Search results for: boundary layer detachment
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3614

Search results for: boundary layer detachment

2744 The Development of Large Deformation Stability of Elastomeric Bearings

Authors: Davide Forcellini, James Marshal Kelly

Abstract:

Seismic isolation using multi-layer elastomeric isolators has been used in the United States for more than 20 years. Although isolation bearings normally have a large factor of safety against buckling due to low shear stiffness, this phenomenon has been widely studied. In particular, the linearly elastic theory adopted to study this phenomenon is relatively accurate and adequate for most design purposes. Unfortunately it cannot consider the large deformation response of a bearing when buckling occurs and the unresolved behaviour of the stability of the post-buckled state. The study conducted in this paper may be viewed as a development of the linear theory of multi-layered elastomeric bearing, simply replacing the differential equations by algebraic equations, showing how it is possible to evaluate the post-buckling behaviour and the interactions at large deformations.

Keywords: multi-layer elastomeric isolators, large deformation, compressive load, tensile load, post-buckling behaviour

Procedia PDF Downloads 433
2743 Influence of Antecedent Soil Moisture on Soil Erosion: A Two-Year Field Study

Authors: Yu-Da Chen, Chia-Chun Wu

Abstract:

The relationship between antecedent soil moisture content and soil erosion is a complicated phenomenon. Some studies confirm the effect of antecedent soil moisture content on soil erosion, but some deny it. Therefore, the objective of this study is to clarify such contradictions through field experiments. This study conducted two-year field observations of soil losses from natural rainfall events on runoff plots with a length of 10 meters, width of 3 meters, and uniform slope of 9%. Volumetric soil moisture sensors were used to log the soil moisture changes for each rainfall event. A total of 49 effective events were monitored. Results of this study show that antecedent soil moisture content promotes the generation of surface runoff, especially for rainfall events with short duration or lower magnitudes. A positive correlation was found between antecedent soil moisture content and soil loss per unit Rainfall-Runoff Erosivity Index, which indicated that soil with high moisture content is more susceptible to detachment. Once the rainfall duration exceeds 10 hours, the impact from the rainfall duration to soil erosion overwrites, and the effect of antecedent soil moisture is almost negligible.

Keywords: antecedent soil moisture content, soil loss, runoff coefficient, rainfall-runoff erosivity

Procedia PDF Downloads 62
2742 Interlayer-Mechanical Working: Effective Strategy to Mitigate Solidification Cracking in Wire-Arc Additive Manufacturing (WAAM) of Fe-based Shape Memory Alloy

Authors: Soumyajit Koley, Kuladeep Rajamudili, Supriyo Ganguly

Abstract:

In recent years, iron-based shape-memory alloys have been emerging as an inexpensive alternative to costly Ni-Ti alloy and thus considered suitable for many different applications in civil structures. Fe-17Mn-10Cr-5Si-4Ni-0.5V-0.5C alloy contains 37 wt.% of total solute elements. Such complex multi-component metallurgical system often leads to severe solute segregation and solidification cracking. Wire-arc additive manufacturing (WAAM) of Fe-17Mn-10Cr-5Si-4Ni-0.5V-0.5C alloy was attempted using a cold-wire fed plasma arc torch attached to a 6-axis robot. Self-standing walls were manufactured. However, multiple vertical cracks were observed after deposition of around 15 layers. Microstructural characterization revealed open surfaces of dendrites inside the crack, confirming these cracks as solidification cracks. Machine hammer peening (MHP) process was adopted on each layer to cold work the newly deposited alloy. Effect of MHP traverse speed were varied systematically to attain a window of operation where cracking was completely stopped. Microstructural and textural analysis were carried out further to correlate the peening process to microstructure.MHP helped in many ways. Firstly, a compressive residual stress was induced on each layer which countered the tensile residual stress evolved from solidification process; thus, reducing net tensile stress on the wall along its length. Secondly, significant local plastic deformation from MHP followed by the thermal cycle induced by deposition of next layer resulted into a recovered and recrystallized equiaxed microstructure instead of long columnar grains along the vertical direction. This microstructural change increased the total crack propagation length and thus, the overall toughness. Thirdly, the inter-layer peening significantly reduced the strong cubic {001} crystallographic texture formed along the build direction. Cubic {001} texture promotes easy separation of planes and easy crack propagation. Thus reduction of cubic texture alleviates the chance of cracking.

Keywords: Iron-based shape-memory alloy, wire-arc additive manufacturing, solidification cracking, inter-layer cold working, machine hammer peening

Procedia PDF Downloads 71
2741 Aerodynamic Analysis by Computational Fluids Dynamics in Building: Case Study

Authors: Javier Navarro Garcia, Narciso Vazquez Carretero

Abstract:

Eurocode 1, part 1-4, wind actions, includes in its article 1.5 the possibility of using numerical calculation methods to obtain information on the loads acting on a building. On the other hand, the analysis using computational fluids dynamics (CFD) in aerospace, aeronautical, and industrial applications is already in widespread use. The application of techniques based on CFD analysis on the building to study its aerodynamic behavior now opens a whole alternative field of possibilities for civil engineering and architecture; optimization of the results with respect to those obtained by applying the regulations, the possibility of obtaining information on pressures, speeds at any point of the model for each moment, the analysis of turbulence and the possibility of modeling any geometry or configuration. The present work compares the results obtained on a building, with respect to its aerodynamic behavior, from a mathematical model based on the analysis by CFD with the results obtained by applying Eurocode1, part1-4, wind actions. It is verified that the results obtained by CFD techniques suppose an optimization of the wind action that acts on the building with respect to the wind action obtained by applying the Eurocode1, part 1-4, wind actions. In order to carry out this verification, a 45m high square base truncated pyramid building has been taken. The mathematical model on CFD, based on finite volumes, has been calculated using the FLUENT commercial computer application using a scale-resolving simulation (SRS) type large eddy simulation (LES) turbulence model for an atmospheric boundary layer wind with turbulent component in the direction of the flow.

