks. Accuracy assessment analysis is conducted over different study areas to show the great efficiency of the proposed method, especially in highway environment.Keywords: remote sensing, object identification, vehicle and road extraction, vehicle and road features-based classification
Procedia PDF Downloads 2346478 Iris Cancer Detection System Using Image Processing and Neural Classifier
Authors: Abdulkader Helwan
Abstract:
Iris cancer, so called intraocular melanoma is a cancer that starts in the iris; the colored part of the eye that surrounds the pupil. There is a need for an accurate and cost-effective iris cancer detection system since the available techniques used currently are still not efficient. The combination of the image processing and artificial neural networks has a great efficiency for the diagnosis and detection of the iris cancer. Image processing techniques improve the diagnosis of the cancer by enhancing the quality of the images, so the physicians diagnose properly. However, neural networks can help in making decision; whether the eye is cancerous or not. This paper aims to develop an intelligent system that stimulates a human visual detection of the intraocular melanoma, so called iris cancer. The suggested system combines both image processing techniques and neural networks. The images are first converted to grayscale, filtered, and then segmented using prewitt edge detection algorithm to detect the iris, sclera circles and the cancer. The principal component analysis is used to reduce the image size and for extracting features. Those features are considered then as inputs for a neural network which is capable of deciding if the eye is cancerous or not, throughout its experience adopted by many training iterations of different normal and abnormal eye images during the training phase. Normal images are obtained from a public database available on the internet, “Mile Research”, while the abnormal ones are obtained from another database which is the “eyecancer”. The experimental results for the proposed system show high accuracy 100% for detecting cancer and making the right decision.Keywords: iris cancer, intraocular melanoma, cancerous, prewitt edge detection algorithm, sclera
Procedia PDF Downloads 5056477 Fault Detection of Pipeline in Water Distribution Network System
Authors: Shin Je Lee, Go Bong Choi, Jeong Cheol Seo, Jong Min Lee, Gibaek Lee
Abstract:
Water pipe network is installed underground and once equipped; it is difficult to recognize the state of pipes when the leak or burst happens. Accordingly, post management is often delayed after the fault occurs. Therefore, the systematic fault management system of water pipe network is required to prevent the accident and minimize the loss. In this work, we develop online fault detection system of water pipe network using data of pipes such as flow rate or pressure. The transient model describing water flow in pipelines is presented and simulated using Matlab. The fault situations such as the leak or burst can be also simulated and flow rate or pressure data when the fault happens are collected. Faults are detected using statistical methods of fast Fourier transform and discrete wavelet transform, and they are compared to find which method shows the better fault detection performance.Keywords: fault detection, water pipeline model, fast Fourier transform, discrete wavelet transform
Procedia PDF Downloads 5156476 The Investment of Islamic Education Values toward Children in the Early Age through Story-Telling Method
Authors: Abdul Rofiq Badril Rizal Muzammil
Abstract:
Education is an absolute necessity for human’s life that one must fulfill for the entire life. Without education it is impossible for human to develop her/himself well. The education process is an effort to maintain a good behavior within one’s life. Good behavior will be absolutely achieved if it is taught to early-aged children. This paper focuses on how the story telling method enables teachers to make the students have the construction of good behavior and obtain the goal of national education in Indonesia. The targeted students would involve students in As-Solihin kindergarten, Salafiyah-Syafi’iyah Mumbulsari, Jember, Indonesia. Story is what early-aged children like most. Thus, it is a gorgeous chance to make story telling activity as a method to invest Islamic education values to children. This paper, however, also focuses on some deliberately important aspects which of course teachers need to consider including objectives and strategies of the method’s implementation. The teachers will be in need of knowing each student’s characteristic in the classroom so that it would enable them to select appropriate stories that fit best to early aged students. The selected stories are taken from Islamic stories that tell the life of Prophet and heroes of Islam as well as well-known persons in Islam. In addition, there will be a number of activities done in the classroom after the delivery of the story is over on purpose of leading students to have the fundamental foundation of how to build self-awareness in order they could understand better about the importance of being a well-behaved person. After reviewing relevant theories, secondary research and scholars’ opinion involved in all aspects of early-aged children behavior, the author concludes that by leveraging trusted sources, a proactive, co-operative and creative strategy, the teacher can successfully build up children’s good behavior by instilling the Islamic value toward early-aged children through story telling method.Keywords: story, Islam, children, early age
Procedia PDF Downloads 3106475 Speech Detection Model Based on Deep Neural Networks Classifier for Speech Emotions Recognition
Authors: Aisultan Shoiynbek, Darkhan Kuanyshbay, Paulo Menezes, Akbayan Bekarystankyzy, Assylbek Mukhametzhanov, Temirlan Shoiynbek
Abstract:
