Search results for: building
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3953

Search results for: building

3083 Development of a Decision-Making Method by Using Machine Learning Algorithms in the Early Stage of School Building Design

Authors: Rajaian Hoonejani Mohammad, Eshraghi Pegah, Zomorodian Zahra Sadat, Tahsildoost Mohammad

Abstract:

Over the past decade, energy consumption in educational buildings has steadily increased. The purpose of this research is to provide a method to quickly predict the energy consumption of buildings using separate evaluation of zones and decomposing the building to eliminate the complexity of geometry at the early design stage. To produce this framework, machine learning algorithms such as Support vector regression (SVR) and Artificial neural network (ANN) are used to predict energy consumption and thermal comfort metrics in a school as a case. The database consists of more than 55000 samples in three climates of Iran. Cross-validation evaluation and unseen data have been used for validation. In a specific label, cooling energy, it can be said the accuracy of prediction is at least 84% and 89% in SVR and ANN, respectively. The results show that the SVR performed much better than the ANN.

Keywords: early stage of design, energy, thermal comfort, validation, machine learning

Procedia PDF Downloads 46
3082 Building Information Modelling Based Value for Money Assessment in Public-Private Partnership

Authors: Guoqian Ren, Haijiang Li, Jisong Zhang

Abstract:

Over the past 40 years, urban development has undergone large-scale, high-speed expansion, beyond what was previously considered normal and in a manner not proportionally related to population growth or physical considerations. With more scientific and refined decision-making in the urban construction process, new urbanization approaches, aligned with public-private partnerships (PPPs) which evolved in the early 1990s, have become acceptable and, in some situations, even better solutions to outstanding urban municipal construction projects, especially in developing countries. However, as the main driving force to deal with urban public services, PPPs are still problematic regarding value for money (VFM) process in most large-scale construction projects. This paper therefore reviews recent PPP articles in popular project management journals and relevant toolkits, published in the last 10 years, to identify the indicators that influence VFM within PPPs across regions. With increasing concerns about profitability and environmental and social impacts, the current PPP structure requires a more integrated platform to manage multi-performance project life cycles. Building information modelling (BIM), a popular approach to the procurement process in AEC sectors, provides the potential to ensure VFM while also working in tandem with the semantic approach to holistically measure life cycle costs (LCC) and achieve better sustainability. This paper suggests that BIM applied to the entire PPP life cycle could support holistic decision-making regarding VFM processes and thus meet service targets.

Keywords: public-private partnership, value for money, building information modelling, semantic approach

Procedia PDF Downloads 193
3081 Political Transition in Nepal: Challenges and Limitations to Post-Conflict Peace-Building

Authors: Sourina Bej

Abstract:

Since the process of decolonization in 1940, several countries in South Asia have witnessed intra-state conflicts owing to ineffective political governance. The conflicts have remained protracted as the countries have failed to make a holistic transition to a democratic state. Nepal is one such South Asian country facing a turmultous journey from monarchy to republicanism. The paper aims to focus on the democratic transition in the context of Nepal’s political, legal and economic institutions. The presence of autocratic feudalistic and centralised state structure with entrenched socio-economic inequalities has resulted in mass uprising only to see the country slip back to the old order. Even a violent civil war led by the Maoists could not overhaul the political relations or stabilize the democratic space. The paper aims to analyse the multiple political, institutional and operational challenges in the implementation of the peace agreement with the Maoist. Looking at the historical background, the paper will examine the problematic nation-building that lies at the heart of fragile peace process in Nepal. Regional dynamics have played a big role in convoluting the peace-building. The new constitution aimed at conflict resolution brought to the open, deep seated hatred among different ethnic groups in Nepal. Apart from studying the challenges to the peace process and the role of external players like India and China in the political reconstruction, the paper will debate on a viable federal solution to the ethnic conflict in Nepal. If the current government fails to pass a constitution accepted by most ethnic groups, Nepal will remain on the brink of new conflict outbreaks.

Keywords: democratisation, ethnic conflict, Nepal, peace process

Procedia PDF Downloads 261
3080 A Comparative Time-Series Analysis and Deep Learning Projection of Innate Radon Gas Risk in Canadian and Swedish Residential Buildings

Authors: Selim M. Khan, Dustin D. Pearson, Tryggve Rönnqvist, Markus E. Nielsen, Joshua M. Taron, Aaron A. Goodarzi

Abstract:

Accumulation of radioactive radon gas in indoor air poses a serious risk to human health by increasing the lifetime risk of lung cancer and is classified by IARC as a category one carcinogen. Radon exposure risks are a function of geologic, geographic, design, and human behavioural variables and can change over time. Using time series and deep machine learning modelling, we analyzed long-term radon test outcomes as a function of building metrics from 25,489 Canadian and 38,596 Swedish residential properties constructed between 1945 to 2020. While Canadian and Swedish properties built between 1970 and 1980 are comparable (96–103 Bq/m³), innate radon risks subsequently diverge, rising in Canada and falling in Sweden such that 21st Century Canadian houses show 467% greater average radon (131 Bq/m³) relative to Swedish equivalents (28 Bq/m³). These trends are consistent across housing types and regions within each country. The introduction of energy efficiency measures within Canadian and Swedish building codes coincided with opposing radon level trajectories in each nation. Deep machine learning modelling predicts that, without intervention, average Canadian residential radon levels will increase to 176 Bq/m³ by 2050, emphasizing the importance and urgency of future building code intervention to achieve systemic radon reduction in Canada.

