Search results for: atmospheric deposition
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1476

Search results for: atmospheric deposition

606 Total-Reflection X-Ray Spectroscopy as a Tool for Element Screening in Food Samples

Authors: Hagen Stosnach

Abstract:

The analytical demands on modern instruments for element analysis in food samples include the analysis of major, trace and ultra-trace essential elements as well as potentially toxic trace elements. In this study total reflection, X-ray fluorescence analysis (TXRF) is presented as an analytical technique, which meets the requirements, defined by the Association of Official Agricultural Chemists (AOAC) regarding the limit of quantification, repeatability, reproducibility and recovery for most of the target elements. The advantages of TXRF are the small sample mass required, the broad linear range from µg/kg up to wt.-% values, no consumption of gases or cooling water, and the flexible and easy sample preparation. Liquid samples like alcoholic or non-alcoholic beverages can be analyzed without any preparation. For solid food samples, the most common sample pre-treatment methods are mineralization, direct deposition of the sample onto the reflector without/with minimal treatment, mainly as solid suspensions or after extraction. The main disadvantages are due to the possible peaks overlapping, which may lower the accuracy of quantitative analysis and the limit in the element identification. This analytical technique will be presented by several application examples, covering a broad range of liquid and solid food types.

Keywords: essential elements, toxic metals, XRF, spectroscopy

Procedia PDF Downloads 125
605 Superficial Metrology of Organometallic Chemical Vapour Deposited Undoped ZnO Thin Films on Stainless Steel and Soda-Lime Glass Substrates

Authors: Uchenna Sydney Mbamara, Bolu Olofinjana, Ezekiel Oladele B. Ajayi

Abstract:

Elaborate surface metrology of undoped ZnO thin films, deposited by organometallic chemical vapour deposition (OMCVD) technique at different precursor flow rates, was carried out. Dicarbomethyl-zinc precursor was used. The films were deposited on AISI304L steel and soda-lime glass substrates. Ultraviolet-visible-near-infrared (UV-Vis-NIR) spectroscopy showed that all the thin films were over 80% transparent, with an average bandgap of 3.39 eV, X-ray diffraction (XRD) results showed that the thin films were crystalline with a hexagonal structure, while Rutherford backscattering spectroscopy (RBS) results identified the elements present in each thin film as zinc and oxygen in the ratio of 1:1. Microscope and contactless profilometer results gave images with characteristic colours. The profilometer also gave the surface roughness data in both 2D and 3D. The asperity distribution of the thin film surfaces was Gaussian, while the average fractal dimension Da was in the range of 2.5 ≤ Da. The metrology proved the surfaces good for ‘touch electronics’ and coating mechanical parts for low friction.

Keywords: undoped ZnO, precursor flow rate, OMCVD, thin films, surface texture, tribology

Procedia PDF Downloads 53
604 Silymarin Loaded Mesoporous Silica Nanoparticles: Preparation, Optimization, Pharmacodynamic and Oral Multi-Dose Safety Assessment

Authors: Sarah Nasr, Maha M. A. Nasra, Ossama Y. Abdallah

Abstract:

The present work aimed to prepare Silymarin loaded MCM-41 type mesoporous silica nanoparticles (MSNs) and to assess the system’s solubility enhancement ability on the pharmacodynamic performance of Silymarin as a hepatoprotective agent. MSNs prepared by soft-templating technique, were loaded with Silymarin, characterized for particle size, zeta potential, surface properties, DSC and XRPD. DSC and specific surface area data confirmed deposition of Silymarin in an amorphous state in MSNs’ pores. In-vitro drug dissolution testing displayed enhanced dissolution rate of Silymarin upon loading on MSNs. High dose Acetaminophen was then used to inflict hepatic injury upon albino male Wistar rats simultaneously receiving either free Silymarin, Silymarin loaded MSNs or blank MSNs. Plasma AST, ALT, albumin and total protein and liver homogenate content of TBARs or LDH as measures of antioxidant drug action were assessed for all animal groups. Results showed a significant superiority of Silymarin loaded MSNs to free drug in almost all parameters. Meanwhile prolonged administration of blank MSNs had no evident toxicity on rats.

Keywords: mesoporous silica nanoparticles, safety, solubility enhancement, silymarin

Procedia PDF Downloads 321
603 Comparative Study of Essential Oils Extracted from Algerian Citrus fruits Using Microwaves and Hydrodistillation

Authors: Ferhat Mohamed Amine, Boukhatem Mohamed Nadjib, Chemat Farid

Abstract:

Solvent-free-microwave-extraction (SFME) is a combination of microwave heating and distillation, performed at atmospheric pressure without added any solvent or water. Isolation and concentration of volatile compounds are performed by a single stage. SFME extraction of orange essential oil was studied using fresh orange peel from Valencia late cultivar oranges as the raw material. SFME has been compared with a conventional technique, which used a Clevenger apparatus with hydro-distillation (HD). SFME and HD were compared in term of extraction time, yields, chemical composition and quality of the essential oil, efficiency and costs of the process. Extraction of essential oils from orange peels with SFME was better in terms of energy saving, extraction time (30 min versus 3 h), oxygenated fraction (11.7% versus 7.9%), product yield (0.42% versus 0.39%) and product quality. Orange peels treated by SFME and HD were observed by scanning electronic microscopy (SEM). Micrographs provide evidence of more rapid opening of essential oil glands treated by SFME, in contrast to conventional hydro-distillation.

