Search results for: approximate dynamic programming
4212 Examination of the Reinforcement Forces Generated in Pseudo-Static and Dynamic Status in Retaining Walls
Authors: K. Passbakhsh
Abstract:
Determination of reinforcement forces is one of the most important and main discussions in designing retaining walls. By determining these forces we refrain from conservative planning. By numerically modeling the reinforced soil retaining walls under dynamic loading reinforcement forces can be calculated. In this study we try to approach the gained forces by pseudo-static method according to FHWA code and gained forces from numerical modeling by finite element method, by selecting seismic horizontal coefficient for different wall height. PLAXIS software was used for numerical analysis. Then the effect of reinforcement stiffness and soil type on reinforcement forces is examined.Keywords: reinforced soil, PLAXIS, reinforcement forces, retaining walls
Procedia PDF Downloads 3574211 The Finite Element Method for Nonlinear Fredholm Integral Equation of the Second Kind
Authors: Melusi Khumalo, Anastacia Dlamini
Abstract:
In this paper, we consider a numerical solution for nonlinear Fredholm integral equations of the second kind. We work with uniform mesh and use the Lagrange polynomials together with the Galerkin finite element method, where the weight function is chosen in such a way that it takes the form of the approximate solution but with arbitrary coefficients. We implement the finite element method to the nonlinear Fredholm integral equations of the second kind. We consider the error analysis of the method. Furthermore, we look at a specific example to illustrate the implementation of the finite element method.Keywords: finite element method, Galerkin approach, Fredholm integral equations, nonlinear integral equations
Procedia PDF Downloads 3734210 Unsteady and Steady State in Natural Convection
Authors: Syukri Himran, Erwin Eka Putra, Nanang Roni
Abstract:
This study explains the natural convection of viscous fluid flowing on semi-infinite vertical plate. A set of the governing equations describing the continuity, momentum and energy, have been reduced to dimensionless forms by introducing the references variables. To solve the problems, the equations are formulated by explicit finite-difference in time dependent form and computations are performed by Fortran program. The results describe velocity, temperature profiles both in transient and steady state conditions. An approximate value of heat transfer coefficient and the effects of Pr on convection flow are also presented.Keywords: natural convection, vertical plate, velocity and temperature profiles, steady and unsteady
Procedia PDF Downloads 4874209 Influence of the 3D Printing Parameters on the Dynamic Characteristics of Composite Structures
Authors: Ali Raza, Rūta Rimašauskienė
Abstract:
In the current work, the fused deposition modelling (FDM) technique is used to manufacture PLA reinforced with carbon fibre composite structures with two unique layer patterns, 0°\0° and 0°\90°. The purpose of the study is to investigate the dynamic characteristics of each fabricated composite structure. The Macro Fiber Composite (MFC) is embedded with 0°/0° and 0°/90° structures to investigate the effect of an MFC (M8507-P2 type) patch on vibration amplitude suppression under dynamic loading circumstances. First, modal analysis testing was performed using a Polytec 3D laser vibrometer to identify bending mode shapes, natural frequencies, and vibration amplitudes at the corresponding natural frequencies. To determine the stiffness of each structure, several loads were applied at the free end of the structure, and the deformation was recorded using a laser displacement sensor. The findings confirm that a structure with 0°\0° layers pattern was found to have more stiffness compared to a 0°\90° structure. The maximum amplitude suppression in each structure was measured using a laser displacement sensor at the first resonant frequency when the control voltage signal with optimal phase was applied to the MFC. The results confirm that the 0°/0° pattern's structure exhibits a higher displacement reduction than the 0°/90° pattern. Moreover, stiffer structures have been found to perform amplitude suppression more effectively.Keywords: carbon fibre composite, MFC, modal analysis stiffness, stiffness
Procedia PDF Downloads 624208 Improving Taint Analysis of Android Applications Using Finite State Machines
Authors: Assad Maalouf, Lunjin Lu, James Lynott
Abstract:
We present a taint analysis that can automatically detect when string operations result in a string that is free of taints, where all the tainted patterns have been removed. This is an improvement on the conservative behavior of previous taint analyzers, where a string operation on a tainted string always leads to a tainted string unless the operation is manually marked as a sanitizer. The taint analysis is built on top of a string analysis that uses finite state automata to approximate the sets of values that string variables can take during the execution of a program. The proposed approach has been implemented as an extension of FlowDroid and experimental results show that the resulting taint analyzer is much more precise than the original FlowDroid.Keywords: android, static analysis, string analysis, taint analysis
Procedia PDF Downloads 1774207 Enhanced Tensor Tomographic Reconstruction: Integrating Absorption, Refraction and Temporal Effects
Authors: Lukas Vierus, Thomas Schuster
Abstract:
A general framework is examined for dynamic tensor field tomography within an inhomogeneous medium characterized by refraction and absorption, treated as an inverse source problem concerning the associated transport equation. Guided by Fermat’s principle, the Riemannian metric within the specified domain is determined by the medium's refractive index. While considerable literature exists on the inverse problem of reconstructing a tensor field from its longitudinal ray transform within a static Euclidean environment, limited inversion formulas and algorithms are available for general Riemannian metrics and time-varying tensor fields. It is established that tensor field tomography, akin to an inverse source problem for a transport equation, persists in dynamic scenarios. Framing dynamic tensor tomography as an inverse source problem embodies a comprehensive perspective within this domain. Ensuring well-defined forward mappings necessitates establishing existence and uniqueness for the underlying transport equations. However, the bilinear forms of the associated weak formulations fail to meet the coercivity condition. Consequently, recourse to viscosity solutions is taken, demonstrating their unique existence within suitable Sobolev spaces (in the static case) and Sobolev-Bochner spaces (in the dynamic case), under a specific assumption restricting variations in the refractive index. Notably, the adjoint problem can also be reformulated as a transport equation, with analogous results regarding uniqueness. Analytical solutions are expressed as integrals over geodesics, facilitating more efficient evaluation of forward and adjoint operators compared to solving partial differential equations. Certainly, here's the revised sentence in English: Numerical experiments are conducted using a Nesterov-accelerated Landweber method, encompassing various fields, absorption coefficients, and refractive indices, thereby illustrating the enhanced reconstruction achieved through this holistic modeling approach.Keywords: attenuated refractive dynamic ray transform of tensor fields, geodesics, transport equation, viscosity solutions
Procedia PDF Downloads 504206 Portfolio Optimization with Reward-Risk Ratio Measure Based on the Mean Absolute Deviation
Authors: Wlodzimierz Ogryczak, Michal Przyluski, Tomasz Sliwinski
Abstract:
In problems of portfolio selection, the reward-risk ratio criterion is optimized to search for a risky portfolio with the maximum increase of the mean return in proportion to the risk measure increase when compared to the risk-free investments. In the classical model, following Markowitz, the risk is measured by the variance thus representing the Sharpe ratio optimization and leading to the quadratic optimization problems. Several Linear Programming (LP) computable risk measures have been introduced and applied in portfolio optimization. In particular, the Mean Absolute Deviation (MAD) measure has been widely recognized. The reward-risk ratio optimization with the MAD measure can be transformed into the LP formulation with the number of constraints proportional to the number of scenarios and the number of variables proportional to the total of the number of scenarios and the number of instruments. This may lead to the LP models with huge number of variables and constraints in the case of real-life financial decisions based on several thousands scenarios, thus decreasing their computational efficiency and making them hardly solvable by general LP tools. We show that the computational efficiency can be then dramatically improved by an alternative model based on the inverse risk-reward ratio minimization and by taking advantages of the LP duality. In the introduced LP model the number of structural constraints is proportional to the number of instruments thus not affecting seriously the simplex method efficiency by the number of scenarios and therefore guaranteeing easy solvability. Moreover, we show that under natural restriction on the target value the MAD risk-reward ratio optimization is consistent with the second order stochastic dominance rules.Keywords: portfolio optimization, reward-risk ratio, mean absolute deviation, linear programming
Procedia PDF Downloads 4054205 Gender Based of Sustainable Food Self-Resilience for Village Using Dynamic System Model
Authors: Kholil, Laksanto Utomo
Abstract:
The food needs of the Indonesian people will continue increase year to year due to the increase of population growth. For ensuring food securityand and resilience, the government has developed a program food self-resilience village since 2006. Food resilience is a complex system, consisting of subsystem availability, distribution and consumption of the sufficiency of food consumed both in quantity and quality. Low access, and limited assets to food sources is the dominant factor vulnerable of food. Women have a major role in supporting the productive activities of the family to meet food sufficiency and resilience. The purpose of this paper is to discuss the model of food self-resilience village wich gender responsive by using a dynamic system model. Model will be developed into 3 level: family, vilage, and regency in accordance with the concept of village food resilience model wich has been developed by ministry of agriculture. Model development based on the results of experts discussion and field study. By some scenarios and simulation models we will able to develop appropriate policy strategies for family food resilience. The result of study show that food resilience was influenced by many factors: goverment policies, technology, human resource, and in the same time it will be a feed back for goverment policies and number of poor family.Keywords: food availability, food sufficiency, gender, model dynamic, law enfrocement
Procedia PDF Downloads 5324204 Circular Approximation by Trigonometric Bézier Curves
Authors: Maria Hussin, Malik Zawwar Hussain, Mubashrah Saddiqa
