Search results for: algorithms decision tree
5588 Hardware Implementation on Field Programmable Gate Array of Two-Stage Algorithm for Rough Set Reduct Generation
Authors: Tomasz Grzes, Maciej Kopczynski, Jaroslaw Stepaniuk
Abstract:
The rough sets theory developed by Prof. Z. Pawlak is one of the tools that can be used in the intelligent systems for data analysis and processing. Banking, medicine, image recognition and security are among the possible fields of utilization. In all these fields, the amount of the collected data is increasing quickly, but with the increase of the data, the computation speed becomes the critical factor. Data reduction is one of the solutions to this problem. Removing the redundancy in the rough sets can be achieved with the reduct. A lot of algorithms of generating the reduct were developed, but most of them are only software implementations, therefore have many limitations. Microprocessor uses the fixed word length, consumes a lot of time for either fetching as well as processing of the instruction and data; consequently, the software based implementations are relatively slow. Hardware systems don’t have these limitations and can process the data faster than a software. Reduct is the subset of the decision attributes that provides the discernibility of the objects. For the given decision table there can be more than one reduct. Core is the set of all indispensable condition attributes. None of its elements can be removed without affecting the classification power of all condition attributes. Moreover, every reduct consists of all the attributes from the core. In this paper, the hardware implementation of the two-stage greedy algorithm to find the one reduct is presented. The decision table is used as an input. Output of the algorithm is the superreduct which is the reduct with some additional removable attributes. First stage of the algorithm is calculating the core using the discernibility matrix. Second stage is generating the superreduct by enriching the core with the most common attributes, i.e., attributes that are more frequent in the decision table. Described above algorithm has two disadvantages: i) generating the superreduct instead of reduct, ii) additional first stage may be unnecessary if the core is empty. But for the systems focused on the fast computation of the reduct the first disadvantage is not the key problem. The core calculation can be achieved with a combinational logic block, and thus add respectively little time to the whole process. Algorithm presented in this paper was implemented in Field Programmable Gate Array (FPGA) as a digital device consisting of blocks that process the data in a single step. Calculating the core is done by the comparators connected to the block called 'singleton detector', which detects if the input word contains only single 'one'. Calculating the number of occurrences of the attribute is performed in the combinational block made up of the cascade of the adders. The superreduct generation process is iterative and thus needs the sequential circuit for controlling the calculations. For the research purpose, the algorithm was also implemented in C language and run on a PC. The times of execution of the reduct calculation in a hardware and software were considered. Results show increase in the speed of data processing.Keywords: data reduction, digital systems design, field programmable gate array (FPGA), reduct, rough set
Procedia PDF Downloads 2225587 Real-Time Network Anomaly Detection Systems Based on Machine-Learning Algorithms
Authors: Zahra Ramezanpanah, Joachim Carvallo, Aurelien Rodriguez
Abstract:
This paper aims to detect anomalies in streaming data using machine learning algorithms. In this regard, we designed two separate pipelines and evaluated the effectiveness of each separately. The first pipeline, based on supervised machine learning methods, consists of two phases. In the first phase, we trained several supervised models using the UNSW-NB15 data-set. We measured the efficiency of each using different performance metrics and selected the best model for the second phase. At the beginning of the second phase, we first, using Argus Server, sniffed a local area network. Several types of attacks were simulated and then sent the sniffed data to a running algorithm at short intervals. This algorithm can display the results of each packet of received data in real-time using the trained model. The second pipeline presented in this paper is based on unsupervised algorithms, in which a Temporal Graph Network (TGN) is used to monitor a local network. The TGN is trained to predict the probability of future states of the network based on its past behavior. Our contribution in this section is introducing an indicator to identify anomalies from these predicted probabilities.Keywords: temporal graph network, anomaly detection, cyber security, IDS