Keywords: hydro-distillation, essential oil, microwave, orange peel, solvent free microwave, extraction SFME

Procedia PDF Downloads 472
602 Heterogeneous Catalytic Hydroesterification of Soybean Oil to Develop a Biodiesel Formation

Authors: O. Mowla, E. Kennedy, M. Stockenhuber

Abstract:

Finding alternative renewable resources of energy has attracted the attentions in consequence of limitation of the traditional fossil fuel resources, increasing of crude oil price and environmental concern over greenhouse gas emissions. Biodiesel (or Fatty Acid Methyl Esters (FAME)), an alternative energy source, is synthesised from renewable sources such as vegetable oils and animal fats and can be produced from waste oils. FAME can be produced via hydroesterification of oils. The process involves two stages. In the first stage of this process, fatty acids and glycerol are being obtained by hydrolysis of the feed stock oil. In the second stage, the recovered fatty acids are then esterified with an alcohol to methyl esters. The presence of a catalyst accelerates the rate of the hydroesterification reaction of oils. The overarching aim of this study is to find the effect of using zeolite as a catalyst in the heterogeneous hydroesterification of soybean oil. Both stages of the catalytic hydroesterification of soybean oil had been conducted at atmospheric and high-pressure conditions using reflux glass reactor and Parr reactor, respectively. The effect of operating parameters such as temperature and reaction time on the overall yield of biodiesel formation was also investigated.

Keywords: biodiesel, heterogeneous catalytic hydroesterification, soybean oil, zeolite

Procedia PDF Downloads 419
601 Long Term Changes of Water Quality in Latvia

Authors: Maris Klavins, Valery Rodinov

Abstract:

The aim of this study was to analyze long term changes of surface water quality in Latvia, spatial variability of water chemical composition, possible impacts of different pollution sources as well as to analyze the measures to protect national water resources - river basin management. Within this study, the concentrations of major water ingredients and microelements in major rivers and lakes of Latvia have been determined. Metal concentrations in river and lake waters were compared with water chemical composition. The mean concentrations of trace metals in inland waters of Latvia are appreciably lower than the estimated world averages for river waters and close to or lower than background values, unless regional impacts determined by local geochemistry. This may be explained by a comparatively lower level of anthropogenic load. In the same time in several places, direct anthropogenic impacts are evident, regarding influences of point sources both transboundary transport impacts. Also, different processes related to pollution of surface waters in Latvia have been analyzed. At first the analysis of changes and composition of pollutant emissions in Latvia has been realized, and the obtained results were compared with actual composition of atmospheric precipitation and their changes in time.

Keywords: water quality, trend analysis, pollution, human impact

Procedia PDF Downloads 259
600 Study of Sub-Surface Flow in an Unconfined Carbonate Aquifer in a Tropical Karst Area in Indonesia: A Modeling Approach Using Finite Difference Groundwater Model

Authors: Dua K. S. Y. Klaas, Monzur A. Imteaz, Ika Sudiayem, Elkan M. E. Klaas, Eldav C. M. Klaas

Abstract:

Due to its porous nature, karst terrains – geomorphologically developed from dissolved formations, is vulnerable to water shortage and deteriorated water quality. Therefore, a solid comprehension on sub-surface flow of karst landscape is essential to assess the long-term availability of groundwater resources. In this paper, a single-continuum model using a finite difference model, MODLFOW, was constructed to represent an unconfined carbonate aquifer in a tropical karst island of Rote in Indonesia. The model, spatially discretized in 20 x 20 m grid cells, was calibrated and validated using available groundwater level and atmospheric variables. In the calibration and validation steps, Parameter Estimation (PEST) and geostatistical pilot point methods were employed to estimate hydraulic conductivity and specific yield values. The results show that the model is able to represent the sub-surface flow indicated by good model performances both in calibration and validation steps. The final model can be used as a robust representation of the system for future study on climate and land use scenarios.

Keywords: carbonate aquifer, karst, sub-surface flow, groundwater model

Procedia PDF Downloads 140
599 Evaluation of High Temperature Wear Performance of as Cladded and Tig Re-Melting Stellite 6 Cladded Overlay on Aisi-304L Using SMAW Process

Authors: Manjit Singha, Sandeep Singh Sandhu, A. S. Shahi

Abstract:

Stellite 6 is cobalt based superalloy used for protective coatings. It is used to improve the wear performance of stainless steel engineering components subjected to harsh environmental conditions. This paper reports the high temperature wear analysis of satellite 6 cladded on AISI 304 L substrate using SMAW process. Bead on plate experiment was carried out by varying current and electrode manipulation techniques to optimize the dilution and hardness. 80 Amp current and weaving technique was found to be the optimum set of parameters for overlaying which were further used for multipass multilayer cladding on two plates of AISI 304 L substrate. On the first plate, seven layers seven passes of stellite 6 was overlaid which was used in as cladded form and the second plate was overlaid with five layers five passes of satellite 6 with further TIG remelting. The wear performance was examined for normal temperature environmental condition and harsh temperature environmental condition. The satellite 6 coating with TIG remelting was found to be better in both the conditions even with lesser metal deposition due to its finer grain structure.