Abstract:
We present a trigonometric scheme to approximate a circular arc with its two end points and two end tangents/unit tangents. A rational cubic trigonometric Bézier curve is constructed whose end control points are defined by the end points of the circular arc. Weight functions and the remaining control points of the cubic trigonometric Bézier curve are estimated by variational approach to reproduce a circular arc. The radius error is calculated and found less than the existing techniques.Keywords: control points, rational trigonometric Bézier curves, radius error, shape measure, weight functions
Procedia PDF Downloads 4734203 Dynamic Interaction between Two Neighboring Tunnels in a Layered Half-Space
Authors: Chao He, Shunhua Zhou, Peijun Guo
Abstract:
The vast majority of existing underground railway lines consist of twin tunnels. In this paper, the dynamic interaction between two neighboring tunnels in a layered half-space is investigated by an analytical model. The two tunnels are modelled as cylindrical thin shells, while the soil in the form of a layered half-space with two cylindrical cavities is simulated by the elastic continuum theory. The transfer matrix method is first used to derive the relationship between the plane wave vectors in arbitrary layers and the source layer. Thereafter, the wave translation and transformation are introduced to determine the plane and cylindrical wave vectors in the source layer. The solution for the dynamic interaction between twin tunnels in a layered half-space is obtained by means of the compatibility of displacements and equilibrium of stresses on the two tunnel–soil interfaces. By coupling the proposed model with a fully track model, the train-induced vibrations from twin tunnels in a multi-layered half-space are investigated. The numerical results demonstrate that the existence of a neighboring tunnel has a significant effect on ground vibrations.Keywords: underground railway, twin tunnels, wave translation and transformation, transfer matrix method
Procedia PDF Downloads 1194202 Immediate Effect of Augmented Feedback on Jumping Performance of the Athletes with Dynamic Knee Valgus
Authors: Mohamadreza Hatefi, Malihe Hadadnezhad
Abstract:
It is well established that jump-landing-related biomechanical deficiencies, such as dynamic knee valgus (DKV), can be improved by using various forms of feedback; However, the effectiveness of these interventions synchronously on athletes' jumping performance remains unknown. Twenty-one recreational athletes with DKV performed countermovement jump (CMJ) and drop vertical jump (DVJ) tasks before and after feedback intervention while the kinematic, force plate and electromyography data of the lower extremity were synchronously captured. The athletes’ jumping performance was calculated by using the reactive strength index-modified (RSIₘₒ𝒹). The athletes at the post-intervention exhibited significantly less hip adduction and more tibial internal rotation during both CMJ and DVJ tasks and maximum knee flexion just during DVJ task. Moreover, athletes exhibited increased time to take-off and consequently decreased RSIₘₒ𝒹 during DVJ task, but no difference was observed in CMJ task. Feedback immediately improved DKV without disturbing the athletes’ jumping height during both tasks, But athletes exhibited increased time to take-off and consequently decreased RSIₘₒ𝒹 only during DVJ task, which suggests that the results may differ according to the nature of jumping task. Nevertheless, the effectiveness of landing-related biomechanical deficiencies improvement on athletes' jumping performance must be investigated in the long-term as a new movement pattern.Keywords: reactive strength index, feedback, biomechanics, dynamic knee valgus
Procedia PDF Downloads 1014201 Dynamic Comovements between Exchange Rates, Stock Prices and Oil Prices: Evidence from Developed and Emerging Latin American Markets
Authors: Nini Johana Marin Rodriguez
Abstract:
This paper applies DCC, EWMA and OGARCH models to compare the dynamic correlations between exchange rates, oil prices, exchange rates and stock markets to examine the time-varying conditional correlations to the daily oil prices and index returns in relation to the US dollar/local currency for developed (Canada and Mexico) and emerging Latin American markets (Brazil, Chile, Colombia and Peru). Changes in correlation interactions are indicative of structural changes in market linkages with implications to contagion and interdependence. For each pair of stock price-exchange rate and oil price-US dollar/local currency, empirical evidence confirms of a strengthening negative correlation in the last decade. Methodologies suggest only two events have significatively impact in the countries analyzed: global financial crisis and Europe crisis, both events are associated with shifts of correlations to stronger negative level for most of the pairs analyzed. While, the first event has a shifting effect on mainly emerging members, the latter affects developed members. The identification of these relationships provides benefits in risk diversification and inflation targeting.Keywords: crude oil, dynamic conditional correlation, exchange rates, interdependence, stock prices
Procedia PDF Downloads 3044200 Analysis and Design of Offshore Triceratops under Ultra-Deep Waters
Authors: Srinivasan Chandrasekaran, R. Nagavinothini
Abstract:
Offshore platforms for ultra-deep waters are form-dominant by design; hybrid systems with large flexibility in horizontal plane and high rigidity in vertical plane are preferred due to functional complexities. Offshore triceratops is relatively a new-generation offshore platform, whose deck is partially isolated from the supporting buoyant legs by ball joints. They allow transfer of partial displacements of buoyant legs to the deck but restrain transfer of rotational response. Buoyant legs are in turn taut-moored to the sea bed using pre-tension tethers. Present study will discuss detailed dynamic analysis and preliminary design of the chosen geometric, which is necessary as a proof of validation for such design applications. A detailed numeric analysis of triceratops at 2400 m water depth under random waves is presented. Preliminary design confirms member-level design requirements under various modes of failure. Tether configuration, proposed in the study confirms no pull-out of tethers as stress variation is comparatively lesser than the yield value. Presented study shall aid offshore engineers and contractors to understand suitability of triceratops, in terms of design and dynamic response behaviour.Keywords: offshore structures, triceratops, random waves, buoyant legs, preliminary design, dynamic analysis
Procedia PDF Downloads 2034199 The Microstructural Evolution of X45CrNiW189 Valve Steel during Hot Deformation
Authors: A. H. Meysami
Abstract:
In this paper, the hot compression tests were carried on X45CrNiW189 valve steel (X45) in the temperature range of 1000–1200°C and the strain rate range of 0.004–0.5 s^(-1) in order to study the high temperature softening behavior of the steel. For the exact prediction of flow stress, the effective stress - effective strain curves were obtained from experiments under various conditions. On the basis of experimental results, the dynamic recrystallization fraction (DRX), AGS, hot deformation and activation energy behavior were investigated. It was found that the calculated results were in a good agreement with the experimental flow stress and microstructure of the steel for different conditions of hot deformation.Keywords: X45CrNiW189, valve steel, hot compression test, dynamic recrystallization, hot deformation
Procedia PDF Downloads 2764198 Adding a Few Language-Level Constructs to Improve OOP Verifiability of Semantic Correctness
Authors: Lian Yang
Abstract:
Object-oriented programming (OOP) is the dominant programming paradigm in today’s software industry and it has literally enabled average software developers to develop millions of commercial strength software applications in the era of INTERNET revolution over the past three decades. On the other hand, the lack of strict mathematical model and domain constraint features at the language level has long perplexed the computer science academia and OOP engineering community. This situation resulted in inconsistent system qualities and hard-to-understand designs in some OOP projects. The difficulties with regards to fix the current situation are also well known. Although the power of OOP lies in its unbridled flexibility and enormously rich data modeling capability, we argue that the ambiguity and the implicit facade surrounding the conceptual model of a class and an object should be eliminated as much as possible. We listed the five major usage of class and propose to separate them by proposing new language constructs. By using well-established theories of set and FSM, we propose to apply certain simple, generic, and yet effective constraints at OOP language level in an attempt to find a possible solution to the above-mentioned issues regarding OOP. The goal is to make OOP more theoretically sound as well as to aid programmers uncover warning signs of irregularities and domain-specific issues in applications early on the development stage and catch semantic mistakes at runtime, improving correctness verifiability of software programs. On the other hand, the aim of this paper is more practical than theoretical.Keywords: new language constructs, set theory, FSM theory, user defined value type, function groups, membership qualification attribute (MQA), check-constraint (CC)
Procedia PDF Downloads 2384197 Factor Study Affecting Visual Awareness on Dynamic Object Monitoring
Authors: Terry Liang Khin Teo, Sun Woh Lye, Kai Lun Brendon Goh
Abstract:
As applied to dynamic monitoring situations, the prevailing approach to situation awareness (SA) assumes that the relevant areas of interest (AOI) be perceived before that information can be processed further to affect decision-making and, thereafter, action. It is not entirely clear whether this is the case. This study seeks to investigate the monitoring of dynamic objects through matching eye fixations with the relevant AOIs in boundary-crossing scenarios. By this definition, a match is where a fixation is registered on the AOI. While many factors may affect monitoring characteristics, traffic simulations were designed in this study to explore two factors, namely: the number of inbounds/outbound traffic transfers and the number of entry and/or exit points in a radar monitoring sector. These two factors were graded into five levels of difficulty ranging from low to high traffic flow numbers. Combined permutation in terms of levels of difficulty of these two factors yielded a total of thirty scenarios. Through this, results showed that changes in the traffic flow numbers on transfer resulted in greater variations having match limits ranging from 29%-100%, as compared to the number of sector entry/exit points of range limit from 80%-100%. The subsequent analysis is able to determine the type and combination of traffic scenarios where imperfect matching is likely to occur.Keywords: air traffic simulation, eye-tracking, visual monitoring, focus attention
Procedia PDF Downloads 564196 Prediction of Damage to Cutting Tools in an Earth Pressure Balance Tunnel Boring Machine EPB TBM: A Case Study L3 Guadalajara Metro Line (Mexico)
Authors: Silvia Arrate, Waldo Salud, Eloy París
Abstract:
The wear of cutting tools is one of the most decisive elements when planning tunneling works, programming the maintenance stops and saving the optimum stock of spare parts during the evolution of the excavation. Being able to predict the behavior of cutting tools can give a very competitive advantage in terms of costs and excavation performance, optimized to the needs of the TBM itself. The incredible evolution of data science in recent years gives the option to implement it at the time of analyzing the key and most critical parameters related to machinery with the purpose of knowing how the cutting head is performing in front of the excavated ground. Taking this as a case study, Metro Line 3 of Guadalajara in Mexico will develop the feasibility of using Specific Energy versus data science applied over parameters of Torque, Penetration, and Contact Force, among others, to predict the behavior and status of cutting tools. The results obtained through both techniques are analyzed and verified in the function of the wear and the field situations observed in the excavation in order to determine its effectiveness regarding its predictive capacity. In conclusion, the possibilities and improvements offered by the application of digital tools and the programming of calculation algorithms for the analysis of wear of cutting head elements compared to purely empirical methods allow early detection of possible damage to cutting tools, which is reflected in optimization of excavation performance and a significant improvement in costs and deadlines.Keywords: cutting tools, data science, prediction, TBM, wear
Procedia PDF Downloads 464195 A New Multi-Target, Multi-Agent Search and Rescue Path Planning Approach
Authors: Jean Berger, Nassirou Lo, Martin Noel
Abstract:
Perfectly suited for natural or man-made emergency and disaster management situations such as flood, earthquakes, tornadoes, or tsunami, multi-target search path planning for a team of rescue agents is known to be computationally hard, and most techniques developed so far come short to successfully estimate optimality gap. A novel mixed-integer linear programming (MIP) formulation is proposed to optimally solve the multi-target multi-agent discrete search and rescue (SAR) path planning problem. Aimed at maximizing cumulative probability of successful target detection, it captures anticipated feedback information associated with possible observation outcomes resulting from projected path execution, while modeling agent discrete actions over all possible moving directions. Problem modeling further takes advantage of network representation to encompass decision variables, expedite compact constraint specification, and lead to substantial problem-solving speed-up. The proposed MIP approach uses CPLEX optimization machinery, efficiently computing near-optimal solutions for practical size problems, while giving a robust upper bound obtained from Lagrangean integrality constraint relaxation. Should eventually a target be positively detected during plan execution, a new problem instance would simply be reformulated from the current state, and then solved over the next decision cycle. A computational experiment shows the feasibility and the value of the proposed approach.Keywords: search path planning, search and rescue, multi-agent, mixed-integer linear programming, optimization
Procedia PDF Downloads 3704194 An Incremental Refinement Approach to a Development of Dynamic Host Configuration Protocol (DHCP) Using Event-B
Authors: Rajaa Filali, Mohamed Bouhdadi
Abstract:
This paper presents an incremental development of the Dynamic Host Configuration Protocol (DHCP) in Event-B. DHCP is widely used communication protocol, which provides a standard mechanism to obtain configuration parameters. The specification is performed in a stepwise manner and verified through a series of refinements. The Event-B formal method uses the Rodin platform to modeling and verifying some properties of the protocol such as safety, liveness and deadlock freedom. To model and verify the protocol, we use the formal technique Event-B which provides an accessible and rigorous development method. This interaction between modelling and proving reduces the complexity and helps to eliminate misunderstandings, inconsistencies, and specification gaps.Keywords: DHCP protocol, Event-B, refinement, proof obligation, Rodin
Procedia PDF Downloads 2254193 Estimating Knowledge Flow Patterns of Business Method Patents with a Hidden Markov Model
Authors: Yoonjung An, Yongtae Park
Abstract:
Knowledge flows are a critical source of faster technological progress and stouter economic growth. Knowledge flows have been accelerated dramatically with the establishment of a patent system in which each patent is required by law to disclose sufficient technical information for the invention to be recreated. Patent analysis, thus, has been widely used to help investigate technological knowledge flows. However, the existing research is limited in terms of both subject and approach. Particularly, in most of the previous studies, business method (BM) patents were not covered although they are important drivers of knowledge flows as other patents. In addition, these studies usually focus on the static analysis of knowledge flows. Some use approaches that incorporate the time dimension, yet they still fail to trace a true dynamic process of knowledge flows. Therefore, we investigate dynamic patterns of knowledge flows driven by BM patents using a Hidden Markov Model (HMM). An HMM is a popular statistical tool for modeling a wide range of time series data, with no general theoretical limit in regard to statistical pattern classification. Accordingly, it enables characterizing knowledge patterns that may differ by patent, sector, country and so on. We run the model in sets of backward citations and forward citations to compare the patterns of knowledge utilization and knowledge dissemination.Keywords: business method patents, dynamic pattern, Hidden-Markov Model, knowledge flow