Procedia PDF Downloads 1065586 A Comparative Study of Twin Delayed Deep Deterministic Policy Gradient and Soft Actor-Critic Algorithms for Robot Exploration and Navigation in Unseen Environments
Authors: Romisaa Ali
Abstract:
This paper presents a comparison between twin-delayed Deep Deterministic Policy Gradient (TD3) and Soft Actor-Critic (SAC) reinforcement learning algorithms in the context of training robust navigation policies for Jackal robots. By leveraging an open-source framework and custom motion control environments, the study evaluates the performance, robustness, and transferability of the trained policies across a range of scenarios. The primary focus of the experiments is to assess the training process, the adaptability of the algorithms, and the robot’s ability to navigate in previously unseen environments. Moreover, the paper examines the influence of varying environmental complexities on the learning process and the generalization capabilities of the resulting policies. The results of this study aim to inform and guide the development of more efficient and practical reinforcement learning-based navigation policies for Jackal robots in real-world scenarios.Keywords: Jackal robot environments, reinforcement learning, TD3, SAC, robust navigation, transferability, custom environment
Procedia PDF Downloads 1095585 An Application of Fuzzy Analytical Network Process to Select a New Production Base: An AEC Perspective
Authors: Walailak Atthirawong
Abstract:
By the end of 2015, the Association of Southeast Asian Nations (ASEAN) countries proclaim to transform into the next stage of an economic era by having a single market and production base called ASEAN Economic Community (AEC). One objective of the AEC is to establish ASEAN as a single market and one production base making ASEAN highly competitive economic region and competitive with new mechanisms. As a result, it will open more opportunities to enterprises in both trade and investment, which offering a competitive market of US$ 2.6 trillion and over 622 million people. Location decision plays a key role in achieving corporate competitiveness. Hence, it may be necessary for enterprises to redesign their supply chains via enlarging a new production base which has low labor cost, high labor skill and numerous of labor available. This strategy will help companies especially for apparel industry in order to maintain a competitive position in the global market. Therefore, in this paper a generic model for location selection decision for Thai apparel industry using Fuzzy Analytical Network Process (FANP) is proposed. Myanmar, Vietnam and Cambodia are referred for alternative location decision from interviewing expert persons in this industry who have planned to enlarge their businesses in AEC countries. The contribution of this paper lies in proposing an approach model that is more practical and trustworthy to top management in making a decision on location selection.Keywords: apparel industry, ASEAN Economic Community (AEC), Fuzzy Analytical Network Process (FANP), location decision
Procedia PDF Downloads 2395584 AI In Health and Wellbeing - A Seven-Step Engineering Method
Authors: Denis Özdemir, Max Senges
Abstract:
There are many examples of AI-supported apps for better health and wellbeing. Generally, these applications help people to achieve their goals based on scientific research and input data. Still, they do not always explain how those three are related, e.g. by making implicit assumptions about goals that hold for many but not for all. We present a seven-step method for designing health and wellbeing AIs considering goal setting, measurable results, real-time indicators, analytics, visual representations, communication, and feedback. It can help engineers as guidance in developing apps, recommendation algorithms, and interfaces that support humans in their decision-making without patronization. To illustrate the method, we create a recommender AI for tiny wellbeing habits and run a small case study, including a survey. From the results, we infer how people perceive the relationship between them and the AI and to what extent it helps them to achieve their goals. We review our seven-step engineering method and suggest modifications for the next iteration.Keywords: recommender systems, natural language processing, health apps, engineering methods
Procedia PDF Downloads 1705583 The Algorithmic Dilemma: Virtue Development in the Midst of Role Conflict and Role Ambiguity in Platform Work
Authors: Thumesha Jayatilake
Abstract:
As platform work continues to proliferate, algorithmic management, which takes care of its operational role, poses complex challenges, including job satisfaction, worker involvement, ethical decision-making, and worker well-being. This conceptual paper scrutinizes how algorithmic management influences virtue development among platform workers, with an emphasis on the effects of role conflict and role ambiguity. Using an interdisciplinary approach, the research elucidates the complex relationship between algorithmic management systems and the ethical dimensions of work. The study also incorporates the interplay of human interaction and short-term task orientation, thus broadening the understanding of the impacts of algorithmic management on virtue development. The findings have significant implications for policymakers, academics, and industry practitioners, illuminating the ethical complexities presented by the use of algorithms in modern employment settings.Keywords: algorithmic management, ethics, platform work, virtue
Procedia PDF Downloads 785582 Applied Complement of Probability and Information Entropy for Prediction in Student Learning
Authors: Kennedy Efosa Ehimwenma, Sujatha Krishnamoorthy, Safiya Al‑Sharji
Abstract:
The probability computation of events is in the interval of [0, 1], which are values that are determined by the number of outcomes of events in a sample space S. The probability Pr(A) that an event A will never occur is 0. The probability Pr(B) that event B will certainly occur is 1. This makes both events A and B a certainty. Furthermore, the sum of probabilities Pr(E₁) + Pr(E₂) + … + Pr(Eₙ) of a finite set of events in a given sample space S equals 1. Conversely, the difference of the sum of two probabilities that will certainly occur is 0. This paper first discusses Bayes, the complement of probability, and the difference of probability for occurrences of learning-events before applying them in the prediction of learning objects in student learning. Given the sum of 1; to make a recommendation for student learning, this paper proposes that the difference of argMaxPr(S) and the probability of student-performance quantifies the weight of learning objects for students. Using a dataset of skill-set, the computational procedure demonstrates i) the probability of skill-set events that have occurred that would lead to higher-level learning; ii) the probability of the events that have not occurred that requires subject-matter relearning; iii) accuracy of the decision tree in the prediction of student performance into class labels and iv) information entropy about skill-set data and its implication on student cognitive performance and recommendation of learning.Keywords: complement of probability, Bayes’ rule, prediction, pre-assessments, computational education, information theory
Procedia PDF Downloads 1675581 Implementation of the Recursive Formula for Evaluation of the Strength of Daniels' Bundle
Authors: Vaclav Sadilek, Miroslav Vorechovsky
Abstract:
The paper deals with the classical fiber bundle model of equal load sharing, sometimes referred to as the Daniels' bundle or the democratic bundle. Daniels formulated a multidimensional integral and also a recursive formula for evaluation of the strength cumulative distribution function. This paper describes three algorithms for evaluation of the recursive formula and also their implementations with source codes in high-level programming language Python. A comparison of the algorithms are provided with respect to execution time. Analysis of orders of magnitudes of addends in the recursion is also provided.Keywords: equal load sharing, mpmath, python, strength of Daniels' bundle
Procedia PDF Downloads 4075580 Uncertainty and Multifunctionality as Bridging Concepts from Socio-Ecological Resilience to Infrastructure Finance in Water Resource Decision Making
Authors: Anita Lazurko, Laszlo Pinter, Jeremy Richardson
Abstract:
Uncertain climate projections, multiple possible development futures, and a financing gap create challenges for water infrastructure decision making. In contrast to conventional predict-plan-act methods, an emerging decision paradigm that enables social-ecological resilience supports decisions that are appropriate for uncertainty and leverage social, ecological, and economic multifunctionality. Concurrently, water infrastructure project finance plays a powerful role in sustainable infrastructure development but remains disconnected from discourse in socio-ecological resilience. At the time of research, a project to transfer water from Lesotho to Botswana through South Africa in the Orange-Senqu River Basin was at the pre-feasibility stage. This case was analysed through documents and interviews to investigate how uncertainty and multifunctionality are conceptualised and considered in decisions for the resilience of water infrastructure and to explore bridging concepts that might allow project finance to better enable socio-ecological resilience. Interviewees conceptualised uncertainty as risk, ambiguity and ignorance, and multifunctionality as politically-motivated shared benefits. Numerous efforts to adopt emerging decision methods that consider these terms were in use but required compromises to accommodate the persistent, conventional decision paradigm, though a range of future opportunities was identified. Bridging these findings to finance revealed opportunities to consider a more comprehensive scope of risk, to leverage risk mitigation measures, to diffuse risks and benefits over space, time and to diverse actor groups, and to clarify roles to achieve multiple objectives for resilience. In addition to insights into how multiple decision paradigms interact in real-world decision contexts, the research highlights untapped potential at the juncture between socio-ecological resilience and project finance.Keywords: socio-ecological resilience, finance, multifunctionality, uncertainty