Keywords: radon health risk, time-series, deep machine learning, lung cancer, Canada, Sweden

Procedia PDF Downloads 69
3079 Ending Communal Conflicts in Africa: The Relevance of Traditional Approaches to Conflict Resolution

Authors: Kindeye Fenta Mekonnen, Alagaw Ababu Kifle

Abstract:

The failure of international responses to armed conflict to address local preconditions for national stability has recently attracted what has been called the ‘local turn’ in peace building. This ‘local turn’ in peace building amplified a renewed interest in traditional/indigenous methods of conflict resolution, a field that has been hitherto dominated by anthropologists with their focus on the procedures and rituals of such approaches. This notwithstanding, there is still limited empirical work on the relevance of traditional methods of conflict resolution to end localized conflicts vis-à-vis hybrid and modern approaches. The few exceptions to this generally draw their conclusion from very few (almost all successful) cases that make it difficult to judge the validity and cross-case application of their results. This paper seeks to fill these gaps by undertaking a quantitative analysis of the trend and applications of different communal conflict resolution initiatives, their potential to usher in long-term peace, and the extent to which their outcomes are influenced by the intensity and scope of a conflict. The paper makes the following three tentative conclusions. First, traditional mechanisms and traditional actors still dominate the communal conflict resolution landscape, either individually or in combination with other methods. Second, traditional mechanisms of conflict resolution tend to be more successful in ending a conflict and preventing its re-occurrence compared to hybrid and modern arrangements. This notwithstanding and probably due to the scholarly call for local turn in peace building, contemporary communal conflict resolution approaches are becoming less and less reliant on traditional mechanisms alone and (therefore) less effective. Third, there is yet inconclusive evidence on whether hybridization is an asset or a liability in the resolution of communal conflicts and the extent to which this might be mediated by the intensity of a conflict.

Keywords: traditional conflict resolution, hybrid conflict resolution, communal conflict, relevance, conflict intensity

Procedia PDF Downloads 60
3078 Analysis of Thermal Comfort in Educational Buildings Using Computer Simulation: A Case Study in Federal University of Parana, Brazil

Authors: Ana Julia C. Kfouri

Abstract:

A prerequisite of any building design is to provide security to the users, taking the climate and its physical and physical-geometrical variables into account. It is also important to highlight the relevance of the right material elements, which arise between the person and the agent, and must provide improved thermal comfort conditions and low environmental impact. Furthermore, technology is constantly advancing, as well as computational simulations for projects, and they should be used to develop sustainable building and to provide higher quality of life for its users. In relation to comfort, the more satisfied the building users are, the better their intellectual performance will be. Based on that, the study of thermal comfort in educational buildings is of relative relevance, since the thermal characteristics in these environments are of vital importance to all users. Moreover, educational buildings are large constructions and when they are poorly planned and executed they have negative impacts to the surrounding environment, as well as to the user satisfaction, throughout its whole life cycle. In this line of thought, to evaluate university classroom conditions, it was accomplished a detailed case study on the thermal comfort situation at Federal University of Parana (UFPR). The main goal of the study is to perform a thermal analysis in three classrooms at UFPR, in order to address the subjective and physical variables that influence thermal comfort inside the classroom. For the assessment of the subjective components, a questionnaire was applied in order to evaluate the reference for the local thermal conditions. Regarding the physical variables, it was carried out on-site measurements, which consist of performing measurements of air temperature and air humidity, both inside and outside the building, as well as meteorological variables, such as wind speed and direction, solar radiation and rainfall, collected from a weather station. Then, a computer simulation based on results from the EnergyPlus software to reproduce air temperature and air humidity values of the three classrooms studied was conducted. The EnergyPlus outputs were analyzed and compared with the on-site measurement results to be possible to come out with a conclusion related to the local thermal conditions. The methodological approach included in the study allowed a distinct perspective in an educational building to better understand the classroom thermal performance, as well as the reason of such behavior. Finally, the study induces a reflection about the importance of thermal comfort for educational buildings and propose thermal alternatives for future projects, as well as a discussion about the significant impact of using computer simulation on engineering solutions, in order to improve the thermal performance of UFPR’s buildings.

Keywords: computer simulation, educational buildings, EnergyPlus, humidity, temperature, thermal comfort

Procedia PDF Downloads 371
3077 An Investigation on Opportunities and Obstacles on Implementation of Building Information Modelling for Pre-fabrication in Small and Medium Sized Construction Companies in Germany: A Practical Approach

Authors: Nijanthan Mohan, Rolf Gross, Fabian Theis

Abstract:

The conventional method used in the construction industries often resulted in significant rework since most of the decisions were taken onsite under the pressure of project deadlines and also due to the improper information flow, which results in ineffective coordination. However, today’s architecture, engineering, and construction (AEC) stakeholders demand faster and accurate deliverables, efficient buildings, and smart processes, which turns out to be a tall order. Hence, the building information modelling (BIM) concept was developed as a solution to fulfill the above-mentioned necessities. Even though BIM is successfully implemented in most of the world, it is still in the early stages in Germany, since the stakeholders are sceptical of its reliability and efficiency. Due to the huge capital requirement, the small and medium-sized construction companies are still reluctant to implement BIM workflow in their projects. The purpose of this paper is to analyse the opportunities and obstacles to implementing BIM for prefabrication. Among all other advantages of BIM, pre-fabrication is chosen for this paper because it plays a vital role in creating an impact on time as well as cost factors of a construction project. The positive impact of prefabrication can be explicitly observed by the project stakeholders and participants, which enables the breakthrough of the skepticism factor among the small scale construction companies. The analysis consists of the development of a process workflow for implementing prefabrication in building construction, followed by a practical approach, which was executed with two case studies. The first case study represents on-site prefabrication, and the second was done for off-site prefabrication. It was planned in such a way that the first case study gives a first-hand experience for the workers at the site on the BIM model so that they can make much use of the created BIM model, which is a better representation compared to the traditional 2D plan. The main aim of the first case study is to create a belief in the implementation of BIM models, which was succeeded by the execution of offshore prefabrication in the second case study. Based on the case studies, the cost and time analysis was made, and it is inferred that the implementation of BIM for prefabrication can reduce construction time, ensures minimal or no wastes, better accuracy, less problem-solving at the construction site. It is also observed that this process requires more planning time, better communication, and coordination between different disciplines such as mechanical, electrical, plumbing, architecture, etc., which was the major obstacle for successful implementation. This paper was carried out in the perspective of small and medium-sized mechanical contracting companies for the private building sector in Germany.