Procedia PDF Downloads 3274192 Proposal of a Virtual Reality Dynamism Augmentation Method for Sports Spectating
Authors: Hertzog Clara, Sakurai Sho, Hirota Koichi, Nojima Takuya
Abstract:
It is common to see graphics appearing on television while watching a sports game to provide information, but it is less common to see graphics specifically aiming to boost spectators’ dynamism perception. It is even less common to see such graphics designed especially for virtual reality (VR). However, it appears that even with simple dynamic graphics, it would be possible to improve VR sports spectators’ experience. So, in this research, we explain how graphics can be used in VR to improve the dynamism of a broadcasted sports game and we provide a simple example. This example consists in a white halo displayed around the video and blinking according to the game speed. We hope to increase people’s awareness about VR sports spectating and the possibilities this display offers through dynamic graphics.Keywords: broadcasting, graphics, sports spectating, virtual reality
Procedia PDF Downloads 884191 Dynamics Characterizations of Dielectric Electro- Active Polymer Pull Actuator for Vibration Control
Authors: A. M. Wahab, E. Rustighi
Abstract:
Elastomeric dielectric material has recently become a new alternative for actuator technology. The characteristics of dielectric elastomers placed between two electrodes to withstand large strain when electrodes are charged has attracted the attention of many researcher to study this material for actuator technology. Thus, in the past few years Danfoss Ventures A/S has established their own dielectric electro-active polymer (DEAP), which was called PolyPower. The main objective of this work was to investigate the dynamic characteristics for vibration control of a PolyPower actuator folded in ‘pull’ configuration. A range of experiments was carried out on the folded actuator including passive (without electrical load) and active (with electrical load) testing. For both categories static and dynamic testing have been done to determine the behavior of folded DEAP actuator. Voltage-Strain experiments show that the DEAP folded actuator is a non-linear system. It is also shown that the voltage supplied has no effect on the natural frequency. Finally, varying AC voltage with different amplitude and frequency shows the parameters that influence the performance of DEAP folded actuator. As a result, the actuator performance dominated by the frequency dependence of the elastic response and was less influenced by dielectric properties.Keywords: dielectric electro-active polymer, pull actuator, static, dynamic, electromechanical
Procedia PDF Downloads 2494190 Lee-Carter Mortality Forecasting Method with Dynamic Normal Inverse Gaussian Mortality Index
Authors: Funda Kul, İsmail Gür
Abstract:
Pension scheme providers have to price mortality risk by accurate mortality forecasting method. There are many mortality-forecasting methods constructed and used in literature. The Lee-Carter model is the first model to consider stochastic improvement trends in life expectancy. It is still precisely used. Mortality forecasting is done by mortality index in the Lee-Carter model. It is assumed that mortality index fits ARIMA time series model. In this paper, we propose and use dynamic normal inverse gaussian distribution to modeling mortality indes in the Lee-Carter model. Using population mortality data for Italy, France, and Turkey, the model is forecasting capability is investigated, and a comparative analysis with other models is ensured by some well-known benchmarking criterions.Keywords: mortality, forecasting, lee-carter model, normal inverse gaussian distribution
Procedia PDF Downloads 3584189 Creating Renewable Energy Investment Portfolio in Turkey between 2018-2023: An Approach on Multi-Objective Linear Programming Method
Authors: Berker Bayazit, Gulgun Kayakutlu
Abstract:
The World Energy Outlook shows that energy markets will substantially change within a few forthcoming decades. First, determined action plans according to COP21 and aim of CO₂ emission reduction have already impact on policies of countries. Secondly, swiftly changed technological developments in the field of renewable energy will be influential upon medium and long-term energy generation and consumption behaviors of countries. Furthermore, share of electricity on global energy consumption is to be expected as high as 40 percent in 2040. Electrical vehicles, heat pumps, new electronical devices and digital improvements will be outstanding technologies and innovations will be the testimony of the market modifications. In order to meet highly increasing electricity demand caused by technologies, countries have to make new investments in the field of electricity production, transmission and distribution. Specifically, electricity generation mix becomes vital for both prevention of CO₂ emission and reduction of power prices. Majority of the research and development investments are made in the field of electricity generation. Hence, the prime source diversity and source planning of electricity generation are crucial for improving the wealth of citizen life. Approaches considering the CO₂ emission and total cost of generation, are necessary but not sufficient to evaluate and construct the product mix. On the other hand, employment and positive contribution to macroeconomic values are important factors that have to be taken