Procedia PDF Downloads 1315579 Aspect-Level Sentiment Analysis with Multi-Channel and Graph Convolutional Networks
Authors: Jiajun Wang, Xiaoge Li
Abstract:
The purpose of the aspect-level sentiment analysis task is to identify the sentiment polarity of aspects in a sentence. Currently, most methods mainly focus on using neural networks and attention mechanisms to model the relationship between aspects and context, but they ignore the dependence of words in different ranges in the sentence, resulting in deviation when assigning relationship weight to other words other than aspect words. To solve these problems, we propose a new aspect-level sentiment analysis model that combines a multi-channel convolutional network and graph convolutional network (GCN). Firstly, the context and the degree of association between words are characterized by Long Short-Term Memory (LSTM) and self-attention mechanism. Besides, a multi-channel convolutional network is used to extract the features of words in different ranges. Finally, a convolutional graph network is used to associate the node information of the dependency tree structure. We conduct experiments on four benchmark datasets. The experimental results are compared with those of other models, which shows that our model is better and more effective.Keywords: aspect-level sentiment analysis, attention, multi-channel convolution network, graph convolution network, dependency tree
Procedia PDF Downloads 2265578 Decision Making Regarding Spouse Selection and Women's Autonomy in India: Exploring the Linkage
Authors: Nivedita Paul
Abstract:
The changing character of marriage be it arranged marriage, love marriage, polygamy, informal unions, all signify different gender relations in everyday lives. Marriages in India are part and parcel of the kinship and cultural practices. Arranged marriage is still the dominant form of marriage where spouse selection is the initiative and decision of the parents; but its form is changing, as women are now actively participating in spouse selection but with parental consent. Spouse selection related decision making is important because marriage as an institution brings social change and gender inequality; especially in a women’s life as marriages in India are mostly patrilocal. Moreover, the amount of say in spouse selection can affect a woman’s reproductive rights, domestic violence issues, household resource allocation, communication possibilities with the spouse/husband, marital life, etc. The present study uses data from Indian Human Development Survey II (2011-12) which is a nationally representative multitopic survey that covers 41,554 households. Currently, married women of age group 15-49 in their first marriage; whose year of marriage is from 1970s to 2000s have been taken for the study. Based on spouse selection experiences, the sample of women has been divided into three marriage categories-self, semi and family arranged. Women in self arranged or love marriage is the sole decision maker in choosing the partner, in semi arranged marriage or arranged marriage with consent both parents and women together take the decision, whereas in family arranged or arranged marriage without consent only parents take the decision. The main aim of the study is to find the relationship between spouse selection experiences and women’s autonomy in India. Decision making in economic matters, child and health related decision making, mobility and access to resources are taken to be proxies of autonomy. Method of ordinal regression has been used to find the relationship between spouse selection experiences and autonomy after marriage keeping other independent variables as control factors. Results show that women in semi arranged marriage have more decision making power regarding financial matters of the household, health related matters, mobility and accessibility to resources, when compared to women in family, arranged marriages. For freedom of movement and access to resources women in self arranged marriage have the highest say or exercise greatest power. Therefore, greater participation of women (even though not absolute control) in spouse selection may lead to greater autonomy after marriage.Keywords: arranged marriage, autonomy, consent, spouse selection