Keywords: building information modelling, construction wastes, pre-fabrication, small and medium sized company

Procedia PDF Downloads 95
3076 Adaption Model for Building Agile Pronunciation Dictionaries Using Phonemic Distance Measurements

Authors: Akella Amarendra Babu, Rama Devi Yellasiri, Natukula Sainath

Abstract:

Where human beings can easily learn and adopt pronunciation variations, machines need training before put into use. Also humans keep minimum vocabulary and their pronunciation variations are stored in front-end of their memory for ready reference, while machines keep the entire pronunciation dictionary for ready reference. Supervised methods are used for preparation of pronunciation dictionaries which take large amounts of manual effort, cost, time and are not suitable for real time use. This paper presents an unsupervised adaptation model for building agile and dynamic pronunciation dictionaries online. These methods mimic human approach in learning the new pronunciations in real time. A new algorithm for measuring sound distances called Dynamic Phone Warping is presented and tested. Performance of the system is measured using an adaptation model and the precision metrics is found to be better than 86 percent.

Keywords: pronunciation variations, dynamic programming, machine learning, natural language processing

Procedia PDF Downloads 154
3075 DSF Elements in High-Rise Timber Buildings

Authors: Miroslav Premrov, Andrej Štrukelj, Erika Kozem Šilih

Abstract:

The utilization of prefabricated timber-wall elements with double glazing, called as double-skin façade element (DSF), represents an innovative structural approach in the context of new high-rise timber construction, simultaneously combining sustainable solutions with improved energy efficiency and living quality. In addition to the minimum energy needs of buildings, the design of modern buildings is also increasingly focused on the optimal indoor comfort, in particular on sufficient natural light indoors. An optimally energy-designed building with an optimal layout of glazed areas around the building envelope represents a great potential in modern timber construction. Usually, all these transparent façade elements, because of energy benefits, are primary asymmetrical oriented and if they are considered as non-resisting against a horizontal load impact, a strong torsion effects in the building can appear. The problem of structural stability against a strong horizontal load impact of such modern timber buildings especially increase in a case of high-rise structures where additional bracing elements have to be used. In such a case, special diagonal bracing systems or other bracing solutions with common timber wall elements have to be incorporated into the structure of the building to satisfy all prescribed resisting requirements given by the standards. However, all such structural solutions are usually not environmentally friendly and also not contribute to an improved living comfort, or they are not accepted by the architects at all. Consequently, it is a special need to develop innovative load-bearing timber-glass wall elements which are in the same time environmentally friendly, can increase internal comfort in the building, but are also load-bearing. The new developed load-bearing DSF elements can be a good answer on all these requirements. Timber-glass façade elements DSF wall elements consist of two transparent layers, thermal-insulated three-layered glass pane on the internal side and an additional single-layered glass pane on the external side of the wall. The both panes are separated by an air channel which can be of any dimensions and can have a significant influence on the thermal insulation or acoustic response of such a wall element. Most already published studies on DSF elements primarily deal only with energy and LCA solutions and do not address any structural problems. In previous studies according to experimental analysis and mathematical modeling it was already presented a possible benefit of such load-bearing DSF elements, especially comparing with previously developed load-bearing single-skin timber wall elements, but they were not applicate yet in any high-rise timber structure. Therefore, in the presented study specially selected 10-storey prefabricated timber building constructed in a cross-laminated timber (CLT) structural wall system is analyzed using the developed DSF elements in a sense to increase a structural lateral stability of the whole building. The results evidently highlight the importance the load-bearing DSF elements, as their incorporation can have a significant impact on the overall behavior of the structure through their influence on the stiffness properties. Taking these considerations into account is crucial to ensure compliance with seismic design codes and to improve the structural resilience of high-rise timber buildings.

Keywords: glass, high-rise buildings, numerical analysis, timber

Procedia PDF Downloads 25
3074 Assets and Health: Examining the Asset-Building Theoretical Framework and Psychological Distress

Authors: Einav Srulovici, Michal Grinstein-Weiss, George Knafl, Linda Beeber, Shawn Kneipp, Barbara Mark

Abstract:

Background: The asset-building theoretical framework (ABTF) is acknowledged as the most complete framework thus far for depicting the relationships between asset accumulation (the stock of a household’s saved resources available for future investment) and health outcomes. Although the ABTF takes into consideration the reciprocal relationship between asset accumulation and health, no ABTF based study has yet examined this relationship. Therefore, the purpose of this study was to test the ABTF and psychological distress, focusing on the reciprocal relationship between assets accumulation and psychological distress. Methods: The study employed longitudinal data from 6,295 families from the 2001 and 2007 Panel Study of Income Dynamics data sets. Structural equation modeling (SEM) was used to test the reciprocal relationship between asset accumulation and psychological distress. Results: In general, the data displayed a good fit to the model. The longitudinal SEM found that asset accumulation significantly increased with a decreased in psychological distress over time, while psychological distress significantly increased with an increase in asset accumulation over time, confirming the existence of the hypothesized reciprocal relationship. Conclusions: Individuals who are less psychological distressed might have more energy to engage in activities, such as furthering their education or obtaining better jobs that are in turn associated with greater asset accumulation, while those who have greater assets may invest those assets in riskier investments, resulting in increased psychological distress. The confirmation of this reciprocal relationship highlights the importance of conducting longitudinal studies and testing the reciprocal relationship between asset accumulation and other health outcomes.

