Search results for: artificial intelligence in semiconductor manufacturing
4046 Emotion Detection in a General Human-Robot Interaction System Optimized for Embedded Platforms
Authors: Julio Vega
Abstract:
Expression recognition is a field of Artificial Intelligence whose main objectives are to recognize basic forms of affective expression that appear on people’s faces and contributing to behavioral studies. In this work, a ROS node has been developed that, based on Deep Learning techniques, is capable of detecting the facial expressions of the people that appear in the image. These algorithms were optimized so that they can be executed in real time on an embedded platform. The experiments were carried out in a PC with a USB camera and in a Raspberry Pi 4 with a PiCamera. The final results shows a plausible system, which is capable to work in real time even in an embedded platform.Keywords: python, low-cost, raspberry pi, emotion detection, human-robot interaction, ROS node
Procedia PDF Downloads 1294045 The Effect of Emotional Intelligence on Performance and Motivation of Staff: A Case Study of East Azerbaijan Red Crescent
Authors: Bahram Asghari Aghdam, Ali Mahjoub
Abstract:
The purpose of this study is to evaluate the effect of emotional intelligence on the motivation and performance of East Azarbaijan the Red Crescent staff. In this study, EI is determined as the independent variable component of self awareness, self management, social awareness, and relations management, motivation and performance as dependent variables. The research method is descriptive-survey. In this study, simple random sampling method is used and research sample consists of 130 East Azarbaijan the Red Crescent staff that uses Cochran's formula 100 of them were selected and questionnaires were filled by them. Three types of questionnaires were used in this study for emotional intelligence, consisting of the Bradbury Travis and Jane Greaves standard questionnaire; and for motivation and performance a questionnaire is regulated by the researcher with help of professionals and experts in this field that consists of 33 questions about the motivation and 15 questions about performance and content validity were used to obtain the necessary credit. Reliability by using the Cronbach's alpha coefficient /948 was approved. Also, in this study to test the hypothesis of the Spearman correlation coefficient and linear regressions and determine fitness of variables' of structural equation modeling is used. The results show that emotional intelligence with coefficient /865, motivation and performance of in East Azerbaijan the Red Crescent employees has a positive effect. Based on Friedman Test ranking the most influence in motivation and performance of staff in respondents' opinion is in order of self-awareness, relations management, social awareness and self-management.Keywords: emotional intelligence, self-awareness, self-management, social awareness, relations management, motivation, performance
Procedia PDF Downloads 4854044 Obstacle Detection and Path Tracking Application for Disables
Authors: Aliya Ashraf, Mehreen Sirshar, Fatima Akhtar, Farwa Kazmi, Jawaria Wazir
Abstract:
Vision, the basis for performing navigational tasks, is absent or greatly reduced in visually impaired people due to which they face many hurdles. For increasing the navigational capabilities of visually impaired people a desktop application ODAPTA is presented in this paper. The application uses camera to capture video from surroundings, apply various image processing algorithms to get information about path and obstacles, tracks them and delivers that information to user through voice commands. Experimental results show that the application works effectively for straight paths in daylight.Keywords: visually impaired, ODAPTA, Region of Interest (ROI), driver fatigue, face detection, expression recognition, CCD camera, artificial intelligence
Procedia PDF Downloads 5494043 A Contemporary Gender Predominance: A Honduran Textile Manufacturing Diagnose
Authors: Jesús David Argueta Moreno, Taria Ruiz, Cesar Ortega
Abstract:
This qualitative investigation represents the first stage of the human capital engineering analysis, along the small and medium textile manufacturing companies, located on the city of Tegucigalpa, Honduras where the symptoms of the local manufacturing industry´s describe a severe gender displacement phenomenon. The evaluation of this phenomena, intends to trigger the Honduran small and medium technology manufactures into a collective performance, analysis through the development of a sectorial diagnose and the creation of a manufacturers guide, personalized. In accordance to the Honduran textile manufacturing needs, in order to strengthen their personnel capacities and thereby smoothen the gender equilibrium on this particular sector. It is worth mentioning, that on the last decade, the female gender has gathered positive statistics upon Central American job market´s, were the local business landscape describes a significant displacement of the Honduran female operators over the male gender workers that has significantly diminished their employment predominance. On the other hand, this study aims to evaluate the main features that impact on the job market local gender supplanting. On the other hand, this document aims to holistically describe the Honduran manufacturing context, as well as the current textile operator qualifications, in order to infer over the most proper human resources enforcement approaches/techniques on the industry.Keywords: gender predominance, manufacturing, higher education institutions, emerging trends
Procedia PDF Downloads 4304042 Artificial Intelligence-Aided Extended Kalman Filter for Magnetometer-Based Orbit Determination
Authors: Gilberto Goracci, Fabio Curti
Abstract:
This work presents a robust, light, and inexpensive algorithm to perform autonomous orbit determination using onboard magnetometer data in real-time. Magnetometers are low-cost and reliable sensors typically available on a spacecraft for attitude determination purposes, thus representing an interesting choice to perform real-time orbit determination without the need to add additional sensors to the spacecraft itself. Magnetic field measurements can be exploited by Extended/Unscented Kalman Filters (EKF/UKF) for orbit determination purposes to make up for GPS outages, yielding errors of a few kilometers and tens of meters per second in the position and velocity of a spacecraft, respectively. While this level of accuracy shows that Kalman filtering represents a solid baseline for autonomous orbit determination, it is not enough to provide a reliable state estimation in the absence of GPS signals. This work combines the solidity and reliability of the EKF with the versatility of a Recurrent Neural Network (RNN) architecture to further increase the precision of the state estimation. Deep learning models, in fact, can grasp nonlinear relations between the inputs, in this case, the magnetometer data and the EKF state estimations, and the targets, namely the true position, and velocity of the spacecraft. The model has been pre-trained on Sun-Synchronous orbits (SSO) up to 2126 kilometers of altitude with different initial conditions and levels of noise to cover a wide range of possible real-case scenarios. The orbits have been propagated considering J2-level dynamics, and the geomagnetic field has been modeled using the International Geomagnetic Reference Field (IGRF) coefficients up to the 13th order. The training of the module can be completed offline using the expected orbit of the spacecraft to heavily reduce the onboard computational burden. Once the spacecraft is launched, the model can use the GPS signal, if available, to fine-tune the parameters on the actual orbit onboard in real-time and work autonomously during GPS outages. In this way, the provided module shows versatility, as it can be applied to any mission operating in SSO, but at the same time, the training is completed and eventually fine-tuned, on the specific orbit, increasing performances and reliability. The results provided by this study show an increase of one order of magnitude in the precision of state estimate with respect to the use of the EKF alone. Tests on simulated and real data will be shown.Keywords: artificial intelligence, extended Kalman filter, orbit determination, magnetic field
Procedia PDF Downloads 1054041 Deepfake Detection System through Collective Intelligence in Public Blockchain Environment
Authors: Mustafa Zemin
Abstract:
The increasing popularity of deepfake technology poses a growing threat to information integrity and security. This paper presents a deepfake detection system designed to leverage public blockchain and collective intelligence as solutions to address this issue. Utilizing smart contracts on the Ethereum blockchain ensures secure, decentralized media content verification, creating an auditable and tamper-resistant framework. The approach integrates concepts from electronic voting, allowing a network of participants to assess content authenticity collectively through consensus mechanisms. This decentralized, community-driven model enhances detection accuracy while preventing single points of failure. Experimental analysis demonstrates the system’s robustness, reliability, and scalability in deepfake detection, offering a sustainable approach to combat digital misinformation. The proposed solution advances deepfake detection capabilities and provides a framework for applying blockchain-based collective intelligence to other domains facing similar verification challenges, thereby contributing to the fight against digital misinformation in a secure, trustless environment.Keywords: deepfake detection, public blockchain, electronic voting, collective intelligence, Ethereum
Procedia PDF Downloads 14040 Statistical Manufacturing Cell/Process Qualification Sample Size Optimization
Authors: Angad Arora
Abstract:
In production operations/manufacturing, a cell or line is typically a bunch of similar machines (computer numerical control (CNCs), advanced cutting, 3D printing or special purpose machines. For qualifying a typical manufacturing line /cell / new process, Ideally, we need a sample of parts that can be flown through the process and then we make a judgment on the health of the line/cell. However, with huge volumes and mass production scope, such as in the mobile phone industry, for example, the actual cells or lines can go in thousands and to qualify each one of them with statistical confidence means utilizing samples that are very large and eventually add to product /manufacturing cost + huge waste if the parts are not intended to be customer shipped. To solve this, we come up with 2 steps statistical approach. We start with a small sample size and then objectively evaluate whether the process needs additional samples or not. For example, if a process is producing bad parts and we saw those samples early, then there is a high chance that the process will not meet the desired yield and there is no point in keeping adding more samples. We used this hypothesis and came up with 2 steps binomial testing approach. Further, we also prove through results that we can achieve an 18-25% reduction in samples while keeping the same statistical confidence.Keywords: statistics, data science, manufacturing process qualification, production planning
Procedia PDF Downloads 964039 The Impact of Business Process Reengineering to the Company Performance through TQM and Enterprise Resource Planning Implementation on Manufacturing Companies in East Java, Indonesia
Authors: Widjojo Suprapto, Zeplin Jiwa Husada Tarigan, Sautma Ronni Basana
Abstract:
Business process reengineering can be conducted by some procedure rationalization for all related departments in a company so that all data and business processes are connected. The changing of any business process is used to set up the working standard so that it gives an impact to the implementation of ERP and the company performance. After collecting and processing the data from 77 manufacturing companies, it is obtained that BPR (Business Process Reengineering) has no direct impact on the implementation of ERP (Enterprise Resource Planning) in the companies and manufacturing performance; however, it influences the implementation of TQM. The implementation of TQM influences directly the implementation of ERP, but it does not influence directly the company performance. The implementation of ERP gives a significant increase in the work performance of the manufacturing companies in East Java.Keywords: enterprise resources planning, business process reengineering, TQM, company performance
Procedia PDF Downloads 2074038 Detection of Autistic Children's Voice Based on Artificial Neural Network
Authors: Royan Dawud Aldian, Endah Purwanti, Soegianto Soelistiono
Abstract:
In this research we have been developed an automatic investigation to classify normal children voice or autistic by using modern computation technology that is computation based on artificial neural network. The superiority of this computation technology is its capability on processing and saving data. In this research, digital voice features are gotten from the coefficient of linear-predictive coding with auto-correlation method and have been transformed in frequency domain using fast fourier transform, which used as input of artificial neural network in back-propagation method so that will make the difference between normal children and autistic automatically. The result of back-propagation method shows that successful classification capability for normal children voice experiment data is 100% whereas, for autistic children voice experiment data is 100%. The success rate using back-propagation classification system for the entire test data is 100%.Keywords: autism, artificial neural network, backpropagation, linier predictive coding, fast fourier transform
Procedia PDF Downloads 4614037 Response Evaluation of Electronic Nose with Polymer-Composite and Metal Oxide Semiconductor Sensor towards Microbiological Quality of Rapeseed
Authors: Marcin Tadla, Robert Rusinek, Jolanta Wawrzyniak, Marzena Gawrysiak-Witulska, Agnieszka Nawrocka, Marek Gancarz
Abstract:
Rapeseeds were evaluated and classified by the static-headspace sampling method using electronic noses during the 25 days spoilage period. The Cyranose 320 comprising 32 polymer-composite sensors and VCA (Volatile Compound Analyzer - made in Institute of Agrophysics) built of 8 metal-oxide semiconductor (MOS) sensors were used to obtain sensor response (∆R/R). Each sample of spoiled material was divided into three parts and the degree of spoilage was measured four ways: determination of ergosterol content (ERG), colony forming units (CFU) and measurement with both e-noses. The study showed that both devices responsive to changes in the fungal microflora. Cyranose and VCA registered the change of domination microflora of fungi. After 7 days of storage, typical fungi for soil disappeared and appeared typical for storeroom was observed. In both cases, response ∆R/R decreased to the end of experiment, while ERG and JTK increased. The research was supported by the National Centre for Research and Development (NCBR), Grant No. PBS2/A8/22/2013.Keywords: electronic nose, fungal microflora, metal-oxide sensor, polymer-composite sensors
Procedia PDF Downloads 3024036 Parallel Particle Swarm Optimization Optimized LDI Controller with Lyapunov Stability Criterion for Nonlinear Structural Systems
Authors: P. W. Tsai, W. L. Hong, C. W. Chen, C. Y. Chen
Abstract:
In this paper, we present a neural network (NN) based approach represent a nonlinear Tagagi-Sugeno (T-S) system. A linear differential inclusion (LDI) state-space representation is utilized to deal with the NN models. Taking advantage of the LDI representation, the stability conditions and controller design are derived for a class of nonlinear structural systems. Moreover, the concept of utilizing the Parallel Particle Swarm Optimization (PPSO) algorithm to solve the common P matrix under the stability criteria is given in this paper.Keywords: Lyapunov stability, parallel particle swarm optimization, linear differential inclusion, artificial intelligence
Procedia PDF Downloads 6564035 The Integration of Fintech Technologies in Crowdfunding: A Catalyst for Financial Inclusion and Responsible Finance
Authors: Badrane Hasnaa, Bouzahir Brahim
Abstract:
This article examines the impact of fintech technologies on crowdfunding, particularly their potential to enhance financial inclusion and promote responsible finance. It explores how the adoption of blockchain, artificial intelligence, and other fintech innovations is transforming crowdfunding by making it more accessible, transparent, and ethical. By analyzing case studies and recent data, the article illustrates how these technologies help overcome traditional barriers to financing while promoting sustainable financial practices. The findings suggest that integrating fintech into crowdfunding can not only broaden access to funding for marginalized populations but also encourage more responsible management of financial resources, contributing to a fairer and more resilient economy.Keywords: crowdfunding, fintech, inclusion financière, finance responsible, blockchain, resilience financière
Procedia PDF Downloads 224034 An Overview and Analysis of ChatGPT 3.5/4.0
Authors: Sarah Mohammed, Huda Allagany, Ayah Barakat, Muna Elyas
Abstract:
This paper delves into the history and development of ChatGPT, tracing its evolution from its inception by OpenAI to its current state, and emphasizing its design improvements and strategic partnerships. It also explores the performance and applicability of ChatGPT versions 3.5 and 4 in various contexts, examining its capabilities and limitations in producing accurate and relevant responses. Utilizing a quantitative approach, user satisfaction, speed of response, learning capabilities, and overall utility in academic performance were assessed through surveys and analysis tools. Findings indicate that while ChatGPT generally delivers high accuracy and speed in responses, the need for clarification and more specific user instructions persists. The study highlights the tool's increasing integration across different sectors, showcasing its potential in educational and professional settings.Keywords: artificial intelligence, chat GPT, analysis, education
Procedia PDF Downloads 514033 Design and Implementation of a Wearable Artificial Kidney Prototype for Home Dialysis
Authors: R. A. Qawasma, F. M. Haddad, H. O. Salhab
Abstract:
Hemodialysis is a life-preserving treatment for a number of patients with kidney failure. The standard procedure of hemodialysis is three times a week during the hemodialysis procedure, the patient usually suffering from many inconvenient, exhausting feeling and effect on the heart and cardiovascular system are the most common signs. This paper provides a solution to reduce the previous problems by designing a wearable artificial kidney (WAK) taking in consideration a minimization the size of the dialysis machine. The WAK system consists of two circuits: blood circuit and dialysate circuit. The blood from the patient is filtered in the dialyzer before returning back to the patient. Several parameters using an advanced microcontroller and array of sensors. WAK equipped with visible and audible alarm system to aware the patients if there is any problem.Keywords: artificial kidney, home dialysis, renal failure, wearable kidney
Procedia PDF Downloads 2354032 Autonomous Quantum Competitive Learning
Authors: Mohammed A. Zidan, Alaa Sagheer, Nasser Metwally
Abstract:
Real-time learning is an important goal that most of artificial intelligence researches try to achieve it. There are a lot of problems and applications which require low cost learning such as learn a robot to be able to classify and recognize patterns in real time and real-time recall. In this contribution, we suggest a model of quantum competitive learning based on a series of quantum gates and additional operator. The proposed model enables to recognize any incomplete patterns, where we can increase the probability of recognizing the pattern at the expense of the undesired ones. Moreover, these undesired ones could be utilized as new patterns for the system. The proposed model is much better compared with classical approaches and more powerful than the current quantum competitive learning approaches.Keywords: competitive learning, quantum gates, quantum gates, winner-take-all
Procedia PDF Downloads 4724031 Thermo-Mechanical Analysis of Dissimilar Al/Cu Foil Single Lap Joints Made by Composite Metal Foil Manufacturing
Authors: Javaid Butt, Habtom Mebrahtu, Hassan Shirvani
Abstract:
The paper presents a new additive manufacturing process for the production of metal and composite parts. It is termed as composite metal foil manufacturing and is a combination of laminated object manufacturing and brazing techniques. The process has been described in detail and is being used to produce dissimilar aluminum to copper foil single lap joints. A three dimensional finite element model has been developed to study the thermo-mechanical characteristics of the dissimilar Al/Cu single lap joint. The effects of thermal stress and strain have been analyzed by carrying out transient thermal analysis on the heated plates used to join the two 0.1mm thin metal foils. Tensile test has been carried out on the foils before joining and after the single Al/Cu lap joints are made, they are subjected to tensile lap-shear test to analyze the effect of heat on the foils. The analyses are designed to assess the mechanical integrity of the foils after the brazing process and understand whether or not the heat treatment has an effect on the fracture modes of the produced specimens.Keywords: brazing, laminated object manufacturing, tensile lap-shear test, thermo-mechanical analysis
Procedia PDF Downloads 3424030 Emerging Technology for 6G Networks
Authors: Yaseein S. Hussein, Victor P. Gil Jiménez, Abdulmajeed Al-Jumaily
Abstract:
Due to the rapid advancement of technology, there is an increasing demand for wireless connections that are both fast and reliable, with minimal latency. New wireless communication standards are developed every decade, and the year 2030 is expected to see the introduction of 6G. The primary objectives of 6G network and terminal designs are focused on sustainability and environmental friendliness. The International Telecommunication Union-Recommendation division (ITU-R) has established the minimum requirements for 6G, with peak and user data rates of 1 Tbps and 10-100 Gbps, respectively. In this context, Light Fidelity (Li-Fi) technology is the most promising candidate to meet these requirements. This article will explore the various advantages, features, and potential applications of Li-Fi technology, and compare it with 5G networking, to showcase its potential impact among other emerging technologies that aim to enable 6G networks.Keywords: 6G networks, artificial intelligence (AI), Li-Fi technology, Terahertz (THz) communication, visible light communication (VLC)
Procedia PDF Downloads 944029 Evaluating Performance of an Anomaly Detection Module with Artificial Neural Network Implementation
Authors: Edward Guillén, Jhordany Rodriguez, Rafael Páez
Abstract:
Anomaly detection techniques have been focused on two main components: data extraction and selection and the second one is the analysis performed over the obtained data. The goal of this paper is to analyze the influence that each of these components has over the system performance by evaluating detection over network scenarios with different setups. The independent variables are as follows: the number of system inputs, the way the inputs are codified and the complexity of the analysis techniques. For the analysis, some approaches of artificial neural networks are implemented with different number of layers. The obtained results show the influence that each of these variables has in the system performance.Keywords: network intrusion detection, machine learning, artificial neural network, anomaly detection module
Procedia PDF Downloads 3434028 Terraria AI: YOLO Interface for Decision-Making Algorithms
Authors: Emmanuel Barrantes Chaves, Ernesto Rivera Alvarado
Abstract:
This paper presents a method to enable agents for the Terraria game to evaluate algorithms commonly used in general video game artificial intelligence competitions. The usage of the ‘You Only Look Once’ model in the first layer of the process obtains information from the screen, translating this information into a video game description language known as “Video Game Description Language”; the agents take that as input to make decisions. For this, the state-of-the-art algorithms were tested and compared; Monte Carlo Tree Search and Rolling Horizon Evolutionary; in this case, Rolling Horizon Evolutionary shows a better performance. This approach’s main advantage is that a VGDL beforehand is unnecessary. It will be built on the fly and opens the road for using more games as a framework for AI.Keywords: AI, MCTS, RHEA, Terraria, VGDL, YOLOv5
Procedia PDF Downloads 964027 Validation of the Trait Emotional Intelligence Questionnaire: Adolescent Short Form (TEIQue-ASF) among Adolescents in Vietnam
Authors: Anh Nguyen, Jane Fisher, Thach Tran, Anh T. T. Tran
Abstract:
Trait Emotional Intelligence is the knowledge, beliefs, and attitudes an individual has about their own and other people’s emotions. It is believed that trait emotional intelligence is a component of personality. Petrides’ Trait Emotional Intelligence Questionnaire (TEIQue) is well regarded and well-established, with validation data about its functioning among adults from many countries. However, there is little data yet about its use among Asian populations, including adolescents. The aims were to translate and culturally verify the Trait Emotional Intelligence Adolescent Short Form (TEIQue-ASF) and investigate content validity, construct validity, and reliability among adolescents attending high schools in Vietnam. Content of the TEIQue-ASF was translated (English to Vietnamese) and back-translated (Vietnamese to English) in consultation with bilingual and bicultural health researchers and pilot tested among 51 potential respondents. Phraseology and wording were then adjusted and the final version is named the VN-TEIQue-ASF. The VN-TEIQue-ASF’s properties were investigated in a cross-sectional elf-report survey among high school students in Central Vietnam. In total 1,546 / 1,573 (98.3%) eligible students from nine high schools in rural, urban, and coastline areas completed the survey. Explanatory Factor Analysis yielded a four-factor solution, including some with facets that loaded differently compared to the original version: Well-being, Emotion in Relationships, Emotion Self-management, and Emotion Sensitivity. The Cronbach’s alpha of the global score for the VN-TEIQue-ASF was .77. The VN-TEIQue-ASF is comprehensible and has good content and construct validity and reliability among adolescents in Vietnam. The factor structure is only partly replicated the original version. The VN-TEIQue-ASF is recommended for use in school or community surveys and professional study in education, psychology, and public health to investigate the trait emotional intelligence of adolescents in Vietnam.Keywords: adolescents, construct validity, content validity, factor analysis, questionnaire validity, trait emotional intelligence, Vietnam
Procedia PDF Downloads 2684026 Interpretation and Prediction of Geotechnical Soil Parameters Using Ensemble Machine Learning
Authors: Goudjil kamel, Boukhatem Ghania, Jlailia Djihene
Abstract:
This paper delves into the development of a sophisticated desktop application designed to calculate soil bearing capacity and predict limit pressure. Drawing from an extensive review of existing methodologies, the study meticulously examines various approaches employed in soil bearing capacity calculations, elucidating their theoretical foundations and practical applications. Furthermore, the study explores the burgeoning intersection of artificial intelligence (AI) and geotechnical engineering, underscoring the transformative potential of AI- driven solutions in enhancing predictive accuracy and efficiency.Central to the research is the utilization of cutting-edge machine learning techniques, including Artificial Neural Networks (ANN), XGBoost, and Random Forest, for predictive modeling. Through comprehensive experimentation and rigorous analysis, the efficacy and performance of each method are rigorously evaluated, with XGBoost emerging as the preeminent algorithm, showcasing superior predictive capabilities compared to its counterparts. The study culminates in a nuanced understanding of the intricate dynamics at play in geotechnical analysis, offering valuable insights into optimizing soil bearing capacity calculations and limit pressure predictions. By harnessing the power of advanced computational techniques and AI-driven algorithms, the paper presents a paradigm shift in the realm of geotechnical engineering, promising enhanced precision and reliability in civil engineering projects.Keywords: limit pressure of soil, xgboost, random forest, bearing capacity