Procedia PDF Downloads 1535577 From Creativity to Innovation: Tracking Rejected Ideas
Authors: Lisete Barlach, Guilherme Ary Plonski
Abstract:
Innovative ideas are not always synonymous with business opportunities. Any idea can be creative and not recognized as a potential project in which money and time will be invested, among other resources. Even in firms that promote and enhance innovation, there are two 'check-points', the first corresponding to the acknowledgment of the idea as creative and the second, its consideration as a business opportunity. Both the recognition of new business opportunities or new ideas involve cognitive and psychological frameworks which provide individuals with a basis for noticing connections between seemingly independent events or trends as if they were 'connecting the dots'. It also involves prototypes-representing the most typical member of a certain category–functioning as 'templates' for this recognition. There is a general assumption that these kinds of evaluation processes develop through experience, explaining why expertise plays a central role in this process: the more experienced a professional, the easier for him (her) to identify new opportunities in business. But, paradoxically, an increase in expertise can lead to the inflexibility of thought due to automation of procedures. And, besides this, other cognitive biases can also be present, because new ideas or business opportunities generally depend on heuristics, rather than on established algorithms. The paper presents a literature review about the Einstellung effect by tracking famous cases of rejected ideas, extracted from historical records. It also presents the results of empirical research, with data upon rejected ideas gathered from two different environments: projects rejected during first semester of 2017 at a large incubator center in Sao Paulo and ideas proposed by employees that were rejected by a well-known business company, at its Brazilian headquarter. There is an implicit assumption that Einstellung effect tends to be more and more present in contemporaneity, due to time pressure upon decision-making and idea generation process. The analysis discusses desirability, viability, and feasibility as elements that affect decision-making.Keywords: cognitive biases, Einstellung effect, recognition of business opportunities, rejected ideas
Procedia PDF Downloads 2065576 An Overview of Adaptive Channel Equalization Techniques and Algorithms
Authors: Navdeep Singh Randhawa
Abstract:
Wireless communication system has been proved as the best for any communication. However, there are some undesirable threats of a wireless communication channel on the information transmitted through it, such as attenuation, distortions, delays and phase shifts of the signals arriving at the receiver end which are caused by its band limited and dispersive nature. One of the threat is ISI (Inter Symbol Interference), which has been found as a great obstacle in high speed communication. Thus, there is a need to provide perfect and accurate technique to remove this effect to have an error free communication. Thus, different equalization techniques have been proposed in literature. This paper presents the equalization techniques followed by the concept of adaptive filter equalizer, its algorithms (LMS and RLS) and applications of adaptive equalization technique.Keywords: channel equalization, adaptive equalizer, least mean square, recursive least square
Procedia PDF Downloads 4545575 [Keynote Talk]: Evidence Fusion in Decision Making
Authors: Mohammad Abdullah-Al-Wadud
Abstract:
In the current era of automation and artificial intelligence, different systems have been increasingly keeping on depending on decision-making capabilities of machines. Such systems/applications may range from simple classifiers to sophisticated surveillance systems based on traditional sensors and related equipment which are becoming more common in the internet of things (IoT) paradigm. However, the available data for such problems are usually imprecise and incomplete, which leads to uncertainty in decisions made based on traditional probability-based classifiers. This requires a robust fusion framework to combine the available information sources with some degree of certainty. The theory of evidence can provide with such a method for combining evidence from different (may be unreliable) sources/observers. This talk will address the employment of the Dempster-Shafer Theory of evidence in some practical applications.Keywords: decision making, dempster-shafer theory, evidence fusion, incomplete data, uncertainty
Procedia PDF Downloads 4315574 A Comparative Study of GTC and PSP Algorithms for Mining Sequential Patterns Embedded in Database with Time Constraints
Authors: Safa Adi
Abstract:
This paper will consider the problem of sequential mining patterns embedded in a database by handling the time constraints as defined in the GSP algorithm (level wise algorithms). We will compare two previous approaches GTC and PSP, that resumes the general principles of GSP. Furthermore this paper will discuss PG-hybrid algorithm, that using PSP and GTC. The results show that PSP and GTC are more efficient than GSP. On the other hand, the GTC algorithm performs better than PSP. The PG-hybrid algorithm use PSP algorithm for the two first passes on the database, and GTC approach for the following scans. Experiments show that the hybrid approach is very efficient for short, frequent sequences.Keywords: database, GTC algorithm, PSP algorithm, sequential patterns, time constraints
Procedia PDF Downloads 3935573 An Investigation on Hot-Spot Temperature Calculation Methods of Power Transformers
Authors: Ahmet Y. Arabul, Ibrahim Senol, Fatma Keskin Arabul, Mustafa G. Aydeniz, Yasemin Oner, Gokhan Kalkan
Abstract:
In the standards of IEC 60076-2 and IEC 60076-7, three different hot-spot temperature estimation methods are suggested. In this study, the algorithms which used in hot-spot temperature calculations are analyzed by comparing the algorithms with the results of an experimental set-up made by a Transformer Monitoring System (TMS) in use. In tested system, TMS uses only top oil temperature and load ratio for hot-spot temperature calculation. And also, it uses some constants from standards which are on agreed statements tables. During the tests, it came out that hot-spot temperature calculation method is just making a simple calculation and not uses significant all other variables that could affect the hot-spot temperature.Keywords: Hot-spot temperature, monitoring system, power transformer, smart grid
Procedia PDF Downloads 5785572 Segmentation of Arabic Handwritten Numeral Strings Based on Watershed Approach
Authors: Nidal F. Shilbayeh, Remah W. Al-Khatib, Sameer A. Nooh
Abstract:
Arabic offline handwriting recognition systems are considered as one of the most challenging topics. Arabic Handwritten Numeral Strings are used to automate systems that deal with numbers such as postal code, banking account numbers and numbers on car plates. Segmentation of connected numerals is the main bottleneck in the handwritten numeral recognition system. This is in turn can increase the speed and efficiency of the recognition system. In this paper, we proposed algorithms for automatic segmentation and feature extraction of Arabic handwritten numeral strings based on Watershed approach. The algorithms have been designed and implemented to achieve the main goal of segmenting and extracting the string of numeral digits written by hand especially in a courtesy amount of bank checks. The segmentation algorithm partitions the string into multiple regions that can be associated with the properties of one or more criteria. The numeral extraction algorithm extracts the numeral string digits into separated individual digit. Both algorithms for segmentation and feature extraction have been tested successfully and efficiently for all types of numerals.Keywords: handwritten numerals, segmentation, courtesy amount, feature extraction, numeral recognition
Procedia PDF Downloads 3845571 Predicting Wealth Status of Households Using Ensemble Machine Learning Algorithms
Authors: Habtamu Ayenew Asegie
Abstract:
Wealth, as opposed to income or consumption, implies a more stable and permanent status. Due to natural and human-made difficulties, households' economies will be diminished, and their well-being will fall into trouble. Hence, governments and humanitarian agencies offer considerable resources for poverty and malnutrition reduction efforts. One key factor in the effectiveness of such efforts is the accuracy with which low-income or poor populations can be identified. As a result, this study aims to predict a household’s wealth status using ensemble Machine learning (ML) algorithms. In this study, design science research methodology (DSRM) is employed, and four ML algorithms, Random Forest (RF), Adaptive Boosting (AdaBoost), Light Gradient Boosted Machine (LightGBM), and Extreme Gradient Boosting (XGBoost), have been used to train models. The Ethiopian Demographic and Health Survey (EDHS) dataset is accessed for this purpose from the Central Statistical Agency (CSA)'s database. Various data pre-processing techniques were employed, and the model training has been conducted using the scikit learn Python library functions. Model evaluation is executed using various metrics like Accuracy, Precision, Recall, F1-score, area under curve-the receiver operating characteristics (AUC-ROC), and subjective evaluations of domain experts. An optimal subset of hyper-parameters for the algorithms was selected through the grid search function for the best prediction. The RF model has performed better than the rest of the algorithms by achieving an accuracy of 96.06% and is better suited as a solution