Keywords: aerodynamic, CFD, computacional fluids dynamics, computational mechanics

Procedia PDF Downloads 136
2740 Determination of Natural Logarithm of Diffusion Coefficient and Activation Energy of Thin Layer Drying Process of Ginger Rhizome Slices

Authors: Austin Ikechukwu Gbasouzor, Sam Nna Omenyi, Sabuj Malli

Abstract:

This study is an extension of the previous work done with ARS-680 Environmental Chamber. Drying is a complex operation that demands much energy and time. Drying is essentially important for preservation of ginger rhizome. Drying of ginger was modeled, and then the effective diffusion coefficient and activation energy where determined. For this purpose, the experiments were done at six levels of varied temperature ranging from (10, 20, 30, 40, 50, 60°C). The average effective diffusion coefficient for their studies samples for temperature range of 40°C to 70°C was 4.48 x10-10m²/s, 4.96 x10-10m²/s, and 5.31 x10-10m²/s for 0.8, 1.5 and 3m/s drying air velocity respectively. These values closely agreed with the values of effective diffusion coefficients obtained in these studies for the variously treated ginger rhizomes and test conducted.

Keywords: activation energy, diffusion coefficients, drying model, drying time, ginger rhizomes, moisture ratio, thin layer

Procedia PDF Downloads 163
2739 The Effect of Subsurface Dam on Saltwater Intrusion in Heterogeneous Coastal Aquifers

Authors: Antoifi Abdoulhalik, Ashraf Ahmed

Abstract:

Saltwater intrusion (SWI) in coastal aquifers has become a growing threat for many countries around the world. While various control measures have been suggested to mitigate SWI, the construction of subsurface physical barriers remains one of the most effective solutions for this problem. In this work, we used laboratory experiments and numerical simulations to investigate the effectiveness of subsurface dams in heterogeneous layered coastal aquifer with different layering patterns. Four different cases were investigated, including a homogeneous (case H), and three heterogeneous cases in which a low permeability (K) layer was set in the top part of the system (case LH), in the middle part of the system (case HLH) and the bottom part of the system (case HL). Automated image analysis technique was implemented to quantify the main SWI parameters under high spatial and temporal resolution. The method also provides transient salt concentration maps, allowing for the first time clear visualization of the spillage of saline water over the dam (advancing wedge condition) as well as the flushing of residual saline water from the freshwater area (receding wedge condition). The SEAWAT code was adopted for the numerical simulations. The results show that the presence of an overlying layer of low permeability enhanced the ability of the dam to retain the saline water. In such conditions, the rate of saline water spillage and inland extension may considerably be reduced. Conversely, the presence of an underlying low K layer led to a faster increase of saltwater volume on the seaward side of the wall, therefore considerably facilitating the spillage. The results showed that a complete removal of the residual saline water eventually occurred in all the investigated scenarios, with a rate of removal strongly affected by the hydraulic conductivity of the lower part of the aquifer. The data showed that the addition of the underlying low K layer in case HL caused the complete flushing to be almost twice longer than in the homogeneous scenario.

Keywords: heterogeneous coastal aquifers, laboratory experiments, physical barriers, seawater intrusion control

Procedia PDF Downloads 248
2738 Numerical Study of Natural Convection Heat Transfer in a Two-Dimensional Vertical Conical PartiallyAnnular Space

Authors: Belkacem Ould Said, Nourddine Retiel, Abdelilah Benazza, Mohamed Aichouni

Abstract:

In this paper, a numerical study of two-dimensional steady flow has been made of natural convection in a differentially heated vertical conical partially annular space. The heat transfer is assumed to take place by natural convection. The inner and outer surfaces of annulus are maintained at uniform wall temperature. The annulus is filled with air. The CFD FLUENT12.0 code is used to solve the governing equations of mass, momentum and energy using constant properties and the Boussinesq approximation for density variation. The streamlines and the isotherms of the fluid are presented for different annuli with different boundary conditions and Rayleigh numbers. Emphasis is placed on the influences of the height of the inner vertical cone on the flow and the temperature fields. In addition, the effects on the heat transfer are discussed for various values of physical parameters of the fluid and geometric parameters of the annulus. The heat transfer on the hot walls of the annulus is also calculated in order to make comparisons between the cylinder annulus for boundary conditions and several Rayleigh numbers. A good agreement of Nusselt number has been found between the present predictions and reference from the literature data.

Keywords: natural convection, heat transfer, numerical simulation, conical partially, annular space

Procedia PDF Downloads 308
2737 Characterization of N+C, Ti+N and Ti+C Ion Implantation into Ti6Al4V Alloy

Authors: Xingguo Feng, Hui Zhou, Kaifeng Zhang, Zhao Jiang, Hanjun Hu, Jun Zheng, Hong Hao

Abstract:

TiN and TiC films have been prepared on Ti6Al4V alloy substrates by plasma-based ion implantation. The effect of N+C and Ti+N hybrid ion implantation at 50 kV, and Ti+C hybrid ion implantation at 20 kV, 35 kV and 50 kV extraction voltages on mechanical properties at a dose of 2×10¹⁷ ions / cm² was studied. The chemical states and microstructures of the implanted samples were investigated using X-ray photoelectron (XPS), and X-ray diffraction (XRD), together with the mechanical and tribological properties of the samples were characterized using nano-indentation and ball-on-disk tribometer. It was found that the modified layer by Ti+C implanted at 50 kV was composed of mainly TiC and Ti-O bond and the layer of Ti+N implanted at 50 kV was observed to be TiN and Ti-O bond. Hardness tests have shown that the hardness values for N+C, Ti+N, and Ti+C hybrid ion implantation samples were much higher than the un-implanted ones. The results of wear tests showed that both Ti+C and Ti+N ion implanted samples had much better wear resistance compared un-implanted sample. The wear rate of Ti+C implanted at 50 kV sample was 6.7×10⁻⁵mm³ / N.m, which was decreased over one order than unimplanted samples.