Keywords: asset-building theoretical framework, psychological distress, structural equation modeling, reciprocal relationship

Procedia PDF Downloads 371
3073 Architectural Visualization: From Ancient Civilizations to the Roman Empire

Authors: Matthias Stange

Abstract:

Architectural visualization has been practiced for as long as there have been buildings. Visualization (lat.: visibilis "visible") generally refers to bringing abstract data and relationships into a graphically, visually comprehensible form. Particularly, visualization refers to the process of translating relationships that are difficult to formulate linguistically or logically into visual media (e.g., drawings or models) to make them comprehensible. Building owners have always been interested in knowing how their building will look before it is built. In the empirical part of this study, the roots of architectural visualization are examined, starting from the ancient civilizations to the end of the Roman Empire. Extensive literature research on architectural theory and architectural history forms the basis for this analysis. The focus of the analysis is basic research from the emergence of the first two-dimensional drawings in the Neolithic period to the triggers of significant further developments of architectural representation, as well as their importance for subsequent methods and the transmission of knowledge over the following epochs. The analysis focuses on the development of analog methods of representation from the first Neolithic house floor plans to the Greek detailed stone models and paper drawings in the Roman Empire. In particular, the question of socio-cultural, socio-political, and economic changes as possible triggers for the development of representational media and methods will be analyzed. The study has shown that the development of visual building representation has been driven by scientific, technological, and social developments since the emergence of the first civilizations more than 6000 years ago first by the change in human’s subsistence strategy, from food appropriation by hunting and gathering to food production by agriculture and livestock, and the sedentary lifestyle required for this.

Keywords: ancient Greece, ancient orient, Roman Empire, architectural visualization

Procedia PDF Downloads 96
3072 Diagrid Structural System

Authors: K. Raghu, Sree Harsha

Abstract:

The interrelationship between the technology and architecture of tall buildings is investigated from the emergence of tall buildings in late 19th century to the present. In the late 19th century early designs of tall buildings recognized the effectiveness of diagonal bracing members in resisting lateral forces. Most of the structural systems deployed for early tall buildings were steel frames with diagonal bracings of various configurations such as X, K, and eccentric. Though the historical research a filtering concept is developed original and remedial technology- through which one can clearly understand inter-relationship between the technical evolution and architectural esthetic and further stylistic transition buildings. Diagonalized grid structures – “diagrids” - have emerged as one of the most innovative and adaptable approaches to structuring buildings in this millennium. Variations of the diagrid system have evolved to the point of making its use non-exclusive to the tall building. Diagrid construction is also to be found in a range of innovative mid-rise steel projects. Contemporary design practice of tall buildings is reviewed and design guidelines are provided for new design trends. Investigated in depths are the behavioral characteristics and design methodology for diagrids structures, which emerge as a new direction in the design of tall buildings with their powerful structural rationale and symbolic architectural expression. Moreover, new technologies for tall building structures and facades are developed for performance enhancement through design integration, and their architectural potentials are explored. By considering the above data the analysis and design of 40-100 storey diagrids steel buildings is carried out using E-TABS software with diagrids of various angle to be found for entire building which will be helpful to reduce the steel requirement for the structure. The present project will have to undertake wind analysis, seismic analysis for lateral loads acting on the structure due to wind loads, earthquake loads, gravity loads. All structural members are designed as per IS 800-2007 considering all load combination. Comparison of results in terms of time period, top storey displacement and inter-storey drift to be carried out. The secondary effect like temperature variations are not considered in the design assuming small variation.

Keywords: diagrid, bracings, structural, building

Procedia PDF Downloads 369
3071 Negotiating Autonomy in Women’s Political Participation: The Case of Elected Women’s Representatives from Jharkhand

Authors: Rajeshwari Balasubramanian, Margit Van Wessel, Nandini Deo

Abstract:

The participation of women in local bodies witnessed a rise after the implementation of 73rd and 74th Amendments to the Indian Constitution which created quotas for women representatives. However, even when participation increased, it did not translate into meaningful contributions by women in local bodies. This led some civil society organisations (CSOs) to begin working with women panchayat representatives in various states to build their capacity for political participation. The focus of this paper is to study capacity building training by CSOs in Jharkhand. The paper maps how the training helps women elected representatives to negotiate their autonomy at multiple levels. The paper describes the capacity building program conducted by an international feminist organisation along with its seven local partners in Jharkhand. The central question that the study asks is: How does capacity building training by CSOs in Jharkhand impact the autonomy of elected women representatives? It uses a qualitative research methodology based on empirical data gathered through field visits in four districts of Jharkhand (Chatra, Hazaribagh, East Singhbum and Ranchi) where the program was implemented for three years. The study found that women elected representatives had to develop strategies to negotiate their choice to move out of their homes and attend the training conducted by CSOs. The ability to participate in the training programs itself was a significant achievement of personal autonomy for many women. The training provided them a platform to voice their opinion and appreciate their own value as panchayat leaders. This realization allowed them to negotiate their presence and a space for themselves in Gram panchayats. A Foucauldian approach to analyze capacity building workshops might lead us to see them as systems in which CSOs impose a form of governmentality on rural elected representatives. Instead, what we see here is a much more complex negotiation of agency in which the CSO creates spaces and practices that allow women to achieve their own forms of autonomy. The study concludes that the impact of the training on the autonomy of these women is based on their everyday negotiations of time, space and mobility. Autonomy for these elected women representatives is also contextual and relative, as they seem to realize it during the training process. The training allows the women to not only negotiate their participation in panchayats but also challenge everyday practices that are rooted in patriarchy.