model for our purpose. Following RF, LightGBM, XGBoost, and AdaBoost algorithms have an accuracy of 91.53%, 88.44%, and 58.55%, respectively. The findings suggest that some of the features like ‘Age of household head’, ‘Total children ever born’ in a family, ‘Main roof material’ of their house, ‘Region’ they lived in, whether a household uses ‘Electricity’ or not, and ‘Type of toilet facility’ of a household are determinant factors to be a focal point for economic policymakers. The determinant risk factors, extracted rules, and designed artifact achieved 82.28% of the domain expert’s evaluation. Overall, the study shows ML techniques are effective in predicting the wealth status of households.Keywords: ensemble machine learning, households wealth status, predictive model, wealth status prediction
Procedia PDF Downloads 515570 Supervised/Unsupervised Mahalanobis Algorithm for Improving Performance for Cyberattack Detection over Communications Networks
Authors: Radhika Ranjan Roy
Abstract:
Deployment of machine learning (ML)/deep learning (DL) algorithms for cyberattack detection in operational communications networks (wireless and/or wire-line) is being delayed because of low-performance parameters (e.g., recall, precision, and f₁-score). If datasets become imbalanced, which is the usual case for communications networks, the performance tends to become worse. Complexities in handling reducing dimensions of the feature sets for increasing performance are also a huge problem. Mahalanobis algorithms have been widely applied in scientific research because Mahalanobis distance metric learning is a successful framework. In this paper, we have investigated the Mahalanobis binary classifier algorithm for increasing cyberattack detection performance over communications networks as a proof of concept. We have also found that high-dimensional information in intermediate features that are not utilized as much for classification tasks in ML/DL algorithms are the main contributor to the state-of-the-art of improved performance of the Mahalanobis method, even for imbalanced and sparse datasets. With no feature reduction, MD offers uniform results for precision, recall, and f₁-score for unbalanced and sparse NSL-KDD datasets.Keywords: Mahalanobis distance, machine learning, deep learning, NS-KDD, local intrinsic dimensionality, chi-square, positive semi-definite, area under the curve
Procedia PDF Downloads 855569 Pattern Identification in Statistical Process Control Using Artificial Neural Networks
Authors: M. Pramila Devi, N. V. N. Indra Kiran
Abstract:
Control charts, predominantly in the form of X-bar chart, are important tools in statistical process control (SPC). They are useful in determining whether a process is behaving as intended or there are some unnatural causes of variation. A process is out of control if a point falls outside the control limits or a series of point’s exhibit an unnatural pattern. In this paper, a study is carried out on four training algorithms for CCPs recognition. For those algorithms optimal structure is identified and then they are studied for type I and type II errors for generalization without early stopping and with early stopping and the best one is proposed.Keywords: control chart pattern recognition, neural network, backpropagation, generalization, early stopping
Procedia PDF Downloads 3755568 Conservation Studies on Endangered and Potential Native Ornamentals and Their Domestication for Novelty in Floriculture Industry
Authors: Puja Sharma, S. R. Dhiman, Bhararti Kashyap, Y. C. Gupta, Shabnam Pangtu
Abstract:
The experiments were carried out for mass multiplication and domestication of an endangered native tree spp, an orchid and an ornamental shrub having high medicinal value. Floriculture industry is novelty driven, hence the potential of these native ornamentals was assessed for their utilization as a novelty in the industry. For the mass propagation of endangered tree Oroxylum indicum, seed propagation and vegetative propagation techniques were successfully utilized. Highest seed germination was recorded in a medium containing cocopeat and perlite (1:1 v/v). Semi hard wood cuttings treated with IBA 2000 ppm planted in cocopeat+ sand+ perlite medium and maintained at 80% RH has resulted in about 90% rooting. The low growing tree was successfully domestication and has potential to be utilized in landscape industry. In the present study, cutting propagation and division of clump were used as methods for multiplication of Aerides multiflora, a native orchid spp. Soft wood cuttings treated with IBA 500 ppm planted in cocopeat medium was found to be the most suitable vegetative method resulting in 90 % rooting. It was domesticated as pot plant and for making hanging baskets. Propagation through seeds and cuttings was carried out for Pyracantha crenulata, a native ornamental shrub which is a cardiovascular medicine. For vegetative propagation, treatment of basal end of semi- hardwood cuttings of Pyracantha with IBA 3000 ppm (quick dip) and planting in cocopeat under mist chamber maintained at a relative humidity of 70-80% resulted in about 90% rooting out of all applied treatments in the study. For seed propagation, treatment of seeds in boiling water for 20 minutes and planting in cocopeat resulted in 82.55 % germination. The shrub was domesticated for its use as pot plant, protective hedge and for making bonsai.Keywords: native, endangered, multiplication, domestication, oroxylum, aerides, pyracantha