Keywords: plasma ion implantation, x-ray photoelectron (XPS), hardness, wear

Procedia PDF Downloads 408
2736 Slope Stability Assessment in Metasedimentary Deposit of an Opencast Mine: The Case of the Dikuluwe-Mashamba (DIMA) Mine in the DR Congo

Authors: Dina Kon Mushid, Sage Ngoie, Tshimbalanga Madiba, Kabutakapua Kakanda

Abstract:

Slope stability assessment is still the biggest challenge in mining activities and civil engineering structures. The slope in an opencast mine frequently reaches multiple weak layers that lead to the instability of the pit. Faults and soft layers throughout the rock would increase weathering and erosion rates. Therefore, it is essential to investigate the stability of the complex strata to figure out how stable they are. In the Dikuluwe-Mashamba (DIMA) area, the lithology of the stratum is a set of metamorphic rocks whose parent rocks are sedimentary rocks with a low degree of metamorphism. Thus, due to the composition and metamorphism of the parent rock, the rock formation is different in hardness and softness, which means that when the content of dolomitic and siliceous is high, the rock is hard. It is softer when the content of argillaceous and sandy is high. Therefore, from the vertical direction, it appears as a weak and hard layer, and from the horizontal direction, it seems like a smooth and hard layer in the same rock layer. From the structural point of view, the main structures in the mining area are the Dikuluwe dipping syncline and the Mashamba dipping anticline, and the occurrence of rock formations varies greatly. During the folding process of the rock formation, the stress will concentrate on the soft layer, causing the weak layer to be broken. At the same time, the phenomenon of interlayer dislocation occurs. This article aimed to evaluate the stability of metasedimentary rocks of the Dikuluwe-Mashamba (DIMA) open-pit mine using limit equilibrium and stereographic methods Based on the presence of statistical structural planes, the stereographic projection was used to study the slope's stability and examine the discontinuity orientation data to identify failure zones along the mine. The results revealed that the slope angle is too steep, and it is easy to induce landslides. The numerical method's sensitivity analysis showed that the slope angle and groundwater significantly impact the slope safety factor. The increase in the groundwater level substantially reduces the stability of the slope. Among the factors affecting the variation in the rate of the safety factor, the bulk density of soil is greater than that of rock mass, the cohesion of soil mass is smaller than that of rock mass, and the friction angle in the rock mass is much larger than that in the soil mass. The analysis showed that the rock mass structure types are mostly scattered and fragmented; the stratum changes considerably, and the variation of rock and soil mechanics parameters is significant.

Keywords: slope stability, weak layer, safety factor, limit equilibrium method, stereography method

Procedia PDF Downloads 258
2735 Swirling Flows with Heat Transfer in a Cylindrical under Axial Magnetic Field

Authors: B. Mahfoud, R. Harouz

Abstract:

The present work examine numerically the effect of axial magnetic field on mixed convection through a cylindrical cavity, filled with a liquid metal and having a rotating top and bottom disks. Effects of Richardson number (Ri = 0, 0.5, 1, and 2) and Hartman number (Ha = 0, 5, 10, and 20) on temperature and flow fields were analyzed. The basic state of this system is steady and axisymmetric, when the counter-rotation is sufficiently large, producing a free shear layer. This shear layer is unstable and different complex flows appear successively: steady states with an azimuthal wavenumber of 1; travelling waves and steady states with an azimuthal wavenumber of 2. Mixed modes and azimuthal wavenumber of 3 are also found with increasing Hartmann number. The stability diagram (Recr-Ha) corresponding to the axisymmetric-three-dimensional transition for increasing values of the axial magnetic field is obtained.

Keywords: axisymmetric, counter-rotating, instabilities, magnetohydrodynamic, magnetic field, wavenumber

Procedia PDF Downloads 547
2734 Measure-Valued Solutions to a Class of Nonlinear Parabolic Equations with Degenerate Coercivity and Singular Initial Data

Authors: Flavia Smarrazzo

Abstract:

Initial-boundary value problems for nonlinear parabolic equations having a Radon measure as initial data have been widely investigated, looking for solutions which for positive times take values in some function space. On the other hand, if the diffusivity degenerates too fast at infinity, it is well known that function-valued solutions may not exist, singularities may persist, and it looks very natural to consider solutions which, roughly speaking, for positive times describe an orbit in the space of the finite Radon measures. In this general framework, our purpose is to introduce a concept of measure-valued solution which is consistent with respect to regularizing and smoothing approximations, in order to develop an existence theory which does not depend neither on the level of degeneracy of diffusivity at infinity nor on the choice of the initial measures. In more detail, we prove existence of suitably defined measure-valued solutions to the homogeneous Dirichlet initial-boundary value problem for a class of nonlinear parabolic equations without strong coerciveness. Moreover, we also discuss some qualitative properties of the constructed solutions concerning the evolution of their singular part, including conditions (depending both on the initial data and on the strength of degeneracy) under which the constructed solutions are in fact unction-valued or not.