Keywords: surfacing, stellite 6, dilution, overlay, SMAW, high-temperature frictional wear, micro-structure, micro-hardness

Procedia PDF Downloads 283
598 Investigation of Glacier Activity Using Optical and Radar Data in Zardkooh

Authors: Mehrnoosh Ghadimi, Golnoush Ghadimi

Abstract:

Precise monitoring of glacier velocity is critical in determining glacier-related hazards. Zardkooh Mountain was studied in terms of glacial activity rate in Zagros Mountainous region in Iran. In this study, we assessed the ability of optical and radar imagery to derive glacier-surface velocities in mountainous terrain. We processed Landsat 8 for optical data and Sentinel-1a for radar data. We used methods that are commonly used to measure glacier surface movements, such as cross correlation of optical and radar satellite images, SAR tracking techniques, and multiple aperture InSAR (MAI). We also assessed time series glacier surface displacement using our modified method, Enhanced Small Baseline Subset (ESBAS). The ESBAS has been implemented in StaMPS software, with several aspects of the processing chain modified, including filtering prior to phase unwrapping, topographic correction within three-dimensional phase unwrapping, reducing atmospheric noise, and removing the ramp caused by ionosphere turbulence and/or orbit errors. Our findings indicate an average surface velocity rate of 32 mm/yr in the Zardkooh mountainous areas.

Keywords: active rock glaciers, landsat 8, sentinel-1a, zagros mountainous region

Procedia PDF Downloads 67
597 The Effects of Different Parameters of Wood Floating Debris on Scour Rate Around Bridge Piers

Authors: Muhanad Al-Jubouri

Abstract:

A local scour is the most important of the several scours impacting bridge performance and security. Even though scour is widespread in bridges, especially during flood seasons, the experimental tests could not be applied to many standard highway bridges. A computational fluid dynamics numerical model was used to solve the problem of calculating local scouring and deposition for non-cohesive silt and clear water conditions near single and double cylindrical piers with the effect of floating debris. When FLOW-3D software is employed with the Rang turbulence model, the Nilsson bed-load transfer equation and fine mesh size are considered. The numerical findings of single cylindrical piers correspond pretty well with the physical model's results. Furthermore, after parameter effectiveness investigates the range of outcomes based on predicted user inputs such as the bed-load equation, mesh cell size, and turbulence model, the final numerical predictions are compared to experimental data. When the findings are compared, the error rate for the deepest point of the scour is equivalent to 3.8% for the single pier example.

Keywords: local scouring, non-cohesive, clear water, computational fluid dynamics, turbulence model, bed-load equation, debris

Procedia PDF Downloads 61
596 Effects of Cerium Oxide Nanoparticle Addition in Diesel and Diesel-Biodiesel Blends on the Performance Characteristics of a CI Engine

Authors: Abbas Ali Taghipoor Bafghi, Hosein Bakhoda, Fateme Khodaei Chegeni

Abstract:

An experimental investigation is carried out to establish the performance characteristics of a compression ignition engine while using cerium oxide nano particles as additive in neat diesel and diesel-bio diesel blends. In the first phase of the experiments, stability of neat diesel and diesel-bio diesel fuel blends with the addition of cerium oxide nano particles are analyzed. After series of experiments, it is found that the blends subjected to high speed blending followed by ultrasonic bath stabilization improves the stability.In the second phase, performance characteristics are studied using the stable fuel blends in a single cylinder four stroke engine coupled with an electrical dynamo meter and a data acquisition system. The cerium oxide acts as an oxygen donating catalyst and provides oxygen for combustion. The activation energy of cerium oxide acts to burn off carbon deposits within the engine cylinder at the wall temperature and prevents the deposition of non-polar compounds on the cylinder wall results reduction in HC emissions. The tests revealed that cerium oxide nano particles can be used as additive in diesel and diesel-bio diesel blends to improve complete combustion of the fuel significantly.

Keywords: engine, cerium oxide, biodiesel, deposit

Procedia PDF Downloads 328
595 Electrochemical Reduction of Carbon-dioxide Using Metal Nano-particles Supported on Nano-Materials

Authors: Mulatu Kassie Birhanu

Abstract:

Electrochemical reduction of CO₂ is an emerging and current issue for its conversion in to valuable product upon minimization of its atmospheric level for contribution of maintaining within the range of permissible limit. Among plenty of electro-catalysts gold and copper are efficient and effective catalysts, which are synthesized and applicable for this research work. The two metal catalysts were prepared in inert environment with different compositions through co-reduction process from their corresponding precursors and then by adding multi-walled carbon nano-tube as a supporter and enhanced the conductivity. The catalytic performance of CO₂ reduction for each composition was performed and resulted an outstanding catalytic activity with generation of high current density (70 mA/cm² at 0.91V vs. RHE) and relatively small onset potential. The catalytic performance, compositions, morphologies, structure and geometric arrangements were evaluated by electrochemical analysis (LSV, impedance, chronoamperometry & tafel plot), EDS, SEM and XAS respectively. The composite metals showed better selectivity of products and faradaic efficiencies due to the synergetic effects of the combined nano-particles in addition to the impact of grain size in reduction of CO₂. Carbon monoxide, hydrogen, formate and ethanol are the reduction products, which are detected and quantifiable by chromatographic techniques considering their physical state of each product.