Keywords: autonomy, feminist organization, local bodies, political participation

Procedia PDF Downloads 131
3070 Numerical Simulation of a Combined Impact of Cooling and Ventilation on the Indoor Environmental Quality

Authors: Matjaz Prek

Abstract:

Impact of three different combinations of cooling and ventilation systems on the indoor environmental quality (IEQ) has been studied. Comparison of chilled ceiling cooling in combination with displacement ventilation, cooling with fan coil unit and cooling with flat wall displacement outlets was performed. All three combinations were evaluated from the standpoint of whole-body and local thermal comfort criteria as well as from the standpoint of ventilation effectiveness. The comparison was made on the basis of numerical simulation with DesignBuilder and Fluent. Numerical simulations were carried out in two steps. Firstly the DesignBuilder software environment was used to model the buildings thermal performance and evaluation of the interaction between the environment and the building. Heat gains of the building and of the individual space, as well as the heat loss on the boundary surfaces in the room, were calculated. In the second step Fluent software environment was used to simulate the response of the indoor environment, evaluating the interaction between building and human, using the simulation results obtained in the first step. Among the systems presented, the ceiling cooling system in combination with displacement ventilation was found to be the most suitable as it offers a high level of thermal comfort with adequate ventilation efficiency. Fan coil cooling has proved inadequate from the standpoint of thermal comfort whereas flat wall displacement outlets were inadequate from the standpoint of ventilation effectiveness. The study showed the need in evaluating indoor environment not solely from the energy use point of view, but from the point of view of indoor environmental quality as well.

Keywords: cooling, ventilation, thermal comfort, ventilation effectiveness, indoor environmental quality, IEQ, computational fluid dynamics

Procedia PDF Downloads 173
3069 Research on Eco-Sustainable Recycling of Industrial Wastes

Authors: Liliana Crăc, Nicolae Giorgi, Gheorghe Fometescu

Abstract:

In Romania, billions of tonnes of wastes are generated yearly, an important amount being stored within industrial dumps that covers high soil areas and affects the environment quality, especially of ground and surface waters. Landfill represents in Romania the most important way for wastes removal, over 75% being generated every year, the costs with the dumps construction being considerable. In most of the cases, the wastes generated mainly by the energy industry, oil exploitation and metallurgy, are still considered wastes with NO-use, and their removal and neutralization represent for transport, handling and storing, high non-productive expenses which raise the cost of the useful products obtained. The paper presents a recycling idea of three types of wastes in order to use them for building materials manufacturing, by promoting ECOWASTES LIFE+ project, whose aim is to demonstrate that the recycling of waste from energy industry (coal combustion waste), petroleum extraction (drilling mud) and metallurgy (steelmaking slag) is technically feasible.

Keywords: fly ash, drilled solid wastes, metallurgical slag, recycling, building materials

Procedia PDF Downloads 293
3068 Building Information Modelling for Construction Delay Management

Authors: Essa Alenazi, Zulfikar Adamu

Abstract:

The Kingdom of Saudi Arabia (KSA) is not an exception in relying on the growth of its construction industry to support rapid population growth. However, its need for infrastructure development is constrained by low productivity levels and cost overruns caused by factors such as delays to project completion. Delays in delivering a construction project are a global issue and while theories such as Optimism Bias have been used to explain such delays, in KSA, client-related causes of delays are also significant. The objective of this paper is to develop a framework-based approach to explore how the country’s construction industry can manage and reduce delays in construction projects through building information modelling (BIM) in order to mitigate the cost consequences of such delays.  It comprehensively and systematically reviewed the global literature on the subject and identified gaps, critical delay factors and the specific benefits that BIM can deliver for the delay management.  A case study comprising of nine hospital projects that have experienced delay and cost overruns was also carried out. Five critical delay factors related to the clients were identified as candidates that can be mitigated through BIM’s benefits. These factors are: Ineffective planning and scheduling of the project; changes during construction by the client; delay in progress payment; slowness in decision making by the client; and poor communication between clients and other stakeholders. In addition, data from the case study projects strongly suggest that optimism bias is present in many of the hospital projects. Further validation via key stakeholder interviews and documentations are planned.

Keywords: building information modelling (BIM), clients perspective, delay management, optimism bias, public sector projects

Procedia PDF Downloads 305
3067 A Review on Applications of Nanotechnology in Automotive Industry

Authors: Akshata S. Malani, Anagha D. Chaudhari, Rajeshkumar U. Sambhe

Abstract:

Nanotechnology in pristine sense refers to building of structures at atomic and molecular scale. Meticulously nanotechnology encompasses the nanomaterials with atleast one dimension size ranging from 1 to 100 nanometres.Unlike the literal meaning of its name, nanotechnology is a massive concept beyond imagination. This paper predominantly deals with relevance of nanotechnology in automotive industries. New generation of automotives looks at nanotechnology as an emerging trend of manufacturing revolution. Intricate shapes can be made out of fairly inexpensive raw materials instead of conventional fabrication process. Though the current era have enough technology to face competition, nanotechnology can give futuristic implications to pick up the modern pace. Nanotechnology intends to bridge the gap between automotives with superior technical performance and their cost fluctuation. Preliminarily, it is an area of great scientific interest and a major shaper of many new technologies. Nanotechnology can be an ideal building block for automotive industries, under constant evolution offering a very wide scope of activity. It possesses huge potential and is still in the embryonic form of research and development.