Speech emotion recognition (SER) has received increasing research interest in recent years. It is a common practice to utilize emotional speech collected under controlled conditions recorded by actors imitating and artificially producing emotions in front of a microphone. There are four issues related to that approach: emotions are not natural, meaning that machines are learning to recognize fake emotions; emotions are very limited in quantity and poor in variety of speaking; there is some language dependency in SER; consequently, each time researchers want to start work with SER, they need to find a good emotional database in their language. This paper proposes an approach to create an automatic tool for speech emotion extraction based on facial emotion recognition and describes the sequence of actions involved in the proposed approach. One of the first objectives in the sequence of actions is the speech detection issue. The paper provides a detailed description of the speech detection model based on a fully connected deep neural network for Kazakh and Russian. Despite the high results in speech detection for Kazakh and Russian, the described process is suitable for any language. To investigate the working capacity of the developed model, an analysis of speech detection and extraction from real tasks has been performed.Keywords: deep neural networks, speech detection, speech emotion recognition, Mel-frequency cepstrum coefficients, collecting speech emotion corpus, collecting speech emotion dataset, Kazakh speech dataset
Procedia PDF Downloads 306474 Path Planning for Collision Detection between two Polyhedra
Authors: M. Khouil, N. Saber, M. Mestari
Abstract:
This study aimed to propose, a different architecture of a Path Planning using the NECMOP. where several nonlinear objective functions must be optimized in a conflicting situation. The ability to detect and avoid collision is very important for mobile intelligent machines. However, many artificial vision systems are not yet able to quickly and cheaply extract the wealth information. This network, which has been particularly reviewed, has enabled us to solve with a new approach the problem of collision detection between two convex polyhedra in a fixed time (O (1) time). We used two types of neurons linear and threshold logic, which simplified the actual implementation of all the networks proposed. This article represents a comprehensive algorithm that determine through the AMAXNET network a measure (a mini-maximum point) in a fixed time, which allows us to detect the presence of a potential collision.Keywords: path planning, collision detection, convex polyhedron, neural network
Procedia PDF Downloads 4416473 RV-YOLOX: Object Detection on Inland Waterways Based on Optimized YOLOX Through Fusion of Vision and 3+1D Millimeter Wave Radar
Authors: Zixian Zhang, Shanliang Yao, Zile Huang, Zhaodong Wu, Xiaohui Zhu, Yong Yue, Jieming Ma
Abstract:
Unmanned Surface Vehicles (USVs) are valuable due to their ability to perform dangerous and time-consuming tasks on the water. Object detection tasks are significant in these applications. However, inherent challenges, such as the complex distribution of obstacles, reflections from shore structures, water surface fog, etc., hinder the performance of object detection of USVs. To address these problems, this paper provides a fusion method for USVs to effectively detect objects in the inland surface environment, utilizing vision sensors and 3+1D Millimeter-wave radar. MMW radar is complementary to vision sensors, providing robust environmental information. The radar 3D point cloud is transferred to 2D radar pseudo image to unify radar and vision information format by utilizing the point transformer. We propose a multi-source object detection network (RV-YOLOX )based on radar-vision fusion for inland waterways environment. The performance is evaluated on our self-recording waterways dataset. Compared with the YOLOX network, our fusion network significantly improves detection accuracy, especially for objects with bad light conditions.Keywords: inland waterways, YOLO, sensor fusion, self-attention
Procedia PDF Downloads 1366472 Heuristic of Style Transfer for Real-Time Detection or Classification of Weather Conditions from Camera Images
Authors: Hamed Ouattara, Pierre Duthon, Frédéric Bernardin, Omar Ait Aider, Pascal Salmane
Abstract:
In this article, we present three neural network architectures for real-time classification of weather conditions (sunny, rainy, snowy, foggy) from images. Inspired by recent advances in style transfer, two of these architectures -Truncated ResNet50 and Truncated ResNet50 with Gram Matrix and Attention- surpass the state of the art and demonstrate re-markable generalization capability on several public databases, including Kaggle (2000 images), Kaggle 850 images, MWI (1996 images) [1], and Image2Weather [2]. Although developed for weather detection, these architectures are also suitable for other appearance-based classification tasks, such as animal species recognition, texture classification, disease detection in medical images, and industrial defect identification. We illustrate these applications in the section “Applications of Our Models to Other Tasks” with the “SIIM-ISIC Melanoma Classification Challenge 2020” [3].Keywords: weather simulation, weather measurement, weather classification, weather detection, style transfer, Pix2Pix, CycleGAN, CUT, neural style transfer
Procedia PDF Downloads 156471 Conservation Detection Dogs to Protect Europe's Native Biodiversity from Invasive Species
Authors: Helga Heylen
Abstract:
With dogs saving wildlife in New Zealand since 1890 and governments in Africa, Australia and Canada trusting them to give the best results, Conservation Dogs Ireland want to introduce more detection dogs to protect Europe's native wildlife. Conservation detection dogs are fast, portable and endlessly trainable. They are a cost-effective, highly sensitive and non-invasive way to detect protected and invasive species and wildlife disease. Conservation dogs find targets up to 40 times faster than any other method. They give results instantly, with near-perfect accuracy. They can search for multiple targets simultaneously, with no reduction in efficacy The European Red List indicates the decline in biodiversity has been most rapid in the past 50 years, and the risk of extinction never higher. Just two examples of major threats dogs are trained to tackle are: (I)Japanese Knotweed (Fallopia Japonica), not only a serious threat to ecosystems, crops, structures like bridges and roads - it can wipe out the entire value of a house. The property industry and homeowners are only just waking up to the full extent of the nightmare. When those working in construction on the roads move topsoil with a trace of Japanese Knotweed, it suffices to start a new colony. Japanese Knotweed grows up to 7cm a day. It can stay dormant and resprout after 20 years. In the UK, the cost of removing Japanese Knotweed from the London Olympic site in 2012 was around £70m (€83m). UK banks already no longer lend on a house that has Japanese Knotweed on-site. Legally, landowners are now obliged to excavate Japanese Knotweed and have it removed to a landfill. More and more, we see Japanese Knotweed grow where a new house has been constructed, and topsoil has been brought in. Conservation dogs are trained to detect small fragments of any part of the plant on sites and in topsoil. (II)Zebra mussels (Dreissena Polymorpha) are a threat to many waterways in the world. They colonize rivers, canals, docks, lakes, reservoirs, water pipes and cooling systems. They live up to 3 years and will release up to one million eggs each year. Zebra mussels attach to surfaces like rocks, anchors, boat hulls, intake pipes and boat engines. They cause changes in nutrient cycles, reduction of plankton and increased plant growth around lake edges, leading to the decline of Europe's native mussel and fish populations. There is no solution, only costly measures to keep it at bay. With many interconnected networks of waterways, they have spread uncontrollably. Conservation detection dogs detect the Zebra mussel from its early larvae stage, which is still invisible to the human eye. Detection dogs are more thorough and cost-effective than any other conservation method, and will greatly complement and speed up the work of biologists, surveyors, developers, ecologists and researchers.Keywords: native biodiversity, conservation detection dogs, invasive species, Japanese Knotweed, zebra mussel
Procedia PDF Downloads 1986470 Through the Lens of Forced Displacement: Refugee Women's Rights as Human Rights
Authors: Pearl K. Atuhaire, Sylvia Kaye
Abstract:
While the need for equal access to civil, political as well as economic, social and cultural rights is clear under the international law, the adoption of the Convention on the Elimination of all forms of Discrimination against women in 1979 made this even clearer. Despite this positive progress, the abuse of refugee women's rights is one of the basic underlying root causes of their marginalisation and violence in their countries of asylum. This paper presents a critical review on the development of refugee women's rights at the international levels and national levels. It provides an array of scholarly literature on this issue and examines the measures taken by the international community to curb the problem of violence against women in their various provisions through the instruments set. It is cognizant of the fact that even if conflict affects both refugee women and men, the effects on women refugees are deep-reaching, due to the cultural strongholds they face. An important aspect of this paper is that it is conceptualised against the fact that refugee women face the problem of sexual and gender based first as refugees and second as women, yet, their rights are stumbled upon. Often times they have been rendered "worthless victims" who are only in need of humanitarian assistance than active participants committed to change their plight through their participation in political, economic and social participation in their societies. Scholars have taken notice of the fact that women's rights in refugee settings have been marginalized and call for a need to incorporate their perspectives in the planning and management of refugee settings in which they live. Underpinning this discussion is feminism theory which gives a clear understanding of the root cause of refugee women's problems. Finally, this paper suggests that these policies should be translated into action at local, national international and regional levels to ensure sustainable peace.Keywords: feminism theory, human rights, refugee women, sexual and gender based violence
Procedia PDF Downloads 3586469 Exploring Family and Preschool Early Interactive Literacy Practices in Jordan
Authors: Rana Alkhamra
Abstract:
Background: Child's earliest experiences with books and stories during the first years of his life are strongly linked with the development of his early language and literacy skills. Interacting in routine learning activities, such as shared book reading, storytelling, and teaching about the letters of the alphabet make a critical foundation for early learning, language growth and emergent literacy. Aim: The current study explores family and preschool early interactive literacy practices in families and preschools (nursery and kindergarten) in Jordan. It highlights the importance of early interactive literacy activities on child language and literacy growth and development. Methods: This is a cross sectional study that surveyed 243 Jordanian families. The survey investigated literacy routine practices, largely shared books reading, at home and at preschool; child speech and language development; and family demographics. Results: Around 92.5% of the families read books and stories to their children, as frequently as 1-2 times weekly or monthly (75%). Only 19.6% read books on daily basis. Many families reported preferring story-telling (97%). Despite that families acknowledged the importance of early literacy activities, on language, reading and writing, cognitive, and academic development, 45% asked for education and training pertaining to specific ways and ideas to help their young children develop language and literacy skills. About 69% of the families reported reading books and stories to their children for 15 minutes a day, while 71.2% indicated having their children watch television for 3 to > 6 hours a day. At preschool, only 52.8% of the teachers were reported to read books and stories. Factors like parent education, monthly income, living inside (33.6%) or outside (66.4%) the capital city of Amman significantly (p < 0.05) affected child early literacy interactive activities whether at home or at preschool. Conclusion: Early language and literacy skills depend largely on the opportunities and experiences provided to children in the home and in preschool environment. Family literacy programs can play an important role in bridging the gap in early literacy experiences for families that need help. Also, speech therapists can work in collaboration with families and educators to ensure that young children have high quality and sufficient opportunities to participate in early literacy activities both at home and in preschool environments.Keywords: literacy, interactive activities, language, practices, family, preschool, Jordan