Keywords: degenerate parabolic equations, measure-valued solutions, Radon measures, young measures

Procedia PDF Downloads 281
2733 Computational Investigation of Secondary Flow Losses in Linear Turbine Cascade by Modified Leading Edge Fence

Authors: K. N. Kiran, S. Anish

Abstract:

It is well known that secondary flow loses account about one third of the total loss in any axial turbine. Modern gas turbine height is smaller and have longer chord length, which might lead to increase in secondary flow. In order to improve the efficiency of the turbine, it is important to understand the behavior of secondary flow and device mechanisms to curtail these losses. The objective of the present work is to understand the effect of a stream wise end-wall fence on the aerodynamics of a linear turbine cascade. The study is carried out computationally by using commercial software ANSYS CFX. The effect of end-wall on the flow field are calculated based on RANS simulation by using SST transition turbulence model. Durham cascade which is similar to high-pressure axial flow turbine for simulation is used. The aim of fencing in blade passage is to get the maximum benefit from flow deviation and destroying the passage vortex in terms of loss reduction. It is observed that, for the present analysis, fence in the blade passage helps reducing the strength of horseshoe vortex and is capable of restraining the flow along the blade passage. Fence in the blade passage helps in reducing the under turning by 70 in comparison with base case. Fence on end-wall is effective in preventing the movement of pressure side leg of horseshoe vortex and helps in breaking the passage vortex. Computations are carried for different fence height whose curvature is different from the blade camber. The optimum fence geometry and location reduces the loss coefficient by 15.6% in comparison with base case.

Keywords: boundary layer fence, horseshoe vortex, linear cascade, passage vortex, secondary flow

Procedia PDF Downloads 348
2732 Adsorption and Desorption Behavior of Ionic and Nonionic Surfactants on Polymer Surfaces

Authors: Giulia Magi Meconi, Nicholas Ballard, José M. Asua, Ronen Zangi

Abstract:

Experimental and computational studies are combined to elucidate the adsorption proprieties of ionic and nonionic surfactants on hydrophobic polymer surface such us poly(styrene). To present these two types of surfactants, sodium dodecyl sulfate and poly(ethylene glycol)-block-poly(ethylene), commonly utilized in emulsion polymerization, are chosen. By applying quartz crystal microbalance with dissipation monitoring it is found that, at low surfactant concentrations, it is easier to desorb (as measured by rate) ionic surfactants than nonionic surfactants. From molecular dynamics simulations, the effective, attractive force of these nonionic surfactants to the surface increases with the decrease of their concentration, whereas, the ionic surfactant exhibits mildly the opposite trend. The contrasting behavior of ionic and nonionic surfactants critically relies on two observations obtained from the simulations. The first is that there is a large degree of interweavement between head and tails groups in the adsorbed layer formed by the nonionic surfactant (PEO/PE systems). The second is that water molecules penetrate this layer. In the disordered layer, these nonionic surfactants generate at the surface, only oxygens of the head groups present at the interface with the water phase or oxygens next to the penetrating waters can form hydrogen bonds. Oxygens inside this layer lose this favorable energy, with a magnitude that increases with the surfactants density at the interface. This reduced stability of the surfactants diminishes their driving force for adsorption. All that is shown to be in accordance with experimental results on the dynamics of surfactants desorption. Ionic surfactants assemble into an ordered structure and the attraction to the surface was even slightly augmented at higher surfactant concentration, in agreement with the experimentally determined adsorption isotherm. The reason these two types of surfactants behave differently is because the ionic surfactant has a small head group that is strongly hydrophilic, whereas the head groups of the nonionic surfactants are large and only weakly attracted to water.

Keywords: emulsion polymerization process, molecular dynamics simulations, polymer surface, surfactants adsorption

Procedia PDF Downloads 341
2731 Morphology, Qualitative, and Quantitative Elemental Analysis of Pheasant Eggshells in Thailand

Authors: Kalaya Sribuddhachart, Mayuree Pumipaiboon, Mayuva Youngsabanant-Areekijseree

Abstract:

The ultrastructure of 20 species of pheasant eggshells in Thailand, (Simese Fireback, Lophura diardi), (Silver Pheasant, Lophura nycthemera), (Kalij Pheasant, Lophura leucomelanos crawfurdii), (Kalij Pheasant, Lophura leucomelanos lineata), (Red Junglefowl, Gallus gallus spadiceus), (Crested Fireback, Lophura ignita rufa), (Green Peafowl, Pavo muticus), (Indian Peafowl, Pavo cristatus), (Grey Peacock Pheasant, Polyplectron bicalcaratum bicalcaratum), (Lesser Bornean Fireback, Lophura ignita ignita), (Green Junglefowl, Gallus varius), (Hume's Pheasant, Syrmaticus humiae humiae), (Himalayan Monal, Lophophorus impejanus), Golden Pheasant, Chrysolophus pictus, (Ring-Neck Pheasant, Phasianus sp.), (Reeves’s Pheasant, Syrmaticus reevesi), (Polish Chicken, Gallus sp.), (Brahma Chicken, Gallus sp.), (Yellow Golden Pheasant, Chrysolophus pictus luteus), and (Lady Amhersts Pheasant, Chrysolophus amherstiae) were studied by Secondary electron imaging (SEI) and Energy dispersive X-ray analysis (EDX) detectors of scanning electron microscope. Generally, all pheasant eggshells showed 3 layers of cuticle, palisade, and mammillary. The total thickness was ranging from 190.28±5.94-838.96±16.31µm. The palisade layer is the most thickness layer following by mammillary and cuticle layers. The palisade layer in all pheasant eggshells consisted of numerous vesicle holes that were firmly forming as network thorough the layer. The vesicle holes in all pheasant eggshells had difference porosity ranging from 0.44±0.11-0.23±0.05 µm. While the mammillary layer was the most compact layer with a variable shape (broad-base V and U-shape) connect to shell membrane. Elemental analysis by of 20 specie eggshells showed 9 apparent elements including carbon (C), oxygen (O), calcium (Ca), phosphorous (P), sulfur (S), magnesium (Mg), silicon (Si), aluminum (Al), and copper (Cu) at the percentage of 28.90- 8.33%, 60.64-27.61%, 55.30-14.49%, 1.97-0.03%, 0.08-0.03%, 0.50-0.16%, 0.30-0.04%, 0.06-0.02%, and 2.67-1.73%, respectively. It was found that Ca, C, and O showed highest elemental compositions, which essential for pheasant embryonic development, mainly presented as composited structure of calcium carbonate (CaCO3) more than 97%. Meanwhile, Mg, S, Si, Al, and P were major inorganic constituents of the eggshells which directly related to an increase of the shell hardness. Finally, the percentage of heavy metal copper (Cu) has been observed in 4 eggshell species. There are Golden Pheasant (2.67±0.16%), Indian Peafowl (2.61±0.13%), Green Peafowl (1.97±0.74%), and Silver Pheasant (1.73±0.11%), respectively. A non-significant difference was found in the percentages of 9 elements in all pheasant eggshells. This study is useful to provide the information of biology and taxonomic of pheasant study in Thailand for conservation.