Keywords: carbondioxide, faradaic efficiency, electrocatalyst, current density

Procedia PDF Downloads 43
594 Enrichment and Flux of Heavy Metals along the Coastal Sediments of Pakistan

Authors: Asmat Siddiqui, Noor Us Saher

Abstract:

Heavy metal contamination in the marine environment is a global issue, and in past decades, this problem has intensified due to an increase in urbanization and industrialization, especially in developing countries. Marine sediments act as a preliminary indicator of heavy metal contamination in the coastal and estuarine environment, which has adverse effects on biota as well as in the marine system. The aim of the current study was to evaluate the contamination status, enrichment, and flux of heavy metals in two monitoring years from coastal sediments of Pakistan. A total of 74 sediment samples were collected from seven coastal areas of Pakistan in two monitoring years, 2001-03 (MY-I) and 2011-13 (MY-II). The geochemical properties (grain size analysis, organic contents and eight heavy metals, i.e. Fe, Zn, Cu, Cr, Ni, Co, Pb, and Cd) of all sediment samples were analyzed. A significant increase in Fe, Ni and Cr concentrations detected between the years, whereas no significant differences were exhibited in Cu, Zn, Co, Pb and Cd concentrations. The extremely high enrichment (>50) of Cu, Zn, Pb and Cd were scrutinized in both monitoring years. The annual deposition flux of heavy metals ranged from 0.63 to 66.44 and 0.78 to 68.27 tons per year in MY-I and MY-II, respectively, with the lowest flux evaluated for Cd and highest for Zn in both monitoring years. A significant increase (p <0.05) was observed in the burial flux of Cr and Ni during the last decade in coastal sediments. The use of geo-indicators is helpful to assess the contamination analysis for management and conservation of the marine environment.

Keywords: coastal contamination, enrichment factor, geo-indicator, heavy metal flux

Procedia PDF Downloads 364
593 Numerical Study of Flow Characteristics and Performance of 14-X B Inlet with Blunted Cowl-Lip

Authors: Sergio N. P. Laitón, Paulo G. P. Toro, João F. Martos

Abstract:

A numerical study has been carried out to investigate the flow characteristics and performance of the 14-X B inlet with blunted cowl-lip. The Brazilian aerospace hypersonic vehicle 14-X B is a technology demonstrator of a hypersonic air-breathing propulsion system, based on supersonic combustion ramjet (scramjet). It is designed for Earth's atmospheric flight at Mach number of 6 and an altitude of 30 km. Currently, it is under development in the aerothermodynamics and hypersonic Professor Henry T. Nagamatsu laboratory at Advanced Studies Institute (IEAv). Numerical simulations were conducted at nominal freestream Mach number and altitude for two cowl-lip blunting radius and several angles of attack close to horizontal flight. The results show that the shock interference behavior on the blunted cowl-lip change with the angle of attack and blunted radius. The type VI or V together with III shock interferences are more likely to occur simultaneously at small negative angles of attack. When the inlet operates in positive angles of attack higher to 1, no shock interference occurs, only the bow shock conditions. The results indicate a high air pressure at beginning of the combustor and higher pressure recovery with 2 mm radius and positives angles of attack.

Keywords: blunted cowl-lip, hypersonic inlet, inlet unstart, shock interference

Procedia PDF Downloads 309
592 The Optimal Location of Brickforce in Brickwork

Authors: Sandile Daniel Ngidi

Abstract:

A brickforce is a product consisting of two main parallel wires joined by in-line welded cross wires. Embedded in the normal thickness of the brickwork joint, the wires are manufactured to a flattened profile to simplify location into the mortar joint without steel build-up problems at lap positions corners/junctions or when used in conjunction with wall ties. A brickforce has been in continuous use since 1918. It is placed in the cement between courses of bricks. Brickforce is used in every course of the foundations and every course above lintel height. Otherwise, brickforce is used every fourth course in between the foundations and lintel height or a concrete slab and lintel height. The brickforce strengthens and stabilizes the wall, especially if you are building on unstable ground. It provides brickwork increased resistance to tensional stresses. Brickforce uses high tensile steel wires, which can withstand high forces but with a very little stretch. This helps to keep crack widths to a minimum. Recently a debate has opened about the purpose of using brickforce in single-story buildings. The debate has been compounded by the fact that there is no consensus about the spacing of brickforce in brickwork or masonry. In addition, very little information had been published on the relative merits of using the same size of brickforce for the different atmospheric conditions in South Africa. This paper aims to compare different types of brickforce systems used in different countries. Conclusions are made to identify the point and location of brickforce that optimize the system.