Procedia PDF Downloads 4556468 Resilient Machine Learning in the Nuclear Industry: Crack Detection as a Case Study
Authors: Anita Khadka, Gregory Epiphaniou, Carsten Maple
Abstract:
There is a dramatic surge in the adoption of machine learning (ML) techniques in many areas, including the nuclear industry (such as fault diagnosis and fuel management in nuclear power plants), autonomous systems (including self-driving vehicles), space systems (space debris recovery, for example), medical surgery, network intrusion detection, malware detection, to name a few. With the application of learning methods in such diverse domains, artificial intelligence (AI) has become a part of everyday modern human life. To date, the predominant focus has been on developing underpinning ML algorithms that can improve accuracy, while factors such as resiliency and robustness of algorithms have been largely overlooked. If an adversarial attack is able to compromise the learning method or data, the consequences can be fatal, especially but not exclusively in safety-critical applications. In this paper, we present an in-depth analysis of five adversarial attacks and three defence methods on a crack detection ML model. Our analysis shows that it can be dangerous to adopt machine learning techniques in security-critical areas such as the nuclear industry without rigorous testing since they may be vulnerable to adversarial attacks. While common defence methods can effectively defend against different attacks, none of the three considered can provide protection against all five adversarial attacks analysed.Keywords: adversarial machine learning, attacks, defences, nuclear industry, crack detection
Procedia PDF Downloads 1626467 Gender-Based Violence Public Art Projects: An Analysis of the Value of Including Social Justice Topics in Tertiary Courses
Authors: F. Saptouw
Abstract:
This paper will examine the value of introducing social justice issues into the tertiary fine art curriculum at a first-year level. The paper will present detail of the conceptual impetus and the logistics related to the execution of a collaborative teaching project. The cohort of students was registered for the Fine Art Foundation course at the Michaelis School of Fine Art at the University of Cape Town. The course is dedicated to the development of critical thinking, communication skills, and varied approaches to knowledge construction within the first-year cohort. A core component of the course is the examination of the representation of gender, identity, politics, and power. These issues are examined within a range of public and private representations like art galleries, museum spaces, and contemporary popular culture. This particular project was a collaborative project with the Office of Inclusivity and Change, and the project leaders were Fabian Saptouw and Gabriel Khan. The paper will conclude by presenting an argument for the importance of such projects within the tertiary environment.Keywords: art, education, gender-based violence, social responsiveness
Procedia PDF Downloads 1426466 A Study on the Application of Machine Learning and Deep Learning Techniques for Skin Cancer Detection
Authors: Hritwik Ghosh, Irfan Sadiq Rahat, Sachi Nandan Mohanty, J. V. R. Ravindra
Abstract:
In the rapidly evolving landscape of medical diagnostics, the early detection and accurate classification of skin cancer remain paramount for effective treatment outcomes. This research delves into the transformative potential of Artificial Intelligence (AI), specifically Deep Learning (DL), as a tool for discerning and categorizing various skin conditions. Utilizing a diverse dataset of 3,000 images representing nine distinct skin conditions, we confront the inherent challenge of class imbalance. This imbalance, where conditions like melanomas are over-represented, is addressed by incorporating class weights during the model training phase, ensuring an equitable representation of all conditions in the learning process. Our pioneering approach introduces a hybrid model, amalgamating the strengths of two renowned Convolutional Neural Networks (CNNs), VGG16 and ResNet50. These networks, pre-trained on the ImageNet dataset, are adept at extracting intricate features from images. By synergizing these models, our research aims to capture a holistic set of features, thereby bolstering classification performance. Preliminary findings underscore the hybrid model's superiority over individual models, showcasing its prowess in feature extraction and classification. Moreover, the research emphasizes the significance of rigorous data pre-processing, including image resizing, color normalization, and segmentation, in ensuring data quality and model reliability. In essence, this study illuminates the promising role of AI and DL in revolutionizing skin cancer diagnostics, offering insights into its potential applications in broader medical domains.Keywords: artificial intelligence, machine learning, deep learning, skin cancer, dermatology, convolutional neural networks, image classification, computer vision, healthcare technology, cancer detection, medical imaging
Procedia PDF Downloads 916465 Advanced Machine Learning Algorithm for Credit Card Fraud Detection
Authors: Manpreet Kaur
Abstract:
When legitimate credit card users are mistakenly labelled as fraudulent in numerous financial delated applications, there are numerous ethical problems. The innovative machine learning approach we have suggested in this research outperforms the current models and shows how to model a data set for credit card fraud detection while minimizing false positives. As a result, we advise using random forests as the best machine learning method for predicting and identifying credit card transaction fraud. The majority of victims of these fraudulent transactions were discovered to be credit card users over the age of 60, with a higher percentage of fraudulent transactions taking place between the specific hours.Keywords: automated fraud detection, isolation forest method, local outlier factor, ML algorithm, credit card
Procedia PDF Downloads 1186464 Spontaneous Pneumothorax in Mixed Poisoning Presented as Daisley Barton Syndrome
Authors: A. A. Md. Ryhan Uddin, Swarup Das, Rajesh Barua, Joheb Hasan, Rashedul Islam
Abstract:
Background: The herbicide has toxicological importance because some of them are associated with high mortality rates due to respiratory failure. Organophosphate poisoning (OPC) & Paraquat self-poisoning is a major clinical and public health problems in low and middle-income countries across much of South Asia. Paraquat was not used as a common suicidal agent previously in Bangladesh. We report a case of 15 years old female admitted to the ER with a history of nausea & vomiting after ingestion of an unknown substance in a suicidal attempt, later identified as mixed poisoning- OPC & Paraquat. She was initially asymptomatic but later developed renal shutdown & lung injuries as well as pneumothorax, referred to as Daisley Barton Syndrome. Objective: This case report aims to alert spontaneous pneumothorax in mixed poisoning on uncommon forms of presentation. Pneumothorax in a patient with paraquat poisoning is a less unusual but underdiagnosed finding. It has a high index of early mortality. Case history: The patient's attendant complained about nausea followed by vomiting, which was nonprojectile & contains undigested food materials first, then gastric juice later. After a few hours, she also complains of urinary retention. Her family members treated her with some home remedies for her initial symptoms, but all attempts failed. After admission, the patient was initially asymptomatic. Through repeated history taking, her attendant showed a bottle of OPC in liquid form, which they suspected that she may have ingested some of the liquid from that bottle accidentally or attempted Suicide. So, management started for OPC poisoning. She responded well initially, but on 4th day of admission, the patient's condition became deteriorating. After the workout with the family member, 2nd bottle of Pesticide was discovered, which was Paraquat. Conclusion: Physicians should be aware of the symptoms of mixed poisoning and the timely use of urine dithionate testing for early detection and treatment. Pneumothorax is an early predictor of mortality in patients with paraquat poisoning.Keywords: pneumothorax, suicide, dithionate, OPC, herbicide
Procedia PDF Downloads 1036463 early childhood, high stakes: a casse report.
Authors: Ould Ali R.L, Bensadok S, Mrabet S, Ahmed Fouatih N
Abstract:
According to the terminology of Angle, the functional mandibular prognathism belongs to the class III malocclusion. Considered as a functional anomaly with considerable aesthetic prejudice, it needs to be detected and treated early to prevent it from becoming skeletal anomaly. With this in mind, early treatment enables a correct anterior guide to be restored quickly, and above all to rehabilitate craniofacial growth. Material and methodology Patient G.H, aged 11 years, who was treated in the Department of Dentofacial Orthopaedics at Oran University Hospital. He presented with functional mandibular prognathism and a sever crowding, which put the upper canines at risk of impaction. Results The orthodontic treatment of this case was divided into two distinct phases, the first of which aimed to correct the functionnal mandibular prognathism and thus re-establish a correct anterior articulation, using a Biourge appliance. The second phase aimed to create the needed space for the eruption of the upper canines, thus eliminating the risk of impaction thanks to multi-attachment fixed therapy. Conclusion Through this clinical case, we have once again been able to demonstrate the value of early caring for young patients. Although these are simple methods, the key is to know how to introduce them in the right way and at the right time. It would therefore seem useful to democratise this type of practice as part of the day-to-day management carried out in the dental practice. We'll finish by quoting Jean Rotrou, the French poet, who said ‘When you can prevent, it's weakness to wait’.Keywords: functional mandibular prognathism, early treatment, impaction, orthodontics
Procedia PDF Downloads 126462 Using Problem-Based Learning on Teaching Early Intervention for College Students
Authors: Chen-Ya Juan
Abstract:
In recent years, the increasing number of children with special needs has brought a lot of attention by many scholars and experts in education, which enforced the preschool teachers face the harsh challenge in the classroom. To protect the right of equal education for all children, enhance the quality of children learning, and take care of the needs of children with special needs, the special education paraprofessional becomes one of the future employment trends for students of the department of the early childhood care and education. Problem-based learning is a problem-oriented instruction, which is different from traditional instruction. The instructor first designed an ambiguous problem direction, following the basic knowledge of early intervention, students had to find clues to solve the problem defined by themselves. In the class, the total instruction included 20 hours, two hours per week. The primary purpose of this paper is to investigate the relationship of student academic scores, self-awareness, learning motivation, learning attitudes, and early intervention knowledge. A total