Procedia PDF Downloads 224025 Artificial Neural Networks and Geographic Information Systems for Coastal Erosion Prediction
Authors: Angeliki Peponi, Paulo Morgado, Jorge Trindade
Abstract:
Artificial Neural Networks (ANNs) and Geographic Information Systems (GIS) are applied as a robust tool for modeling and forecasting the erosion changes in Costa Caparica, Lisbon, Portugal, for 2021. ANNs present noteworthy advantages compared with other methods used for prediction and decision making in urban coastal areas. Multilayer perceptron type of ANNs was used. Sensitivity analysis was conducted on natural and social forces and dynamic relations in the dune-beach system of the study area. Variations in network’s parameters were performed in order to select the optimum topology of the network. The developed methodology appears fitted to reality; however further steps would make it better suited.Keywords: artificial neural networks, backpropagation, coastal urban zones, erosion prediction
Procedia PDF Downloads 3924024 Parameters of Main Stage of Discharge between Artificial Charged Aerosol Cloud and Ground in Presence of Model Hydrometeor Arrays
Authors: D. S. Zhuravkova, A. G. Temnikov, O. S. Belova, L. L. Chernensky, T. K. Gerastenok, I. Y. Kalugina, N. Y. Lysov, A.V. Orlov
Abstract:
Investigation of the discharges from the artificial charged water aerosol clouds in presence of the arrays of the model hydrometeors could help to receive the new data about the peculiarities of the return stroke formation between the thundercloud and the ground when the large volumes of the hail particles participate in the lightning discharge initiation and propagation stimulation. Artificial charged water aerosol clouds of the negative or positive polarity with the potential up to one million volts have been used. Hail has been simulated by the group of the conductive model hydrometeors of the different form. Parameters of the impulse current of the main stage of the discharge between the artificial positively and negatively charged water aerosol clouds and the ground in presence of the model hydrometeors array and of its corresponding electromagnetic radiation have been determined. It was established that the parameters of the array of the model hydrometeors influence on the parameters of the main stage of the discharge between the artificial thundercloud cell and the ground. The maximal values of the main stage current impulse parameters and the electromagnetic radiation registered by the plate antennas have been found for the array of the model hydrometeors of the cylinder revolution form for the negatively charged aerosol cloud and for the array of the hydrometeors of the plate rhombus form for the positively charged aerosol cloud, correspondingly. It was found that parameters of the main stage of the discharge between the artificial charged water aerosol cloud and the ground in presence of the model hydrometeor array of the different considered forms depend on the polarity of the artificial charged aerosol cloud. In average, for all forms of the investigated model hydrometeors arrays, the values of the amplitude and the current rise of the main stage impulse current and the amplitude of the corresponding electromagnetic radiation for the artificial charged aerosol cloud of the positive polarity were in 1.1-1.9 times higher than for the charged aerosol cloud of the negative polarity. Thus, the received results could indicate to the possible more important role of the big volumes of the large hail arrays in the thundercloud on the parameters of the return stroke for the positive lightning.Keywords: main stage of discharge, hydrometeor form, lightning parameters, negative and positive artificial charged aerosol cloud
Procedia PDF Downloads 2564023 Healthy Architecture Applied to Inclusive Design for People with Cognitive Disabilities
Authors: Santiago Quesada-García, María Lozano-Gómez, Pablo Valero-Flores
Abstract:
The recent digital revolution, together with modern technologies, is changing the environment and the way people interact with inhabited space. However, in society, the elderly are a very broad and varied group that presents serious difficulties in understanding these modern technologies. Outpatients with cognitive disabilities, such as those suffering from Alzheimer's disease (AD), are distinguished within this cluster. This population group is in constant growth, and they have specific requirements for their inhabited space. According to architecture, which is one of the health humanities, environments are designed to promote well-being and improve the quality of life for all. Buildings, as well as the tools and technologies integrated into them, must be accessible, inclusive, and foster health. In this new digital paradigm, artificial intelligence (AI) appears as an innovative resource to help this population group improve their autonomy and quality of life. Some experiences and solutions, such as those that interact with users through chatbots and voicebots, show the potential of AI in its practical application. In the design of healthy spaces, the integration of AI in architecture will allow the living environment to become a kind of 'exo-brain' that can make up for certain cognitive deficiencies in this population. The objective of this paper is to address, from the discipline of neuroarchitecture, how modern technologies can be integrated into everyday environments and be an accessible resource for people with cognitive disabilities. For this, the methodology has a mixed structure. On the one hand, from an empirical point of view, the research carries out a review of the existing literature about the applications of AI to build space, following the critical review foundations. As a unconventional architectural research, an experimental analysis is proposed based on people with AD