Keywords: brickforce, masonry concrete, reinforcement, strengthening, wall panels

Procedia PDF Downloads 219
591 An Experimental Investigation into Fluid Forces on Road Vehicles in Unsteady Flows

Authors: M. Sumida, S. Morita

Abstract:

In this research, the effect of unsteady flows acting on road vehicles was experimentally investigated, using an advanced and recently introduced wind tunnel. The aims of this study were to extract the characteristics of fluid forces acting on road vehicles under unsteady wind conditions and obtain new information on drag forces in a practical on-road test. We applied pulsating wind as a representative example of the atmospheric fluctuations that vehicles encounter on the road. That is, we considered the case where the vehicles are moving at constant speed in the air, with large wind oscillations. The experimental tests were performed on the Ahmed-type test model, which is a simplified vehicle model. This model was chosen because of its simplicity and the data accumulated under steady wind conditions. The experiments were carried out with a time-averaged Reynolds number of Re = 4.16x10⁵ and a pulsation period of T = 1.5 s, with amplitude of η = 0.235. Unsteady fluid forces of drag and lift were obtained utilizing a multi-component load cell. It was observed that the unsteady aerodynamic forces differ significantly from those under steady wind conditions. They exhibit a phase shift and an enhanced response to the wind oscillations. Furthermore, their behavior depends on the slant angle of the rear shape of the model.

Keywords: Ahmed body, automotive aerodynamics, unsteady wind, wind tunnel test

Procedia PDF Downloads 284
590 Silicon Carbide (SiC) Crystallization Obtained as a Side Effect of SF6 Etching Process

Authors: N. K. A. M. Galvão, A. Godoy Jr., A. L. J. Pereira, G. V. Martins, R. S. Pessoa, H. S. Maciel, M. A. Fraga

Abstract:

Silicon carbide (SiC) is a wide band-gap semiconductor material with very attractive properties, such as high breakdown voltage, chemical inertness, and high thermal and electrical stability, which makes it a promising candidate for several applications, including microelectromechanical systems (MEMS) and electronic devices. In MEMS manufacturing, the etching process is an important step. It has been proved that wet etching of SiC is not feasible due to its high bond strength and high chemical inertness. In view of this difficulty, the plasma etching technique has been applied with paramount success. However, in most of these studies, only the determination of the etching rate and/or morphological characterization of SiC, as well as the analysis of the reactive ions present in the plasma, are lowly explored. There is a lack of results in the literature on the chemical and structural properties of SiC after the etching process [4]. In this work, we investigated the etching process of sputtered amorphous SiC thin films on Si substrates in a reactive ion etching (RIE) system using sulfur hexafluoride (SF6) gas under different RF power. The results of the chemical and structural analyses of the etched films revealed that, for all conditions, a SiC crystallization occurred, in addition to fluoride contamination. In conclusion, we observed that SiC crystallization is a side effect promoted by structural, morphological and chemical changes caused by RIE SF6 etching process.

Keywords: plasma etching, plasma deposition, Silicon Carbide, microelectromechanical systems

Procedia PDF Downloads 65
589 Microstructure Analysis and Multiple Photoluminescence in High Temperature Electronic Conducting InZrZnO Thin Films

Authors: P. Jayaram, Prasoon Prasannan, N. K. Deepak, P. P. Pradyumnan

Abstract:

Indium and Zirconium co doped zinc oxide (InZrZnO) thin films are prepared by chemical spray pyrolysis method on pre-heated quartz substrates. The films are subjected to vacuum annealing at 400ᵒC for three hours in an appropriate air (10-5mbar) ambience after deposition. X-ray diffraction, Scanning electron microscopy, energy dispersive spectra and photoluminescence are used to characterize the films. Temperature dependent electrical measurements are conducted on the films and the films exhibit exceptional conductivity at higher temperatures. XRD analysis shows that all the films prepared in this work have hexagonal wurtzite structure. The average crystallite sizes of the films were calculated using Scherrer’s formula, and uniform deformation model (UDM) of Williamson-Hall method is used to establish the micro-strain values. The dislocation density is determined from the Williamson and Smallman’s formula. Intense, broad and strongly coupled multiple photoluminescence were observed from photoluminescence spectra. PL indicated relatively high concentration defective oxygen and Zn vacancies in the film composition. Strongly coupled ultraviolet near blue emissions authenticate that the dopants are capable of inducing modulated free excitonic (FX), donor accepter pair (DAP) and longitudinal optical phonon emissions in thin films.

Keywords: PL, SEM, TCOs, thin films, XRD

Procedia PDF Downloads 224
588 Placer Gold Deposits in Madari Gold Mine, Southern Eastern Desert, Egypt: Orientation, Source and Distribution

Authors: Tarek Sedki

Abstract:

Madari gold mine is delineated by latitudes 22° 30' 29" and 22° 32' 33" N and longitudes 36° 24' 03" and 35°11' 44" E. Geologically, Madari rock units are classified into dismembered ophiolites, arc volcanic assemblage, syntectonic metagabbro-diorites and Mineralized quartz diorite and granodiorite. Deposition of gold in area occurred as a direct result of weathering of nearby gold-bearing veins. Main concentrations of gold are supposed to ensue close to the bed rock. Nevertheless, the several shallow channel-fill features covering lag deposits, arising throughout the alluvial fan sequence would definitely contain a percentage of the finer gold due to the limited washing and sorting capacity of the uncommon flood events. Gold deposits arise as disseminated and separate gold with limited pyrite, arsenopyrite and chalcopyrite everywhere veins in the wall rocks and lode gold deposits in quartz veins. In places, the wall rocks, in near district of the quartz vein, are grieved strong silicification, chloritization and pyritization as a result of a metasomatic alteration due to purification of external hydrothermal fluids. Quartz veins are mostly steeply dipping and display banding features and frequently sheared and brecciated.