Keywords: pheasants eggshells, secondary electron imaging (SEI) and energy dispersive X-ray analysis (EDX), morphology, Thailand

Procedia PDF Downloads 234
2730 Green Prossesing of PS/Nanoparticle Fibers and Studying Morphology and Properties

Authors: M. Kheirandish, S. Borhani

Abstract:

In this experiment Polystyrene/Zinc-oxide (PS/ZnO) nanocomposite fibers were produced by electrospinning technique using limonene as a green solvent. First, the morphology of electrospun pure polystyrene (PS) and PS/ZnO nanocomposite fibers investigated by SEM. Results showed the PS fiber diameter decreased by increasing concentration of Zinc Oxide nanoparticles (ZnO NPs). Thermo Gravimetric Analysis (TGA) results showed thermal stability of nanocomposites increased by increasing ZnO NPs in PS electrospun fibers. Considering Differential Scanning Calorimeter (DSC) thermograms for electrospun PS fibers indicated that introduction of ZnO NPs into fibers affects the glass transition temperature (Tg) by reducing it. Also, UV protection properties of nanocomposite fibers were increased by increasing ZnO concentration. Evaluating the effect of metal oxide NPs amount on mechanical properties of electrospun layer showed that tensile strength and elasticity modulus of the electrospun layer of PS increased by addition of ZnO NPs. X-ray diffraction (XRD) pattern of nanopcomposite fibers confirmed the presence of NPs in the samples.

Keywords: electrospininng, nanoparticle, polystyrene, ZnO

Procedia PDF Downloads 237
2729 Investigation on Properties and Applications of Graphene as Single Layer of Carbon Atoms

Authors: Ali Ashjaran

Abstract:

Graphene is undoubtedly emerging as one of the most promising materials because of its unique combination of superb properties, which opens a way for its exploitation in a wide spectrum of applications ranging from electronics to optics, sensors, and biodevices. In addition, Graphene-based nanomaterials have many promising applications in energy-related areas. Graphene a single layer of carbon atoms, combines several exceptional properties, which makes it uniquely suited as a coating material: transparency, excellent mechanical stability, low chemical reactivity, Optical, impermeability to most gases, flexibility, and very high thermal and electrical conductivity. Graphene is a material that can be utilized in numerous disciplines including, but not limited to: bioengineering, composite materials, energy technology and nanotechnology, biological engineering, optical electronics, ultrafiltration, photovoltaic cells. This review aims to provide an overiew of graphene structure, properties and some applications.

Keywords: graphene, carbon, anti corrosion, optical and electrical properties, sensors

Procedia PDF Downloads 273
2728 Improved Non-Ideal Effects in AlGaN/GaN-Based Ion-Sensitive Field-Effect Transistors

Authors: Wei-Chou Hsu, Ching-Sung Lee, Han-Yin Liu

Abstract:

This work uses H2O2 oxidation technique to improve the pH sensitivity of the AlGaN/GaN-based ion-sensitive field-effect transistors (ISFETs). 10-nm-thick Al2O3 was grown on the surface of the AlGaN. It was found that the pH sensitivity was improved from 41.6 mV/pH to 55.2 mV/pH. Since the H2O2-grown Al2O3 was served as a passivation layer and the problem of Fermi-level pinning was suppressed for the ISFET with the H2O2 oxidation process. Hysteresis effect in the ISFET with the H2O2 treatment also became insignificant. The hysteresis effect was observed by dipping the ISFETs into different pH value solutions and comparing the voltage difference between the initial and final conditions. The hysteresis voltage (Vhys) of the ISFET with the H2O2 oxidation process was improved from 8.7 mV to 4.8 mV. The hysteresis effect is related to the buried binding sites which are related to the material defects like threading dislocations in the AlGaN/GaN heterostructure which was grown by the hetero-epitaxy technique. The H2O2-grown Al2O3 passivate these material defects and the Al2O3 has less material defects. The long-term stability of the ISFET is estimated by the drift effect measurement. The drift measurement was conducted by dipping the ISFETs into a specific pH value solution for 12 hours and the ISFETs were operating at a specific quiescent point. The drift rate is estimated by the drift voltage divided by the total measuring time. It was found that the drift rate of the ISFET was improved from 10.1 mV/hour to 1.91 mV/hour in the pH 7 solution, from 14.06 mV/hour to 6.38 mV/pH in the pH 2 solution, and from 12.8 mV/hour to 5.48 mV/hour in the pH 12 solution. The drift effect results from the capacitance variation in the electric double layer. The H2O2-grown Al2O3 provides an additional capacitance connection in series with the electric double layer. Therefore, the capacitance variation of the electric double layer became insignificant. Generally, the H2O2 oxidation process is a simple, fast, and cost-effective method for the AlGaN/GaN-based ISFET. Furthermore, the performance of the AlGaN/GaN ISFET was improved effectively and the non-ideal effects were suppressed.