as a resource of data to study how the environment in which they live influences their regular activities. The results presented in this communication are part of the progress achieved in the competitive R&D&I project ALZARQ (PID2020-115790RB-I00). These outcomes are aimed at the specific needs of people with cognitive disabilities, especially those with AD, since, due to the comfort and wellness that the solutions entail, they can also be extrapolated to the whole society. As a provisional conclusion, it can be stated that, in the immediate future, AI will be an essential element in the design and construction of healthy new environments. The discipline of architecture has the compositional resources to, through this emerging technology, build an 'exo-brain' capable of becoming a personal assistant for the inhabitants, with whom to interact proactively and contribute to their general well-being. The main objective of this work is to show how this is possible.Keywords: Alzheimer’s disease, artificial intelligence, healthy architecture, neuroarchitecture, architectural design
Procedia PDF Downloads 614022 Influence of Model Hydrometeor Form on Probability of Discharge Initiation from Artificial Charged Water Aerosol Cloud
Authors: A. G. Temnikov, O. S. Belova, L. L. Chernensky, T. K. Gerastenok, N. Y. Lysov, A. V. Orlov, D. S. Zhuravkova
Abstract:
Hypothesis of the lightning initiation on the arrays of large hydrometeors are in the consideration. There is no agreement about the form the hydrometeors that could be the best for the lightning initiation from the thundercloud. Artificial charged water aerosol clouds of the positive or negative polarity could help investigate the possible influence of the hydrometeor form on the peculiarities and the probability of the lightning discharge initiation between the thundercloud and the ground. Artificial charged aerosol clouds that could create the electric field strength in the range of 5-6 kV/cm to 16-18 kV/cm have been used in experiments. The array of the model hydrometeors of the volume and plate form has been disposed near the bottom cloud boundary. It was established that the different kinds of the discharge could be initiated in the presence of the model hydrometeors array – from the cloud discharges up to the diffuse and channel discharges between the charged cloud and the ground. It was found that the form of the model hydrometeors could significantly influence the channel discharge initiation from the artificial charged aerosol cloud of the negative or positive polarity correspondingly. Analysis and generalization of the experimental results have shown that the maximal probability of the channel discharge initiation and propagation stimulation has been observed for the artificial charged cloud of the positive polarity when the arrays of the model hydrometeors of the cylinder revolution form have been used. At the same time, for the artificial charged clouds of the negative polarity, application of the model hydrometeor array of the plate rhombus form has provided the maximal probability of the channel discharge formation between the charged cloud and the ground. The established influence of the form of the model hydrometeors on the channel discharge initiation and from the artificial charged water aerosol cloud and its following successful propagation has been related with the different character of the positive and negative streamer and volume leader development on the model hydrometeors array being near the bottom boundary of the charged cloud. The received experimental results have shown the possibly important role of the form of the large hail particles precipitated in thundercloud on the discharge initiation.Keywords: cloud and channel discharges, hydrometeor form, lightning initiation, negative and positive artificial charged aerosol cloud
Procedia PDF Downloads 3164021 Systematic Mapping Study of Digitization and Analysis of Manufacturing Data
Authors: R. Clancy, M. Ahern, D. O’Sullivan, K. Bruton
Abstract:
The manufacturing industry is currently undergoing a digital transformation as part of the mega-trend Industry 4.0. As part of this phase of the industrial revolution, traditional manufacturing processes are being combined with digital technologies to achieve smarter and more efficient production. To successfully digitally transform a manufacturing facility, the processes must first be digitized. This is the conversion of information from an analogue format to a digital format. The objective of this study was to explore the research area of digitizing manufacturing data as part of the worldwide paradigm, Industry 4.0. The formal methodology of a systematic mapping study was utilized to capture a representative sample of the research area and assess its current state. Specific research questions were defined to assess the key benefits and limitations associated with the digitization of manufacturing data. Research papers were classified according to the type of research and type of contribution to the research area. Upon analyzing 54 papers identified in this area, it was noted that 23 of the papers originated in Germany. This is an unsurprising finding as Industry 4.0 is originally a German strategy with supporting strong policy instruments being utilized in Germany to support its implementation. It was also found that the Fraunhofer Institute for Mechatronic Systems Design, in collaboration with the University of Paderborn in Germany, was the most frequent contributing Institution of the research papers with three papers published. The literature suggested future research directions and highlighted one specific gap in the area. There exists an unresolved gap between the data science experts and the manufacturing process experts in the industry. The data analytics expertise is not useful unless the manufacturing process information is utilized. A