Keywords: Madari gold mine, placer deposits, southern eastern desert, gold mineralization, quartz veins

Procedia PDF Downloads 127
587 Preparation and Cutting Performance of Boron-Doped Diamond Coating on Cemented Carbide Cutting Tools with High Cobalt Content

Authors: Zhaozhi Liu, Feng Xu, Junhua Xu, Xiaolong Tang, Ying Liu, Dunwen Zuo

Abstract:

Chemical vapor deposition (CVD) diamond coated cutting tool has excellent cutting performance, it is the most ideal tool for the processing of nonferrous metals and alloys, composites, nonmetallic materials and other difficult-to-machine materials efficiently and accurately. Depositing CVD diamond coating on the cemented carbide with high cobalt content can improve its toughness and strength, therefore, it is very important to research on the preparation technology and cutting properties of CVD diamond coated cemented carbide cutting tool with high cobalt content. The preparation technology of boron-doped diamond (BDD) coating has been studied and the coated drills were prepared. BDD coating were deposited on the drills by using the optimized parameters and the SEM results show that there are no cracks or collapses in the coating. Cutting tests with the prepared drills against the silumin and aluminum base printed circuit board (PCB) have been studied. The results show that the wear amount of the coated drill is small and the machined surface has a better precision. The coating does not come off during the test, which shows good adhesion and cutting performance of the drill.

Keywords: cemented carbide with high cobalt content, CVD boron-doped diamond, cutting test, drill

Procedia PDF Downloads 406
586 Effect of Marginal Quality Groundwater on Yield of Cotton Crop and Soil Salinity Status

Authors: A. L. Qureshi, A. A. Mahessar, R. K. Dashti, S. M. Yasin

Abstract:

In this paper, effect of marginal quality groundwater on yield of cotton crop and soil salinity was studied. In this connection, three irrigation treatments each with four replications were applied. These treatments were use of canal water, use of marginal quality groundwater from tube well, and conjunctive use by mixing with the ratio of 1:1 of canal water and marginal quality tubewell water. Water was applied to the crop cultivated in Kharif season 2011; its quantity has been measured using cut-throat flume. Total 11 watering each of 50 mm depth have been applied from 20th April to 20th July, 2011. Further, irrigations were stopped from last week of July, 2011 due to monsoon rainfall. Maximum crop yield (seed cotton) was observed under T1 which was 1,516.8 kg/ha followed by T3 (mixed canal and tube well water) having 1009 kg/ha and 709 kg/ha for T2 i.e. marginal quality groundwater. This concludes that crop yield in T2 and T3 with in comparison to T1was reduced by about 53 and 30% respectively. It has been observed that yield of cotton crop is below potential limit for three treatments due to unexpected rainfall at the time of full flowering season; thus the yield was adversely affected. However, salt deposition in soil profiles was not observed that is due to leaching effect of heavy rainfall occurred during monsoon season.

Keywords: conjunctive use, cotton crop, groundwater, soil salinity status, water use efficiency

Procedia PDF Downloads 432
585 Estimations of Spectral Dependence of Tropospheric Aerosol Single Scattering Albedo in Sukhothai, Thailand

Authors: Siriluk Ruangrungrote

Abstract:

Analyses of available data from MFR-7 measurement were performed and discussed on the study of tropospheric aerosol and its consequence in Thailand. Since, ASSA (w) is one of the most important parameters for a determination of aerosol effect on radioactive forcing. Here the estimation of w was directly determined in terms of the ratio of aerosol scattering optical depth to aerosol extinction optical depth (ωscat/ωext) without any utilization of aerosol computer code models. This is of benefit for providing the elimination of uncertainty causing by the modeling assumptions and the estimation of actual aerosol input data. Diurnal w of 5 cloudless-days in winter and early summer at 5 distinct wavelengths of 415, 500, 615, 673 and 870 nm with the consideration of Rayleigh scattering and atmospheric column NO2 and Ozone contents were investigated, respectively. Besides, the tendency of spectral dependence of ω representing two seasons was observed. The characteristic of spectral results reveals that during wintertime the atmosphere of the inland rural vicinity for the period of measurement possibly dominated with a lesser amount of soil dust aerosols loading than one in early summer. Hence, the major aerosol loading particularly in summer was subject to a mixture of both soil dust and biomass burning aerosols.

Keywords: aerosol scattering optical depth, aerosol extinction optical depth, biomass burning aerosol, soil dust aerosol

Procedia PDF Downloads 395
584 Microstructural and Mechanical Property Investigation on SS316L-Cu Graded Deposition Prepared using Wire Arc Additive Manufacturing

Authors: Bunty Tomar, Shiva S.

Abstract:

Fabrication of steel and copper-based functionally graded material (FGM) through cold metal transfer-based wire arc additive manufacturing is a novel exploration. Components combining Cu and steel show significant usage in many industrial applications as they combine high corrosion resistance, ductility, thermal conductivity, and wear resistance to excellent mechanical properties. Joining steel and copper is challenging due to the mismatch in their thermo-mechanical properties. In this experiment, a functionally graded material (FGM) structure of pure copper (Cu) and 316L stainless steel (SS) was successfully developed using cold metal transfer-based wire arc additive manufacturing (CMT-WAAM). The interface of the fabricated samples was characterized under optical microscopy, field emission scanning electron microscopy, and X-ray diffraction techniques. Detailed EBSD and TEM analysis was performed to analyze the grain orientation, strain distribution, grain boundary misorientations, and formation of metastable and intermetallic phases. Mechanical characteristics of deposits was also analyzed using tensile and wear testing. This works paves the way to use CMT-WAAM to fabricate steel/copper FGMs.