Keywords: AlGaN/GaN, Al2O3, hysteresis effect, drift effect, reliability, passivation, pH sensors

Procedia PDF Downloads 323
2727 Enhanced Solar-Driven Evaporation Process via F-Mwcnts/Pvdf Photothermal Membrane for Forward Osmosis Draw Solution Recovery

Authors: Ayat N. El-Shazly, Dina Magdy Abdo, Hamdy Maamoun Abdel-Ghafar, Xiangju Song, Heqing Jiang

Abstract:

Product water recovery and draw solution (DS) reuse is the most energy-intensive stage in forwarding osmosis (FO) technology. Sucrose solution is the most suitable DS for FO application in food and beverages. However, sucrose DS recovery by conventional pressure-driven or thermal-driven concentration techniques consumes high energy. Herein, we developed a spontaneous and sustainable solar-driven evaporation process based on a photothermal membrane for the concentration and recovery of sucrose solution. The photothermal membrane is composed of multi-walled carbon nanotubes (f-MWCNTs)photothermal layer on a hydrophilic polyvinylidene fluoride (PVDF) substrate. The f-MWCNTs photothermal layer with a rough surface and interconnected network structures not only improves the light-harvesting and light-to-heat conversion performance but also facilitates the transport of water molecules. The hydrophilic PVDF substrate can promote the rapid transport of water for adequate water supply to the photothermal layer. As a result, the optimized f-MWCNTs/PVDF photothermal membrane exhibits an excellent light absorption of 95%, and a high surface temperature of 74 °C at 1 kW m−2 . Besides, it realizes an evaporation rate of 1.17 kg m−2 h−1 for 5% (w/v) of sucrose solution, which is about 5 times higher than that of the natural evaporation. The designed photothermal evaporation process is capable of concentrating sucrose solution efficiently from 5% to 75% (w/v), which has great potential in FO process and juice concentration.

Keywords: solar, pothothermal, membrane, MWCNT

Procedia PDF Downloads 98
2726 Effect of Surface Treatments on the Cohesive Response of Nylon 6/silica Interfaces

Authors: S. Arabnejad, D. W. C. Cheong, H. Chaobin, V. P. W. Shim

Abstract:

Debonding is the one of the fundamental damage mechanisms in particle field composites. This phenomenon gains more importance in nano composites because of the extensive interfacial region present in these materials. Understanding the debonding mechanism accurately, can help in understanding and predicting the response of nano composites as the interface deteriorates. The small length scale of the phenomenon makes the experimental characterization complicated and the results of it, far from real physical behavior. In this study the damage process in nylon-6/silica interface is examined through Molecular Dynamics (MD) modeling and simulations. The silica has been modeled with three forms of surfaces – without any surface treatment, with the surface treatment of 3-aminopropyltriethoxysilane (APTES) and with Hexamethyldisilazane (HMDZ) surface treatment. The APTES surface modification used to create functional groups on the silica surface, reacts and form covalent bonds with nylon 6 chains while the HMDZ surface treatment only interacts with both particle and polymer by non-bond interaction. The MD model in this study uses a PCFF force field. The atomic model is generated in a periodic box with a layer of vacuum on top of the polymer layer. This layer of vacuum is large enough that assures us from not having any interaction between particle and substrate after debonding. Results show that each of these three models show a different traction separation behavior. However, all of them show an almost bilinear traction separation behavior. The study also reveals a strong correlation between the length of APTES surface treatment and the cohesive strength of the interface.

Keywords: debonding, surface treatment, cohesive response, separation behaviour

Procedia PDF Downloads 459
2725 Optimal Power Exchange of Multi-Microgrids with Hierarchical Coordination

Authors: Beom-Ryeol Choi, Won-Poong Lee, Jin-Young Choi, Young-Hak Shin, Dong-Jun Won

Abstract:

A Microgrid (MG) has a major role in power system. There are numerous benefits, such as ability to reduce environmental impact and enhance the reliability of a power system. Hence, Multi-MG (MMG) consisted of multiple MGs is being studied intensively. This paper proposes the optimal power exchange of MMG with hierarchical coordination. The whole system architecture consists of two layers: 1) upper layer including MG of MG Center (MoMC) which is in charge of the overall management and coordination and 2) lower layer comprised of several Microgrid-Energy Management Systems (MG-EMSs) which make a decision for own schedule. In order to accomplish the optimal power exchange, the proposed coordination algorithm is applied to MMG system. The objective of this process is to achieve optimal operation for improving economics under the grid-connected operation. The simulation results show how the output of each MG can be changed through coordination algorithm.

Keywords: microgrids, multi-microgrids, power exchange, hierarchical coordination

Procedia PDF Downloads 370
2724 Speedup Breadth-First Search by Graph Ordering

Authors: Qiuyi Lyu, Bin Gong

Abstract:

Breadth-First Search(BFS) is a core graph algorithm that is widely used for graph analysis. As it is frequently used in many graph applications, improve the BFS performance is essential. In this paper, we present a graph ordering method that could reorder the graph nodes to achieve better data locality, thus, improving the BFS performance. Our method is based on an observation that the sibling relationships will dominate the cache access pattern during the BFS traversal. Therefore, we propose a frequency-based model to construct the graph order. First, we optimize the graph order according to the nodes’ visit frequency. Nodes with high visit frequency will be processed in priority. Second, we try to maximize the child nodes overlap layer by layer. As it is proved to be NP-hard, we propose a heuristic method that could greatly reduce the preprocessing overheads. We conduct extensive experiments on 16 real-world datasets. The result shows that our method could achieve comparable performance with the state-of-the-art methods while the graph ordering overheads are only about 1/15.