Keywords: nanotechnology, nanomaterials, manufacturing, automotive industry

Procedia PDF Downloads 436
3066 Nondestructive Testing for Reinforced Concrete Buildings with Active Infrared Thermography

Authors: Huy Q. Tran, Jungwon Huh, Kiseok Kwak, Choonghyun Kang

Abstract:

Infrared thermography (IRT) technique has been proven to be a good method for nondestructive evaluation of concrete material. In the building, a broad range of applications has been used such as subsurface defect inspection, energy loss, and moisture detection. The purpose of this research is to consider the qualitative and quantitative performance of reinforced concrete deteriorations using active infrared thermography technique. An experiment of three different heating regimes was conducted on a concrete slab in the laboratory. The thermal characteristics of the IRT method, i.e., absolute contrast and observation time, are investigated. A linear relationship between the observation time and the real depth was established with a well linear regression R-squared of 0.931. The results showed that the absolute contrast above defective area increases with the rise of the size of delamination and the heating time. In addition, the depth of delamination can be predicted by using the proposal relationship of this study.

Keywords: concrete building, infrared thermography, nondestructive evaluation, subsurface delamination

Procedia PDF Downloads 269
3065 Atomic Clusters: A Unique Building Motif for Future Smart Nanomaterials

Authors: Debesh R. Roy

Abstract:

The fundamental issue in understanding the origin and growth mechanism of nanomaterials, from a fundamental unit is a big challenging problem to the scientists. Recently, an immense attention is generated to the researchers for prediction of exceptionally stable atomic cluster units as the building units for future smart materials. The present study is a systematic investigation on the stability and electronic properties of a series of bimetallic (semiconductor-alkaline earth) clusters, viz., BxMg3 (x=1-5) is performed, in search for exceptional and/ or unusual stable motifs. A very popular hybrid exchange-correlation functional, B3LYP as proposed by A. D. Becke along with a higher basis set, viz., 6-31+G[d,p] is employed for this purpose under the density functional formalism. The magic stability among the concerned clusters is explained using the jellium model. It is evident from the present study that the magic stability of B4Mg3 cluster arises due to the jellium shell closure.

Keywords: atomic clusters, density functional theory, jellium model, magic clusters, smart nanomaterials

Procedia PDF Downloads 511
3064 Analysis of the Acoustic Performance of Vertical Internal Seals with Pet Wool as NBR 15.575-4NO Green Towers Building-DF

Authors: Lucas Aerre, Wallesson Faria, Roberto Pimentel, Juliana Santos

Abstract:

An extremely disturbing and irritating element in the lives of people and organizations is the noise, the consequences that can bring us has a lot of connection with human health as well as financial and economic aspects. In order to improve the efficiency of buildings in Brazil in general, a performance standard was created, NBR 15.575 in which all buildings are seen in a more systemic and peculiar way, while following the requirements of the standard. The acoustic performance present in these buildings is one such requirement. Based on this, the present work was elaborated with the objective of evaluating through acoustic measurements the acoustic performance of vertical internal fences that are under the incidence of aerial noise of a building in the city of Brasilia-DF. A short theoretical basis is made and soon after the procedures of measurement are described through the control method established by the standard, and its results are evaluated according to the parameters of the same. The measurement performed between rooms of the same unit, presented a standardized sound pressure level difference (D nT, w) equal to 40 dB, thus being classified within the minimum performance required by the standard in question.

Keywords: airborne noise, performance standard, soundproofing, vertical seal

Procedia PDF Downloads 280
3063 Exploring the Role of Building Information Modeling for Delivering Successful Construction Projects

Authors: Muhammad Abu Bakar Tariq

Abstract:

Construction industry plays a crucial role in the progress of societies and economies. Furthermore, construction projects have social as well as economic implications, thus, their success/failure have wider impacts. However, the industry is lagging behind in terms of efficiency and productivity. Building Information Modeling (BIM) is recognized as a revolutionary development in Architecture, Engineering and Construction (AEC) industry. There are numerous interest groups around the world providing definitions of BIM, proponents describing its advantages and opponents identifying challenges/barriers regarding adoption of BIM. This research is aimed at to determine what actually BIM is, along with its potential role in delivering successful construction projects. The methodology is critical analysis of secondary data sources i.e. information present in public domain, which include peer reviewed journal articles, industry and government reports, conference papers, books, case studies etc. It is discovered that clash detection and visualization are two major advantages of BIM. Clash detection option identifies clashes among structural, architectural and MEP designs before construction actually commences, which subsequently saves time as well as cost and ensures quality during execution phase of a project. Visualization is a powerful tool that facilitates in rapid decision-making in addition to communication and coordination among stakeholders throughout project’s life cycle. By eliminating inconsistencies that consume time besides cost during actual construction, improving collaboration among stakeholders throughout project’s life cycle, BIM can play a positive role to achieve efficiency and productivity that consequently deliver successful construction projects.

Keywords: building information modeling, clash detection, construction project success, visualization

Procedia PDF Downloads 239
3062 A User-Friendly Approach for Design and Economic Analysis of Standalone PV System for the Electrification of Rural Area of Eritrea

Authors: Tedros Asefaw Gebremeskel, Xaoyi Yang

Abstract:

The potential of solar energy in Eritrea is relatively high, based on this truth, there are a number of isolated and remote villages situated far away from the electrical national grid which don’t get access to electricity. The core objective of this work is to design a most favorable and cost-effective power by means of standalone PV system for the electrification of a single housing in the inaccessible area of Eritrea. The sizing of the recommended PV system is achieved, such as radiation data and electrical load for the typical household of the selected site is also well thought-out in the design steps. Finally, the life cycle cost (LCC) analysis is conducted to evaluate the economic viability of the system. The outcome of the study promote the use of PV system for a residential building and show that PV system is a reasonable option to provide electricity for household applications in the rural area of Eritrea.