Keywords: wire arc additive manufacturing (waam), cold metal transfer (cmt), metals and alloys, mechanical properties, characterization

Procedia PDF Downloads 67
583 Carbon-Nanodots Modified Glassy Carbon Electrode for the Electroanalysis of Selenium in Water

Authors: Azeez O. Idris, Benjamin O. Orimolade, Potlako J. Mafa, Alex T. Kuvarega, Usisipho Feleni, Bhekie B. Mamba

Abstract:

We report a simple and cheaper method for the electrochemical detection of Se(IV) using carbon nanodots (CNDTs) prepared from oat. The carbon nanodots were synthesised by green and facile approach and characterised using scanning electron microscopy, high-resolution transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and Raman spectroscopy. The CNDT was used to fabricate an electrochemical sensor for the quantification of Se(IV) in water. The modification of glassy carbon electrode (GCE) with carbon nanodots led to an increase in the electroactive surface area of the electrode, which enhances the redox current peak of [Fe(CN)₆]₃₋/₄‒ in comparison to the bare GCE. Using the square wave voltammetry, the detection limit and quantification limit of 0.05 and 0.167 ppb were obtained under the optimised parameters using deposition potential of -200 mV, 0.1 M HNO₃ electrolyte, electrodeposition time of 60 s, and pH 1. The results further revealed that the GCE-CNDT was not susceptible to many interfering cations except Cu(II) and Pb(II), and Fe(II). The sensor fabrication involves a one-step electrode modification and was used to detect Se(IV) in a real water sample, and the result obtained is in agreement with the inductively coupled plasma technique. Overall, the electrode offers a cheap, fast, and sensitive way of detecting selenium in environmental matrices.

Keywords: carbon nanodots, square wave voltammetry, nanomaterials, selenium, sensor

Procedia PDF Downloads 80
582 Three-Dimensional Carbon Foams for the Application as Electrode Material in Energy Storage Systems

Authors: H. Beisch, J. Marx, S. Garlof, R. Shvets, I. I. Grygorchak, A. Kityk, B. Fiedler

Abstract:

Carbon materials, especially three-dimensional carbon foams, show very high potential in the application as electrode material for energy storage systems such as batteries and supercapacitors with unique fast charging and discharging times. Regarding their high specific surface areas (SSA) high specific capacities can be reached. Globugraphite is a newly developed carbon foam with an interconnected globular carbon morphology. Especially, this foam has a statistically distributed hierarchical pore structure resulting from the manufacturing process based on sintered ceramic templates which are synthetized during a final chemical vapor deposition (CVD) process. For morphology characterization scanning electron (SEM) and transmission electron microscopy (TEM) is used. In addition, the SSA is carried out by nitrogen adsorption combined with the Brunauer–Emmett–Teller (BET) theory. Electrochemical measurements in organic and inorganic electrolyte provide high energy densities and power densities resulting from ion absorption by forming an electrochemical double layer. All values are summarized in a Ragone Diagram. Finally, power densities up to 833 W/kg and energy densities up to 48 Wh/kg could be achieved. The corresponding SSA is between 376 m²/g and 859 m²/g. For organic electrolyte a specific capacity of 71 F/g at a density of 20 mg/cm³ was achieved.

Keywords: BET, CVD process, electron microscopy, Ragone diagram

Procedia PDF Downloads 164
581 Investigation of the Effects of Processing Parameters on Pla Based 3D Printed Tensile Samples

Authors: Saifullah Karimullah

Abstract:

Additive manufacturing techniques are becoming more common with the latest technological advancements. It is composed to bring a revolution in the way products are designed, planned, manufactured, and distributed to end users. Fused deposition modeling (FDM) based 3D printing is one of those promising aspects that have revolutionized the prototyping processes. The purpose of this design and study project is to design a customized laboratory-scale FDM-based 3D printer from locally available sources. The primary goal is to design and fabricate the FDM-based 3D printer. After the fabrication, a tensile test specimen would be designed in Solid Works or [Creo computer-aided design (CAD)] software. A .stl file is generated of the tensile test specimen through slicing software and the G-codes are inserted via a computer for the test specimen to be printed. Different parameters were under studies like printing speed, layer thickness and infill density of the printed object. Some parameters were kept constant such as temperature, extrusion rate, raster orientation etc. Different tensile test specimens were printed for a different sets of parameters of the FDM-based 3d printer. The tensile test specimen were subjected to tensile tests using a universal testing machine (UTM). Design Expert software has been used for analyses, So Different results were obtained from the different tensile test specimens. The best, average and worst specimen were also observed under a compound microscope to investigate the layer bonding in between.