into consideration. This study aims to constitute new investments in renewable energies (solar, wind, geothermal, biogas and hydropower) between 2018-2023 under 4 different goals. Therefore, a multi-objective programming model is proposed to optimize the goals of minimizing the CO₂ emission, investment amount and electricity sales price while maximizing the total employment and positive contribution to current deficit. In order to avoid the user preference among the goals, Dinkelbach’s algorithm and Guzel’s approach have been combined. The achievements are discussed with comparison to the current policies. Our study shows that new policies like huge capacity allotment might be discussible although obligation for local production is positive. The improvements in grid infrastructure and re-design support for the biogas and geothermal can be recommended.Keywords: energy generation policies, multi-objective linear programming, portfolio planning, renewable energy
Procedia PDF Downloads 2424188 Comparative Study of Static and Dynamic Representations of the Family Structure and Its Clinical Utility
Authors: Marietta Kékes Szabó
Abstract:
The patterns of personality (mal)function and the individuals’ psychosocial environment influence the healthy status collectively and may lie in the background of psychosomatic disorders. Although the patients with their diversified symptoms usually do not have any organic problems, the experienced complaint, the fear of serious illness and the lack of social support often lead to increased anxiety and further enigmatic symptoms. The role of the family system and its atmosphere seem to be very important in this process. More studies explored the characteristics of dysfunctional family organization: inflexible family structure, hidden conflicts that are not spoken about by the family members during their daily interactions, undefined role boundaries, neglect or overprotection of the children by the parents and coalition between generations. However, questionnaires that are used to measure the properties of the family system are able to explore only its unit and cannot pay attention to the dyadic interactions, while the representation of the family structure by a figure placing test gives us a new perspective to better understand the organization of the (sub)system(s). Furthermore, its dynamic form opens new perspectives to explore the family members’ joint representations, which gives us the opportunity to know more about the flexibility of cohesion and hierarchy of the given family system. In this way, the communication among the family members can be also examined. The aim of my study was to collect a great number of information about the organization of psychosomatic families. In our research we used Gehring’s Family System Test (FAST) both in static and dynamic forms to mobilize the family members’ mental representations about their family and to get data in connection with their individual representations as well as cooperation. There were four families in our study, all of them with a young adult person. Two families with healthy participants and two families with asthmatic patient(s) were involved in our research. The family members’ behavior that could be observed during the dynamic situation was recorded on video for further data analysis with Noldus Observer XT 8.0 program software. In accordance with the previous studies, our results show that the family structure of the families with at least one psychosomatic patient is more rigid than it was found in the control group and the certain (typical, ideal, and conflict) dynamic representations reflected mainly the most dominant family member’s individual concept. The behavior analysis also confirmed the intensified role of the dominant person(s) in the family life, thereby influencing the family decisions, the place of the other family members, as well as the atmosphere of the interactions, which could also be grasped well by the applied methods. However, further research is needed to learn more about the phenomenon that can open the door for new therapeutic approaches.Keywords: psychosomatic families, family structure, family system test (FAST), static and dynamic representations, behavior analysis
Procedia PDF Downloads 3904187 Dynamic Reliability for a Complex System and Process: Application on Offshore Platform in Mozambique
Authors: Raed KOUTA, José-Alcebiades-Ernesto HLUNGUANE, Eric Châtele
Abstract:
The search for and exploitation of new fossil energy resources is taking place in the context of the gradual depletion of existing deposits. Despite the adoption of international targets to combat global warming, the demand for fuels continues to grow, contradicting the movement towards an energy-efficient society. The increase in the share of offshore in global hydrocarbon production tends to compensate for the depletion of terrestrial reserves, thus constituting a major challenge for the players in the sector. Through the economic potential it represents, and the energy independence it provides, offshore exploitation is also a challenge for States such as Mozambique, which have large maritime areas and whose environmental wealth must be considered. The exploitation of new reserves on economically viable terms depends on available technologies. The development of deep and ultra-deep offshore requires significant research and development efforts. Progress has also been made in managing the multiple risks inherent in this activity. Our study proposes a reliability approach to develop products and processes designed to live at sea. Indeed, the context of an offshore platform requires highly reliable solutions to overcome the difficulties of access to the system for regular maintenance