Keywords: breadth-first search, BFS, graph ordering, graph algorithm

Procedia PDF Downloads 136
2723 Performance Evaluation of Filtration System for Groundwater Recharging Well in the Presence of Medium Sand-Mixed Storm Water

Authors: Krishna Kumar Singh, Praveen Jain

Abstract:

The collection of storm water runoff and forcing it into the groundwater is the need of the hour to sustain the ground water table. However, the runoff entraps various types of sediments and other floating objects whose removal are essential to avoid pollution of ground water and blocking of pores of aquifer. However, it requires regular cleaning and maintenance due to the problem of clogging. To evaluate the performance of filter system consisting of coarse sand (CS), gravel (G) and pebble (P) layers, a laboratory experiment was conducted in a rectangular column. The effect of variable thickness of CS, G and P layers of the filtration unit of the recharge shaft on the recharge rate and the sediment concentration of effluent water were evaluated. Medium sand (MS) of three particle sizes, viz. 0.150–0.300 mm (T1), 0.300–0.425 mm (T2) and 0.425–0.600 mm of thickness 25 cm, 30 cm, and 35 cm respectively in the top layer of the filter system and having seven influent sediment concentrations of 250–3,000 mg/l were used for the experimental study. The performance was evaluated in terms of recharge rates and clogging time. The results indicated that 100 % suspended solids were entrapped in the upper 10 cm layer of MS, the recharge rates declined sharply for influent concentrations of more than 1,000 mg/l. All treatments with a higher thickness of MS media indicated recharge rate slightly more than that of all treatment with a lower thickness of MS media respectively. The performance of storm water infiltration systems was highly dependent on the formation of a clogging layer at the filter. An empirical relationship has been derived between recharge rates, inflow sediment load, size of MS and thickness of MS with using MLR.

Keywords: groundwater, medium sand-mixed storm water filter, inflow sediment load

Procedia PDF Downloads 389
2722 Temperature Distribution for Asphalt Concrete-Concrete Composite Pavement

Authors: Tetsya Sok, Seong Jae Hong, Young Kyu Kim, Seung Woo Lee

Abstract:

The temperature distribution for asphalt concrete (AC)-Concrete composite pavement is one of main influencing factor that affects to performance life of pavement. The temperature gradient in concrete slab underneath the AC layer results the critical curling stress and lead to causes de-bonding of AC-Concrete interface. These stresses, when enhanced by repetitive axial loadings, also contribute to the fatigue damage and eventual crack development within the slab. Moreover, the temperature change within concrete slab extremely causes the slab contracts and expands that significantly induces reflective cracking in AC layer. In this paper, the numerical prediction of pavement temperature was investigated using one-dimensional finite different method (FDM) in fully explicit scheme. The numerical predicted model provides a fundamental and clear understanding of heat energy balance including incoming and outgoing thermal energies in addition to dissipated heat in the system. By using the reliable meteorological data for daily air temperature, solar radiation, wind speech and variable pavement surface properties, the predicted pavement temperature profile was validated with the field measured data. Additionally, the effects of AC thickness and daily air temperature on the temperature profile in underlying concrete were also investigated. Based on obtained results, the numerical predicted temperature of AC-Concrete composite pavement using FDM provided a good accuracy compared to field measured data and thicker AC layer significantly insulates the temperature distribution in underlying concrete slab.

Keywords: asphalt concrete, finite different method (FDM), curling effect, heat transfer, solar radiation

Procedia PDF Downloads 267
2721 A TiO₂-Based Memristor Reliable for Neuromorphic Computing

Authors: X. S. Wu, H. Jia, P. H. Qian, Z. Zhang, H. L. Cai, F. M. Zhang

Abstract:

A bipolar resistance switching behaviour is detected for a Ti/TiO2-x/Au memristor device, which is fabricated by a masked designed magnetic sputtering. The current dependence of voltage indicates the curve changes slowly and continuously. When voltage pulses are applied to the device, the set and reset processes maintains linearity, which is used to simulate the synapses. We argue that the conduction mechanism of the device is from the oxygen vacancy channel model, and the resistance of the device change slowly due to the reaction between the titanium electrode and the intermediate layer and the existence of a large number of oxygen vacancies in the intermediate layer. Then, Hopfield neural network is constructed to simulate the behaviour of neural network in image processing, and the accuracy rate is more than 98%. This shows that titanium dioxide memristor has a broad application prospect in high performance neural network simulation.

Keywords: memristor fabrication, neuromorphic computing, bionic synaptic application, TiO₂-based

Procedia PDF Downloads 87
2720 The Influence of Microscopic Features on the Self-Cleaning Ability of Developed 3D Printed Fabric-Like Structures Using Different Printing Parameters

Authors: Ayat Adnan Atwah, Muhammad A. Khan

Abstract:

Self-cleaning surfaces are getting significant attention in industrial fields. Especially for textile fabrics, it is observed that self-cleaning textile fabric surfaces are created by manipulating the surface features with the help of coatings and nanoparticles, which are considered costly and far more complicated. However, controlling the fabrication parameters of textile fabrics at the microscopic level by exploring the potential for self-cleaning has not been addressed. This study aimed to establish the context of self-cleaning textile fabrics by controlling the fabrication parameters of the textile fabric at the microscopic level. Therefore, 3D-printed textile fabrics were fabricated using the low-cost fused filament fabrication (FFF) technique. The printing parameters, such as orientation angle (O), layer height (LH), and extruder width (EW), were used to control the microscopic features of the printed fabrics. The combination of three printing parameters was created to provide the best self-cleaning textile fabric surface: (LH) (0.15, 0.13, 0.10 mm) and (EW) (0.5, 0.4, 0.3 mm) along with two different (O) of (45º and 90º). Three different thermoplastic flexible filament materials were used: (TPU 98A), (TPE felaflex), and (TPC flex45). The printing parameters were optimised to get the optimum self-cleaning ability of the printed specimens. Furthermore, the impact of these characteristics on mechanical strength at the fabric-woven structure level was investigated. The study revealed that the printing parameters significantly affect the self-cleaning properties after adjusting the selected combination of layer height, extruder width, and printing orientation. A linear regression model was effectively developed to demonstrate the association between 3D printing parameters (layer height, extruder width, and orientation). According to the experimental results, (TPE felaflex) has a better self-cleaning ability than the other two materials.