Keywords: electrification, inaccessible area, life cycle cost, residential building, stand-alone PV system

Procedia PDF Downloads 121
3061 Human-Centric Sensor Networks for Comfort and Productivity in Offices: Integrating Environmental, Body Area Network, and Participatory Sensing

Authors: Chenlu Zhang, Wanni Zhang, Florian Schaule

Abstract:

Indoor environment in office buildings directly affects comfort, productivity, health, and well-being of building occupants. Wireless environmental sensor networks have been deployed in many modern offices to monitor and control the indoor environments. However, indoor environmental variables are not strong enough predictors of comfort and productivity levels of every occupant due to personal differences, both physiologically and psychologically. This study proposes human-centric sensor networks that integrate wireless environmental sensors, body area network sensors and participatory sensing technologies to collect data from both environment and human and support building operations. The sensor networks have been tested in one small-size and one medium-size office rooms with 22 participants for five months. Indoor environmental data (e.g., air temperature and relative humidity), physiological data (e.g., skin temperature and Galvani skin response), and physiological responses (e.g., comfort and self-reported productivity levels) were obtained from each participant and his/her workplace. The data results show that: (1) participants have different physiological and physiological responses in the same environmental conditions; (2) physiological variables are more effective predictors of comfort and productivity levels than environmental variables. These results indicate that the human-centric sensor networks can support human-centric building control and improve comfort and productivity in offices.

Keywords: body area network, comfort and productivity, human-centric sensors, internet of things, participatory sensing

Procedia PDF Downloads 125
3060 Use of Fine Marble in Concrete Based On Sand Dune

Authors: M. Belachia, R. Djebien

Abstract:

In the development that our country has in all areas and especially in the field of Building and Construction, the development of new building materials is a current problem where researchers are trying to find the right materials for each region and returning cheapest countries. Enhancement of crushed sand and sand dunes and reuse of waste as additions in concrete can help to overcome the deficit in aggregates. This work focuses on the development of concrete made from sand, knowing that our country has huge potential in sand dune. This study is complemented by a review of the possibility of using certain recycled wastes in concrete sand, including the effect of fines (marble powders) on the rheological and mechanical properties of concrete and sand to the outcome optimal formulation. After the characterization phase of basic materials, we proceeded to carry out the experimental program was to search the optimum characteristics by adding different percentages of fines. The aim is to show that the possibility of using local materials (sand dune) for the manufacture of concrete and reuse of waste (marble powders) in the implementation of concrete.

Keywords: sand dune, mechanical properties, rheological properties, fine marble

Procedia PDF Downloads 446
3059 Generation of Charged Nanoparticles and Their Contribution to the Thin Film and Nanowire Growth during Chemical Vapour Deposition

Authors: Seung-Min Yang, Seong-Han Park, Sang-Hoon Lee, Seung-Wan Yoo, Chan-Soo Kim, Nong-Moon Hwang

Abstract:

The theory of charged nanoparticles suggested that in many Chemical Vapour Depositions (CVD) processes, Charged Nanoparticles (CNPs) are generated in the gas-phase and become a building block of thin films and nanowires. Recently, the nanoparticle-based crystallization has become a big issue since the growth of nanorods or crystals by the building block of nanoparticles was directly observed by transmission electron microscopy observations in the liquid cell. In an effort to confirm charged gas-phase nuclei, that might be generated under conventional processing conditions of thin films and nanowires during CVD, we performed an in-situ measurement using differential mobility analyser and particle beam mass spectrometer. The size distribution and number density of CNPs were affected by process parameters such as precursor flow rate and working temperature. It was shown that many films and nanostructures, which have been believed to grow by individual atoms or molecules, actually grow by the building blocks of such charged nuclei. The electrostatic interaction between CNPs and the growing surface induces the self-assembly into films and nanowires. In addition, the charge-enhanced atomic diffusion makes CNPs liquid-like quasi solid. As a result, CNPs tend to land epitaxial on the growing surface, which results in the growth of single crystalline nanowires with a smooth surface.

Keywords: chemical vapour deposition, charged nanoparticle, electrostatic force, nanostructure evolution, differential mobility analyser, particle beam mass spectrometer

Procedia PDF Downloads 432
3058 Sound Source Localisation and Augmented Reality for On-Site Inspection of Prefabricated Building Components

Authors: Jacques Cuenca, Claudio Colangeli, Agnieszka Mroz, Karl Janssens, Gunther Riexinger, Antonio D'Antuono, Giuseppe Pandarese, Milena Martarelli, Gian Marco Revel, Carlos Barcena Martin

Abstract:

This study presents an on-site acoustic inspection methodology for quality and performance evaluation of building components. The work focuses on global and detailed sound source localisation, by successively performing acoustic beamforming and sound intensity measurements. A portable experimental setup is developed, consisting of an omnidirectional broadband acoustic source and a microphone array and sound intensity probe. Three main acoustic indicators are of interest, namely the sound pressure distribution on the surface of components such as walls, windows and junctions, the three-dimensional sound intensity field in the vicinity of junctions, and the sound transmission loss of partitions. The measurement data is post-processed and converted into a three-dimensional numerical model of the acoustic indicators with the help of the simultaneously acquired geolocation information. The three-dimensional acoustic indicators are then integrated into an augmented reality platform superimposing them onto a real-time visualisation of the spatial environment. The methodology thus enables a measurement-supported inspection process of buildings and the correction of errors during construction and refurbishment. Two experimental validation cases are shown. The first consists of a laboratory measurement on a full-scale mockup of a room, featuring a prefabricated panel. The latter is installed with controlled defects such as lack of insulation and joint sealing material. It is demonstrated that the combined acoustic and augmented reality tool is capable of identifying acoustic leakages from the building defects and assist in correcting them. The second validation case is performed on a prefabricated room at a near-completion stage in the factory. With the help of the measurements and visualisation tools, the homogeneity of the partition installation is evaluated and leakages from junctions and doors are identified. Furthermore, the integration of acoustic indicators together with thermal and geometrical indicators via the augmented reality platform is shown.