legitimate understanding of the data is crucial to perform accurate analytics and gain true, valuable insights into the manufacturing process. There lies a gap between the manufacturing operations and the information technology/data analytics departments within enterprises, which was borne out by the results of many of the case studies reviewed as part of this work. To test the concept of this gap existing, the researcher initiated an industrial case study in which they embedded themselves between the subject matter expert of the manufacturing process and the data scientist. Of the papers resulting from the systematic mapping study, 12 of the papers contributed a framework, another 12 of the papers were based on a case study, and 11 of the papers focused on theory. However, there were only three papers that contributed a methodology. This provides further evidence for the need for an industry-focused methodology for digitizing and analyzing manufacturing data, which will be developed in future research.Keywords: analytics, digitization, industry 4.0, manufacturing
Procedia PDF Downloads 1114020 Understand and Redefine Lean Product Development
Authors: Alemu Moges Belay, Torgeir Welo, Jan Ola Strandhagen
Abstract:
Lean has long been linked with manufacturing, but its application claimed also by other functions such as product development and services. However, there is a challenge on understanding and defining lean in each function context. This paper aims to investigate the literature that focus mainly on PD process improvement, obtain better understanding and redefine LPD in systematic way. In addition to that, the paper attempts to summarize various proposed transformation strategies, definitions, identifying features of manufacturing and product development that would help to redefining lean in product development context. Finally we redefine LPD in organized way that encompasses different steps such as stage gate, communication and information, events, learning, innovation, knowledge and value creation.Keywords: lean, lean manufacturing, lean product development, transformation, strategies
Procedia PDF Downloads 4734019 Compressive Strength Evaluation of Underwater Concrete Structures Integrating the Combination of Rebound Hardness and Ultrasonic Pulse Velocity Methods with Artificial Neural Networks
Authors: Seunghee Park, Junkyeong Kim, Eun-Seok Shin, Sang-Hun Han
Abstract:
In this study, two kinds of nondestructive evaluation (NDE) techniques (rebound hardness and ultrasonic pulse velocity methods) are investigated for the effective maintenance of underwater concrete structures. A new methodology to estimate the underwater concrete strengths more effectively, named “artificial neural network (ANN) – based concrete strength estimation with the combination of rebound hardness and ultrasonic pulse velocity methods” is proposed and verified throughout a series of experimental works.Keywords: underwater concrete, rebound hardness, Schmidt hammer, ultrasonic pulse velocity, ultrasonic sensor, artificial neural networks, ANN
Procedia PDF Downloads 5324018 Synthesis of a Model Predictive Controller for Artificial Pancreas
Authors: Mohamed El Hachimi, Abdelhakim Ballouk, Ilyas Khelafa, Abdelaziz Mouhou
Abstract:
Introduction: Type 1 diabetes occurs when beta cells are destroyed by the body's own immune system. Treatment of type 1 diabetes mellitus could be greatly improved by applying a closed-loop control strategy to insulin delivery, also known as an Artificial Pancreas (AP). Method: In this paper, we present a new formulation of the cost function for a Model Predictive Control (MPC) utilizing a technic which accelerates the speed of control of the AP and tackles the nonlinearity of the control problem via asymmetric objective functions. Finding: The finding of this work consists in a new Model Predictive Control algorithm that leads to good performances like decreasing the time of hyperglycaemia and avoiding hypoglycaemia. Conclusion: These performances are validated under in silico trials.Keywords: artificial pancreas, control algorithm, biomedical control, MPC, objective function, nonlinearity
Procedia PDF Downloads 3074017 An Integrated Supply Chain Management to Manufacturing Industries
Authors: Kittipong Tissayakorn, Fumio Akagi, Yu Song
Abstract:
Manufacturers have been exploring innovative strategies to achieve and sustain competitive advantages as they face a new era of intensive global competition. Such strategy is known as Supply Chain Management (SCM), which has gained a tremendous amount of attention from both researchers and practitioners over the last decade. Supply chain management (SCM) is considered as the most popular operating strategy for improving organizational competitiveness in the twenty-first century. It has attracted a lot of attention recently due to its role involving all of the activities in industrial organizations, ranging from raw material procurement to final product delivery to customers. Well-designed supply chain systems can substantially improve efficiency and product quality, and eventually enhance customer satisfaction and profitability. In this paper, a manufacturing engineering perspective on supply chain integration is presented. Research issues discussed include the product and process design for the supply chain, design evaluation of manufacturing in the supply chain, agent-based techniques for supply chain integration, intelligent information for sharing across the supply chain, and a development of standards for product, process, and production data exchange to facilitate electronic commerce. The objective is to provide guidelines and references for manufacturing engineers and researchers interested in supply chain integration.Keywords: supply chain, supply chain management, supply chain integration, manufacturing industries
Procedia PDF Downloads 350