Keywords: additive manufacturing techniques, 3D printing, CAD software, UTM machine

Procedia PDF Downloads 88
580 Enhancement of Pool Boiling Regimes by Sand Deposition

Authors: G. Mazor, I. Ladizhensky, A. Shapiro, D. Nemirovsky

Abstract:

A lot of researches was dedicated to the evaluation of the efficiency of the uniform constant and temporary coatings enhancing a heat transfer rate. Our goal is an investigation of the sand coatings distributed by both uniform and non-uniform forms. The sand of different sizes (0.2-0.4-0.6 mm) was attached to a copper ball (30 mm diameter) surface by means of PVA adhesive as a uniform layer. At the next stage, sand spots were distributed over the ball surface with an areal density that ranges between one spot per 1.18 cm² (for low-density spots) and one spot per 0.51 cm² (for high-density spots). The spot's diameter value varied from 3 to 6.5 mm and height from 0.5 to 1.5 mm. All coatings serve as a heat transfer enhancer during the quenching in liquid nitrogen. Highest heat flux densities, achieved during quenching, lie in the range 10.8-20.2 W/cm², depending on the sand layer structure. Application of the enhancing coating increases an amount of heat, evacuated by highly effective nucleate and transition boiling, by a factor of 4.5 as compared to the bare sample. The non-uniform sand coatings were increasing the heat transfer rate value under all pool boiling conditions: nucleate boiling, transfer boiling and the most severe film boiling. A combination of uniform sand coating together with high-density sand spots increased the average heat transfer rate by a factor of 3.

Keywords: heat transfer enhancement, nucleate boiling, film boiling, transfer boiling

Procedia PDF Downloads 119
579 Environmental Impact Assessment of Ambient Particle Industrial Complex Upon Vegetation Near Settling at El-Fatyah,Libya

Authors: Ashraf M. S. Soliman, Mohsen Elhasadi

Abstract:

The present study was undertaken to evaluate the impact of ambient particles emitted from an industrial complex located at El-Fatyah on growth, phytomass partitioning and accumulation, pigment content and nutrient uptake of two economically important crop species; barley (Hordeum vulgare L.Family: Poaceae) and broad bean (Vicia faba L. Family: Fabaceae) growing in the region. It was obvious from the present investigation that chlorophyll and carotenoid content showed significant responses to the industrial dust. Generally, the total pigment content of the two investigated crops in the two locations continually increased till the plant age reached 70 days after sowing then begins to decrease till the end of the growing season..The total uptake of N, P and K in the two studied species decreased in response to industrial dust in the study area compared to control location. In conclusion, barley and broad bean are very sensitive to air pollutants, and may consider as bioindicators for atmospheric pollution. Pollutants caused damage of their leaves, impair plant growth, hindered nutrient uptake and consequently limit primary productivity.

Keywords: Effect of Industrial Complex on barley and broad bean

Procedia PDF Downloads 522
578 Mechanical Properties of Graphene Nano-Platelets Coated Carbon-Fiber Composites

Authors: Alok Srivastava, Vidit Gupta, Aparna Singh, Chandra Sekher Yerramalli

Abstract:

Carbon-fiber epoxy composites show extremely high modulus and strength in the uniaxial direction. However, they are prone to fail under low load in transverse direction due to the weak nature of the interface between the carbon-fiber and epoxy. In the current study, we have coated graphene nano-platelets (GNPs) on the carbon-fibers in an attempt to strengthen the interface/interphase between the fiber and the matrix. Vacuum Assisted Resin Transfer Moulding (VARTM) has been used to make the laminates of eight cross-woven fabrics. Tensile, flexural and fracture toughness tests have been performed on pristine carbon-fiber composite (P-CF), GNP coated carbon-fiber composite (GNP-CF) and functionalized-GNP coated carbon-fiber composite (F-GNP-CF). The tensile strength and flexural strength values are pretty similar for P-CF and GNP-CF. The micro-structural examination of the GNP coated carbon-fibers, as well as the fracture surfaces, have been carried out using scanning electron microscopy (SEM). The micrographs reveal the deposition of GNPs onto the carbon fibers in transverse and longitudinal direction. Fracture surfaces show the debonding and pull outs of the carbon fibers in P-CF and GNP-CF samples.

Keywords: carbon fiber, graphene nanoplatelets, strength, VARTM, Vacuum Assisted Resin Transfer Moulding

Procedia PDF Downloads 135
577 3D Printing Perceptual Models of Preference Using a Fuzzy Extreme Learning Machine Approach

Authors: Xinyi Le

Abstract:

In this paper, 3D printing orientations were determined through our perceptual model. Some FDM (Fused Deposition Modeling) 3D printers, which are widely used in universities and industries, often require support structures during the additive manufacturing. After removing the residual material, some surface artifacts remain at the contact points. These artifacts will damage the function and visual effect of the model. To prevent the impact of these artifacts, we present a fuzzy extreme learning machine approach to find printing directions that avoid placing supports in perceptually significant regions. The proposed approach is able to solve the evaluation problem by combing both the subjective knowledge and objective information. Our method combines the advantages of fuzzy theory, auto-encoders, and extreme learning machine. Fuzzy set theory is applied for dealing with subjective preference information, and auto-encoder step is used to extract good features without supervised labels before extreme learning machine. An extreme learning machine method is then developed successfully for training and learning perceptual models. The performance of this perceptual model will be demonstrated on both natural and man-made objects. It is a good human-computer interaction practice which draws from supporting knowledge on both the machine side and the human side.

Keywords: 3d printing, perceptual model, fuzzy evaluation, data-driven approach

Procedia PDF Downloads 427