and quick repairs and which must resist deterioration and degradation processes. One of the characteristics of failures that we consider is the actual conditions of use that are considered 'extreme.' These conditions depend on time and the interactions between the different causes. These are the two factors that give the degradation process its dynamic character, hence the need to develop dynamic reliability models. Our work highlights mathematical models that can explicitly manage interactions between components and process variables. These models are accompanied by numerical resolution methods that help to structure a dynamic reliability approach in a physical and probabilistic context. The application developed makes it possible to evaluate the reliability, availability, and maintainability of a floating storage and unloading platform for liquefied natural gas production.Keywords: dynamic reliability, offshore plateform, stochastic process, uncertainties
Procedia PDF Downloads 1194186 Large Time Asymptotic Behavior to Solutions of a Forced Burgers Equation
Authors: Satyanarayana Engu, Ahmed Mohd, V. Murugan
Abstract:
We study the large time asymptotics of solutions to the Cauchy problem for a forced Burgers equation (FBE) with the initial data, which is continuous and summable on R. For which, we first derive explicit solutions of FBE assuming a different class of initial data in terms of Hermite polynomials. Later, by violating this assumption we prove the existence of a solution to the considered Cauchy problem. Finally, we give an asymptotic approximate solution and establish that the error will be of order O(t^(-1/2)) with respect to L^p -norm, where 1≤p≤∞, for large time.Keywords: Burgers equation, Cole-Hopf transformation, Hermite polynomials, large time asymptotics
Procedia PDF Downloads 3324185 Effect of Infill’s in Influencing the Dynamic Responses of Multistoried Structures
Authors: Rahmathulla Noufal E.
Abstract:
Investigating the dynamic responses of high rise structures under the effect of siesmic ground motion is extremely important for the proper analysis and design of multitoried structures. Since the presence of infilled walls strongly influences the behaviour of frame systems in multistoried buildings, there is an increased need for developing guidelines for the analysis and design of infilled frames under the effect of dynamic loads for safe and proper design of buildings. In this manuscript, we evaluate the natural frequencies and natural periods of single bay single storey frames considering the effect of infill walls by using the Eigen value analysis and validating with SAP 2000 (free vibration analysis). Various parameters obtained from the diagonal strut model followed for the free vibration analysis is then compared with the Finite Element model, where infill is modeled as shell elements (four noded). We also evaluated the effect of various parameters on the natural periods of vibration obtained by free vibration analysis in SAP 2000 comparing them with those obtained by the empirical expressions presented in I.S. 1893(Part I)-2002.Keywords: infilled frame, eigen value analysis, free vibration analysis, diagonal strut model, finite element model, SAP 2000, natural period
Procedia PDF Downloads 3274184 Real-Time Recognition of Dynamic Hand Postures on a Neuromorphic System
Authors: Qian Liu, Steve Furber
Abstract:
To explore how the brain may recognize objects in its general,accurate and energy-efficient manner, this paper proposes the use of a neuromorphic hardware system formed from a Dynamic Video Sensor~(DVS) silicon retina in concert with the SpiNNaker real-time Spiking Neural Network~(SNN) simulator. As a first step in the exploration on this platform a recognition system for dynamic hand postures is developed, enabling the study of the methods used in the visual pathways of the brain. Inspired by the behaviours of the primary visual cortex, Convolutional Neural Networks (CNNs) are modeled using both linear perceptrons and spiking Leaky Integrate-and-Fire (LIF) neurons. In this study's largest configuration using these approaches, a network of 74,210 neurons and 15,216,512 synapses is created and operated in real-time using 290 SpiNNaker processor cores in parallel and with 93.0% accuracy. A smaller network using only 1/10th of the resources is also created, again operating in real-time, and it is able to recognize the postures with an accuracy of around 86.4% -only 6.6% lower than the much larger system. The recognition rate of the smaller network developed on this neuromorphic system is sufficient for a successful hand posture recognition system, and demonstrates a much-improved cost to performance trade-off in its approach.Keywords: spiking neural network (SNN), convolutional neural network (CNN), posture recognition, neuromorphic system
Procedia PDF Downloads 4704183 Development of a Model Based on Wavelets and Matrices for the Treatment of Weakly Singular Partial Integro-Differential Equations
Authors: Somveer Singh, Vineet Kumar Singh
Abstract:
We present a new model based on viscoelasticity for the Non-Newtonian fluids.We use a matrix formulated algorithm to approximate solutions of a class of partial integro-differential equations with the given initial and boundary conditions. Some numerical results are presented to simplify application of operational matrix formulation and reduce the computational cost. Convergence analysis, error estimation and numerical stability of the method are also investigated. Finally, some test examples are given to demonstrate accuracy and efficiency of the proposed method.Keywords: Legendre Wavelets, operational matrices, partial integro-differential equation, viscoelasticity
Procedia PDF Downloads 333