of 105 college students participated in this study and 97 questionnaires were effective. The effective response rate was 90%. The student participants included 95 females and two males. The average age of the participants was 19 years old. The questionnaires included 125 questions divided into four major dimensions: (1) Self-awareness, (2) learning motivation, (3) learning attitudes, and (4) early intervention knowledge. The results indicated (1) the scores of self-awareness were 58%; the scores of the learning motivations was 64.9%; the scores of the learning attitudes was 55.3%. (2) After the instruction, the early intervention knowledge has been increased to 64.2% from 38.4%. (3) Student’s academic performance has positive relationship with self-awareness (p < 0.05; R = 0.506), learning motivation (p < 0.05; R = 0.487), learning attitudes (p < 0.05; R = 0.527). The results implied that although students had gained early intervention knowledge by using PBL instruction, students had medium scores on self-awareness and learning attitudes, medium high in learning motivations.Keywords: college students, children with special needs, problem-based learning, learning motivation
Procedia PDF Downloads 1596461 MAS Capped CdTe/ZnS Core/Shell Quantum Dot Based Sensor for Detection of Hg(II)
Authors: Dilip Saikia, Suparna Bhattacharjee, Nirab Adhikary
Abstract:
In this piece of work, we have presented the synthesis and characterization of CdTe/ZnS core/shell (CS) quantum dots (QD). CS QDs are used as a fluorescence probe to design a simple cost-effective and ultrasensitive sensor for the detection of toxic Hg(II) in an aqueous medium. Mercaptosuccinic acid (MSA) has been used as a capping agent for the synthesis CdTe/ZnS CS QD. Photoluminescence quenching mechanism has been used in the detection experiment of Hg(II). The designed sensing technique shows a remarkably low detection limit of about 1 picomolar (pM). Here, the CS QDs are synthesized by a simple one-pot aqueous method. The synthesized CS QDs are characterized by using advanced diagnostics tools such as UV-vis, Photoluminescence, XRD, FTIR, TEM and Zeta potential analysis. The interaction between CS QDs and the Hg(II) ions results in the quenching of photoluminescence (PL) intensity of QDs, via the mechanism of excited state electron transfer. The proposed mechanism is explained using cyclic voltammetry and zeta potential analysis. The designed sensor is found to be highly selective towards Hg (II) ions. The analysis of the real samples such as drinking water and tap water has been carried out and the CS QDs show remarkably good results. Using this simple sensing method we have designed a prototype low-cost electronic device for the detection of Hg(II) in an aqueous medium. The findings of the experimental results of the designed sensor is crosschecked by using AAS analysis.Keywords: photoluminescence, quantum dots, quenching, sensor
Procedia PDF Downloads 2696460 Determinants of Domestic Violence among Married Women Aged 15-49 Years in Sierra Leone by an Intimate Partner: A Cross-Sectional Study
Authors: Tesfaldet Mekonnen Estifanos, Chen Hui, Afewerki Weldezgi
Abstract:
Background: Intimate partner violence (hereafter IPV) is a major global public health challenge that tortures and disables women in the place where they are ought to be most secure within their own families. The fact that the family unit is commonly viewed as a private circle, violent acts towards women remains undermined. There are limited research and knowledge about the influencing factors linked to IPV in Sierra Leone. This study, therefore, estimates the prevalence rate and the predicting factors associated with IPV. Methods: Data were taken from Sierra-Leone Demographic and Health Survey (SDHS, 2013): the first in its form to incorporate information on domestic violence. Multistage cluster sampling research design was used, and information was gathered by a standard questionnaire. A total of 5185 respondents selected were interviewed, out of whom 870 were never been in union, thus excluded. To analyze the two dependent variables: experience of IPV, ‘ever’ and 'last 12 months prior to the survey', a total of 4315 (currently or formerly married) and 4029 women (currently in union) were included respectively. These dependent variables were constructed from the three forms of violence namely physical, emotional and sexual. Data analysis was applied using SPSS version 23, comprising three-step process. First, descriptive statistics were used to show the frequency distribution of both the outcome and explanatory variables. Second, bivariate analysis adopting chi-square test was applied to assess the individual relationship between the outcome and explanatory variables. Third, multivariate logistic regression analysis was undertaken using hierarchical modeling strategy to identify the influence of the explanatory variables on the outcome variables. Odds ratio (OR) and 95% confidence interval (CI) were utilized to examine the association of the variables considering p-values less than 0.05 statistically significant. Results: The prevalence of lifetime IPV among ever married women was 48.4%, while 39.8% of those currently married experienced IPV in the previous year preceding the survey. Women having 1 to 4 and more than 5 number of ever born babies were almost certain to encounter lifetime IPV. However, women who own a property, and those who referenced 3-5 reasons for which wife-beating is acceptable were less probably to experience lifetime IPV. Attesting parental violence, partner’s dominant marital behavior, and women afraid of their partner were the variables related to both experience of IPV ‘ever’ and ‘the previous year prior to the survey’. Respondents who concur that wife-beating is sensible in certain situations and occupations under the professional category had diminished chances of revealing IPV in the year prior to the data collection. Conclusion: This study indicated that factors significantly correlated with IPV in Sierra-Leone are mostly linked with husband related factors specifically, marital controlling behaviors. Addressing IPV in Sierra-Leone requires joint efforts that target men raise awareness to address controlling behavior and empower security in affiliations.Keywords: husband behavior, married women, partner violence, Sierra Leone