Keywords: 3D printing, self-cleaning fabric, microscopic features, printing parameters, fabrication

Procedia PDF Downloads 87
2719 Dielectric Behavior of 2D Layered Insulator Hexagonal Boron Nitride

Authors: Nikhil Jain, Yang Xu, Bin Yu

Abstract:

Hexagonal boron nitride (h-BN) has been used as a substrate and gate dielectric for graphene field effect transistors (GFETs). Using a graphene/h-BN/TiN (channel/dielectric/gate) stack, key material properties of h-BN were investigated i.e. dielectric strength and tunneling behavior. Work function difference between graphene and TiN results in spontaneous p-doping of graphene through a multi-layer h-BN flake. However, at high levels of current stress, n-doping of graphene is observed, possibly due to the charge transfer across the thin h-BN multi layer. Neither Direct Tunneling (DT) nor Fowler-Nordheim Tunneling (FNT) was observed in TiN/h-BN/Au hetero structures with h-BN showing two distinct volatile conduction states before breakdown. Hexagonal boron nitride emerges as a material of choice for gate dielectrics in GFETs because of robust dielectric properties and high tunneling barrier.

Keywords: graphene, transistors, conduction, hexagonal boron nitride, dielectric strength, tunneling

Procedia PDF Downloads 361
2718 Evaluation of an Organic Coating Applied on Algerian Oil Tanker in Sea water by EIS

Authors: Nadia Hammouda, Kamel Belmokre

Abstract:

Organic coatings are widely employed in the corrosion protection of most metal surfaces, particularly steel. They provide a barrier against corrosive species present in the environment, due to their high resistance to oxygen, water and ions transport. This study focuses on the evaluation of corrosion protection performance of epoxy paint on the carbon steel surface in sea water by Electrochemical Impedance Spectroscopy (EIS). The electrochemical behavior of painted surface was estimated by EIS parameters that contained paint film resistance, paint film capacitance and double layer capacitance. On the basis of calculation using EIS spectrums it was observed that pore resistance (Rpore) decreased with the appearance of doubled layer capacitance (Cdl) due to the electrolyte penetration through the film. This was further confirmed by the decrease of diffusion resistance (Rd) which was also the indicator of the deterioration of paint film protectiveness.

Keywords: epoxy paints, carbon steel, electrochemical impedance spectroscopy, corrosion mechanisms, seawater

Procedia PDF Downloads 415
2717 Image Processing on Geosynthetic Reinforced Layers to Evaluate Shear Strength and Variations of the Strain Profiles

Authors: S. K. Khosrowshahi, E. Güler

Abstract:

This study investigates the reinforcement function of geosynthetics on the shear strength and strain profile of sand. Conducting a series of simple shear tests, the shearing behavior of the samples under static and cyclic loads was evaluated. Three different types of geosynthetics including geotextile and geonets were used as the reinforcement materials. An image processing analysis based on the optical flow method was performed to measure the lateral displacements and estimate the shear strains. It is shown that besides improving the shear strength, the geosynthetic reinforcement leads a remarkable reduction on the shear strains. The improved layer reduces the required thickness of the soil layer to resist against shear stresses. Consequently, the geosynthetic reinforcement can be considered as a proper approach for the sustainable designs, especially in the projects with huge amount of geotechnical applications like subgrade of the pavements, roadways, and railways.

Keywords: image processing, soil reinforcement, geosynthetics, simple shear test, shear strain profile

Procedia PDF Downloads 218
2716 A Finite Element/Finite Volume Method for Dam-Break Flows over Deformable Beds

Authors: Alia Alghosoun, Ashraf Osman, Mohammed Seaid

Abstract:

A coupled two-layer finite volume/finite element method was proposed for solving dam-break flow problem over deformable beds. The governing equations consist of the well-balanced two-layer shallow water equations for the water flow and a linear elastic model for the bed deformations. Deformations in the topography can be caused by a brutal localized force or simply by a class of sliding displacements on the bathymetry. This deformation in the bed is a source of perturbations, on the water surface generating water waves which propagate with different amplitudes and frequencies. Coupling conditions at the interface are also investigated in the current study and two mesh procedure is proposed for the transfer of information through the interface. In the present work a new procedure is implemented at the soil-water interface using the finite element and two-layer finite volume meshes with a conservative distribution of the forces at their intersections. The finite element method employs quadratic elements in an unstructured triangular mesh and the finite volume method uses the Rusanove to reconstruct the numerical fluxes. The numerical coupled method is highly efficient, accurate, well balanced, and it can handle complex geometries as well as rapidly varying flows. Numerical results are presented for several test examples of dam-break flows over deformable beds. Mesh convergence study is performed for both methods, the overall model provides new insight into the problems at minimal computational cost.

Keywords: dam-break flows, deformable beds, finite element method, finite volume method, hybrid techniques, linear elasticity, shallow water equations

Procedia PDF Downloads 178
2715 Influence of Composite Adherents Properties on the Dynamic Behavior of Double Lap Bonded Joint

Authors: P. Saleh, G. Challita, R. Hazimeh, K. Khalil

Abstract:

In this paper 3D FEM analysis was carried out on double lap bonded joint with composite adherents subjected to dynamic shear. The adherents are made of Carbon/Epoxy while the adhesive is epoxy Araldite 2031. The maximum average shear stress and the stress homogeneity in the adhesive layer were examined. Three fibers textures were considered: UD; 2.5D and 3D with same volume fiber then a parametric study based on changing the thickness and the type of fibers texture in 2.5D was accomplished. Moreover, adherents’ dissimilarity was also investigated. It was found that the main parameter influencing the behavior is the longitudinal stiffness of the adherents. An increase in the adherents’ longitudinal stiffness induces an increase in the maximum average shear stress in the adhesive layer and an improvement in the shear stress homogeneity within the joint. No remarkable improvement was observed for dissimilar adherents.

Keywords: adhesive, composite adherents, impact shear, finite element

Procedia PDF Downloads 441