Keywords: acoustic inspection, prefabricated building components, augmented reality, sound source localization

Procedia PDF Downloads 362
3057 Seismic Assessment of Old Existing RC Buildings In Madinah with Masonry Infilled Using Ambient Vibration Measurements

Authors: Tarek M. Alguhane, Ayman H. Khalil, Nour M. Fayed, Ayman M. Ismail

Abstract:

Early, pre-code, reinforced concrete structures present undetermined resistance to earthquakes. This situation is particularly unacceptable in the case of essential structures, such as healthcare structures and pilgrims' houses. Among these, existing old RC building in Madinah is seismically evaluated with and without infill wall and their dynamic characteristics are compared with measured values in the field using ambient vibration measurements (AVM). After, updating the mathematical models for this building with the experimental results, three dimensional pushover analysis (Nonlinear static analysis) was carried out using SAP 2000 software incorporating inelastic material properties for concrete, infill and steel. The purpose of this analysis is to evaluate the expected performance of structural systems by estimating, strength and deformation demands in design, and comparing these demands to available capacities at the performance levels of interest. The results are summarized and discussed.

Keywords: seismic assessment, pushover analysis ambient vibration, modal update

Procedia PDF Downloads 479
3056 A Linearly Scalable Family of Swapped Networks

Authors: Richard Draper

Abstract:

A supercomputer can be constructed from identical building blocks which are small parallel processors connected by a network referred to as the local network. The routers have unused ports which are used to interconnect the building blocks. These connections are referred to as the global network. The address space has a global and a local component (g, l). The conventional way to connect the building blocks is to connect (g, l) to (g’,l). If there are K blocks, this requires K global ports in each router. If a block is of size M, the result is a machine with KM routers having diameter two. To increase the size of the machine to 2K blocks, each router connects to only half of the other blocks. The result is a larger machine but also one with greater diameter. This is a crude description of how the network of the CRAY XC® is designed. In this paper, a family of interconnection networks using routers with K global and M local ports is defined. Coordinates are (c,d, p) and the global connections are (c,d,p)↔(c’,p,d) which swaps p and d. The network is denoted D3(K,M) and is called a Swapped Dragonfly. D3(K,M) has KM2 routers and has diameter three, regardless of the size of K. To produce a network of size KM2 conventionally, diameter would be an increasing function of K. The family of Swapped Dragonflies has other desirable properties: 1) D3(K,M) scales linearly in K and quadratically in M. 2) If L < K, D3(K,M) contains many copies of D3(L,M). 3) If L < M, D3(K,M) contains many copies of D3(K,L). 4) D3(K,M) can perform an all-to-all exchange in KM2+KM time which is only slightly more than the time to do a one-to-all. This paper makes several contributions. It is the first time that a swap has been used to define a linearly scalable family of networks. Structural properties of this new family of networks are thoroughly examined. A synchronizing packet header is introduced. It specifies the path to be followed and it makes it possible to define highly parallel communication algorithm on the network. Among these is an all-to-all exchange in time KM2+KM. To demonstrate the effectiveness of the swap properties of the network of the CRAY XC® and D3(K,16) are compared.

Keywords: all-to-all exchange, CRAY XC®, Dragonfly, interconnection network, packet switching, swapped network, topology

Procedia PDF Downloads 105
3055 Performance of Neural Networks vs. Radial Basis Functions When Forming a Metamodel for Residential Buildings

Authors: Philip Symonds, Jon Taylor, Zaid Chalabi, Michael Davies

Abstract:

With the world climate projected to warm and major cities in developing countries becoming increasingly populated and polluted, governments are tasked with the problem of overheating and air quality in residential buildings. This paper presents the development of an adaptable model of these risks. Simulations are performed using the EnergyPlus building physics software. An accurate metamodel is formed by randomly sampling building input parameters and training on the outputs of EnergyPlus simulations. Metamodels are used to vastly reduce the amount of computation time required when performing optimisation and sensitivity analyses. Neural Networks (NNs) are compared to a Radial Basis Function (RBF) algorithm when forming a metamodel. These techniques were implemented using the PyBrain and scikit-learn python libraries, respectively. NNs are shown to perform around 15% better than RBFs when estimating overheating and air pollution metrics modelled by EnergyPlus.

Keywords: neural networks, radial basis functions, metamodelling, python machine learning libraries

Procedia PDF Downloads 428
3054 Analysis of the Interference from Risk-Determining Factors of Cooperative and Conventional Construction Contracts

Authors: E. Harrer, M. Mauerhofer, T. Werginz

Abstract:

As a result of intensive competition, the building sector is suffering from a high degree of rivalry. Furthermore, there can be observed an unbalanced distribution of project risks. Clients are aimed to shift their own risks into the sphere of the constructors or planners. The consequence of this is that the number of conflicts between the involved parties is inordinately high or even increasing; an alternative approach to counter on that developments are cooperative project forms in the construction sector. This research compares conventional contract models and models with partnering agreements to examine the influence on project risks by an early integration of the involved parties. The goal is to show up deviations in different project stages from the design phase to the project transfer phase. These deviations are evaluated by a survey of experts from the three spheres: clients, contractors and planners. By rating the influence of the participants on specific risk factors it is possible to identify factors which are relevant for a smooth project execution.

Keywords: building projects, contract models, partnering, project risks

Procedia PDF Downloads 256