Procedia PDF Downloads 1396459 Enhanced Traffic Light Detection Method Using Geometry Information
Authors: Changhwan Choi, Yongwan Park
Abstract:
In this paper, we propose a method that allows faster and more accurate detection of traffic lights by a vision sensor during driving, DGPS is used to obtain physical location of a traffic light, extract from the image information of the vision sensor only the traffic light area at this location and ascertain if the sign is in operation and determine its form. This method can solve the problem in existing research where low visibility at night or reflection under bright light makes it difficult to recognize the form of traffic light, thus making driving unstable. We compared our success rate of traffic light recognition in day and night road environments. Compared to previous researches, it showed similar performance during the day but 50% improvement at night.Keywords: traffic light, intelligent vehicle, night, detection, DGPS
Procedia PDF Downloads 3266458 Quantum Dot Biosensing for Advancing Precision Cancer Detection
Authors: Sourav Sarkar, Manashjit Gogoi
Abstract:
In the evolving landscape of cancer diagnostics, optical biosensing has emerged as a promising tool due to its sensitivity and specificity. This study explores the potential of CdS/ZnS core-shell quantum dots (QDs) capped with 3-Mercaptopropionic acid (3-MPA), which aids in the linking chemistry of QDs to various cancer antibodies. The QDs, with their unique optical and electronic properties, have been integrated into the biosensor design. Their high quantum yield and size-dependent emission spectra have been exploited to improve the sensor’s detection capabilities. The study presents the design of this QD-enhanced optical biosensor. The use of these QDs can also aid multiplexed detection, enabling simultaneous monitoring of different cancer biomarkers. This innovative approach holds significant potential for advancing cancer diagnostics, contributing to timely and accurate detection. Future work will focus on optimizing the biosensor design for clinical applications and exploring the potential of QDs in other biosensing applications. This study underscores the potential of integrating nanotechnology and biosensing for cancer research, paving the way for next-generation diagnostic tools. It is a step forward in our quest for achieving precision oncology.Keywords: quantum dots, biosensing, cancer, device
Procedia PDF Downloads 616457 Filtering Intrusion Detection Alarms Using Ant Clustering Approach
Authors: Ghodhbani Salah, Jemili Farah
Abstract:
With the growth of cyber attacks, information safety has become an important issue all over the world. Many firms rely on security technologies such as intrusion detection systems (IDSs) to manage information technology security risks. IDSs are considered to be the last line of defense to secure a network and play a very important role in detecting large number of attacks. However the main problem with today’s most popular commercial IDSs is generating high volume of alerts and huge number of false positives. This drawback has become the main motivation for many research papers in IDS area. Hence, in this paper we present a data mining technique to assist network administrators to analyze and reduce false positive alarms that are produced by an IDS and increase detection accuracy. Our data mining technique is unsupervised clustering method based on hybrid ANT algorithm. This algorithm discovers clusters of intruders’ behavior without prior knowledge of a possible number of classes, then we apply K-means algorithm to improve the convergence of the ANT clustering. Experimental results on real dataset show that our proposed approach is efficient with high detection rate and low false alarm rate.Keywords: intrusion detection system, alarm filtering, ANT class, ant clustering, intruders’ behaviors, false alarms
Procedia PDF Downloads 4066456 Anomaly Detection with ANN and SVM for Telemedicine Networks
Authors: Edward Guillén, Jeisson Sánchez, Carlos Omar Ramos
Abstract:
In recent years, a wide variety of applications are developed with Support Vector Machines -SVM- methods and Artificial Neural Networks -ANN-. In general, these methods depend on intrusion knowledge databases such as KDD99, ISCX, and CAIDA among others. New classes of detectors are generated by machine learning techniques, trained and tested over network databases. Thereafter, detectors are employed to detect anomalies in network communication scenarios according to user’s connections behavior. The first detector based on training dataset is deployed in different real-world networks with mobile and non-mobile devices to analyze the performance and accuracy over static detection. The vulnerabilities are based on previous work in telemedicine apps that were developed on the research group. This paper presents the differences on detections results between some network scenarios by applying traditional detectors deployed with artificial neural networks and support vector machines.Keywords: anomaly detection, back-propagation neural networks, network intrusion detection systems, support vector machines
Procedia PDF Downloads 3606455 Enhancement Method of Network Traffic Anomaly Detection Model Based on Adversarial Training With Category Tags
Authors: Zhang Shuqi, Liu Dan
Abstract:
For the problems in intelligent network anomaly traffic detection models, such as low detection accuracy caused by the lack of training samples, poor effect with small sample attack detection, a classification model enhancement method, F-ACGAN(Flow Auxiliary Classifier Generative Adversarial Network) which introduces generative adversarial network and adversarial training, is proposed to solve these problems. Generating adversarial data with category labels could enhance the training effect and improve classification accuracy and model robustness. FACGAN consists of three steps: feature preprocess, which includes data type conversion, dimensionality reduction and normalization, etc.; A generative adversarial network model with feature learning ability is designed, and the sample generation effect of the model is improved through adversarial iterations between generator and discriminator. The adversarial disturbance factor of the gradient direction of the classification model is added to improve the diversity and antagonism of generated data and to promote the model to learn from adversarial classification features. The experiment of constructing a classification model with the UNSW-NB15 dataset shows that with the enhancement of FACGAN on the basic model, the classification accuracy has improved by 8.09%, and the score of F1 has improved by 6.94%.Keywords: data imbalance, GAN, ACGAN, anomaly detection, adversarial training, data augmentation
Procedia PDF Downloads 1126454 Excellent Outcome with Early Diagnosis in an Infant with Wiskott-Aldrich Syndrome in a Tertiary Hospital in Oman
Authors: Surekha Tony, Roshan Mevada
Abstract:
Wiskott-Aldrich syndrome (WAS) is a primary immunodeficiency disease resulting in recurrent infections, eczema, and microthrombocytopenia. In its classical form, significant combined immune deficiency, autoimmune complications, and risk of hematological malignancy necessitate early correction, preferably before 2 years of age, with hematopoietic stem cell transplant (HSCT) or gene therapy. Clinical features and severity are varied, making the diagnosis difficult in milder cases. We report an Omani boy diagnosed in early infancy with WAS based on clinical presentation and confirmed by genetic diagnosis with cure by HSCT from an HLA-identical sibling donor.Keywords: genetic diagnosis, hematopoietic stem cell transplant, infant, Wiskott-Aldrich syndrome
Procedia PDF Downloads 246453 A Machine Learning Approach for Detecting and Locating Hardware Trojans
Authors: Kaiwen Zheng, Wanting Zhou, Nan Tang, Lei Li, Yuanhang He
Abstract:
The integrated circuit industry has become a cornerstone of the information society, finding widespread application in areas such as industry, communication, medicine, and aerospace. However, with the increasing complexity of integrated circuits, Hardware Trojans (HTs) implanted by attackers have become a significant threat to their security. In this paper, we proposed a hardware trojan detection method for large-scale circuits. As HTs introduce physical characteristic changes such as structure, area, and power consumption as additional redundant circuits, we proposed a machine-learning-based hardware trojan detection method based on the physical characteristics of gate-level netlists. This method transforms the hardware trojan detection problem into a machine-learning binary classification problem based on physical characteristics, greatly improving detection speed. To address the problem of imbalanced data, where the number of pure circuit samples is far less than that of HTs circuit samples, we used the SMOTETomek algorithm to expand the dataset and further improve the performance of the classifier. We used three machine learning algorithms, K-Nearest Neighbors, Random Forest, and Support Vector Machine, to train and validate benchmark circuits on Trust-Hub, and all achieved good results. In our case studies based on AES encryption circuits provided by trust-hub, the test results showed the effectiveness of the proposed method. To further validate the method’s effectiveness for detecting variant HTs, we designed variant HTs using open-source HTs. The proposed method can guarantee robust detection accuracy in the millisecond level detection time for IC, and FPGA design flows and has good detection performance for library variant HTs.Keywords: hardware trojans, physical properties, machine learning, hardware security
Procedia PDF Downloads 1536452 Analytical Modeling of Drain Current for DNA Biomolecule Detection in Double-Gate Tunnel Field-Effect Transistor Biosensor
Authors: Ashwani Kumar
Abstract:
Abstract- This study presents an analytical modeling approach for analyzing the drain current behavior in Tunnel Field-Effect Transistor (TFET) biosensors used for the detection of DNA biomolecules. The proposed model focuses on elucidating the relationship between the drain current and the presence of DNA biomolecules, taking into account the impact of various device parameters and biomolecule characteristics. Through comprehensive analysis, the model offers insights into the underlying mechanisms governing the sensing performance of TFET biosensors, aiding in the optimization of device design and operation. A non-local tunneling model is incorporated with other essential models to accurately trace the simulation and modeled data. An experimental validation of the model is provided, demonstrating its efficacy in accurately predicting the drain current response to DNA biomolecule detection. The sensitivity attained from the analytical model is compared and contrasted with the ongoing research work in this area.Keywords: biosensor, double-gate TFET, DNA detection, drain current modeling, sensitivity
Procedia PDF Downloads 626451 Labview-Based System for Fiber Links Events Detection
Authors: Bo Liu, Qingshan Kong, Weiqing Huang
Abstract:
With the rapid development of modern communication, diagnosing the fiber-optic quality and faults in real-time is widely focused. In this paper, a Labview-based system is proposed for fiber-optic faults detection. The wavelet threshold denoising method combined with Empirical Mode Decomposition (EMD) is applied to denoise the optical time domain reflectometer (OTDR) signal. Then the method based on Gabor representation is used to detect events. Experimental measurements show that signal to noise ratio (SNR) of the OTDR signal is improved by 1.34dB on average, compared with using the wavelet threshold denosing method. The proposed system has a high score in event detection capability and accuracy. The maximum detectable fiber length of the proposed Labview-based system can be 65km.Keywords: empirical mode decomposition, events detection, Gabor transform, optical time domain reflectometer, wavelet threshold denoising
Procedia PDF Downloads 126