Procedia PDF Downloads 845567 Effects of Adding Condensed Tannin from Shrub and Tree Leaves in Concentrate on Sheep Production Fed on Elephant Grass as a Basal Diet
Authors: Kusmartono, Siti Chuzaemi, Hartutik dan Mashudi
Abstract:
Two studies were conducted involving an in vitro (Expt 1) and in vivo (Expt 2) measurements. Expt 1. aimed to evaluate effects of adding CT extracts on gas production and efficiency of microbial protein synthesis (EMPS), Expt 2 aimed to evaluate effects of supplementing shrub/tree leaves as CT source on feed consumption, digestibility, N retention, body weight gain and dressing percentage of growing sheep fed on elephant grass (EG) as a basal diet.Ten shrub and tree leaves used as CT sources were wild sunflower (Tithonia diversifolia), mulberry (Morus macroura), cassava (Manihot utilissima), avicienna (Avicennia marina), calliandra (Calliandra calothyrsus), sesbania (Sesbania grandiflora), acacia (acacia vilosa), glyricidia (Glyricidia sepium), jackfruit (Artocarpus heterophyllus), moringa (Moringa oleifera). The treatments applied in Expt 1 were: T1=Elephant grass (60%)+concentrate (40%); T2 = T1 + CT (3% DM); T3= T2 + PEG; T4 = T1 + CT (3.5% DM); T5 = T4 + PEG; T6 = T1 + CT (4% DM) and T7 = T6 + PEG. Data obtained were analysed using Randomized Block Design. Statistical analyses showed that treatments significanty affected (P<0.05) total gas production and EMPS. The lowest values of total gas production (45.9 ml/500 mg DM) and highest value of EMPS (64.6 g/kg BOTR) were observed in the treatment T4 (3.5% CT from cassava leave extract). Based on this result it was concluded that this treatment was the best and was chosen for further investigation using in vivo method. The treatmets applied for in vivo trial were: T1 = EG (60%) + concentrate (40%); T2 = T1 + dried cassava leave (equivalent to 3.5% CT); T3 = T2 + PEG. 18 growing sheep aging of 8-9 months and weighing of 23.67kg ± 1.23 were used in Expt 2. Results of in vivo study showed that treatments significanty affected (P<0.05) nutrients intake and digestibility (DM, OM and CP). N retention for sheep receiving treatment T2 were significantly higher (P<0.05; 15.6 g/d) than T1 (9.1 g/d) and T3 (8.53 g/d). Similar results were obtained for daily weight gain where T2 were the highest (62.79 g/d), followed by T1 (51.9 g/d) and T3 (52.85 g/d). Dressing percentage of T2 was the highest (51.54%) followed by T1 (49.61%) and T3 (49.32%). It can be concluded that adding adding dried cassava leaves did not reduce palatability due to CT, but rather increased OM digestibility and hence feed consumption was improved. N retention was increased due to the action of CT in the cassava leaves and this may have explained a higher input of N into duodenum which was further led to higer daily weight gain and dressing percentage.Keywords: in vitro gas production, sheep, shrub and tree leaves, condensed tannin
Procedia PDF Downloads 2685566 Influence of Maturation Degree of Arbutus (Arbutus unedo L.) Fruits in Spirit Composition and Quality
Authors: Goreti Botelho, Filomena Gomes, Fernanda M. Ferreira, Ilda Caldeira
Abstract:
The strawberry tree (Arbutus unedo L.) is a small tree or shrub from botanical Ericaceae family that grows spontaneously nearby the Mediterranean basin and produce edible red fruits. A traditional processed fruit application, in Mediterranean countries, is the production of a spirit (known as aguardente de medronho, in Portugal) obtained from the fermented fruit. The main objective of our study was to contribute to the knowledge about the influence of the degree of maturation of fruits in the volatile composition and quality of arbutus spirit. The major volatiles in the three distillates fractions (head, heart and tail) obtained from fermentation of two different fruit maturation levels were quantified by GC-FID analysis and ANOVA one-way was performed. Additionally, the total antioxidant capacity and total phenolic compounds of both arbutus fruit spirits were determined, by ABTS and Folin-Ciocalteau method, respectively. The methanol concentration is superior (1022.39 g/hL a.a.) in the spirit made from fruits with highest total soluble solids, which is a value above the legal limit (1000 g/hL a.a.). Overall, our study emphasizes, for the first time, the influence of maturation degree of arbutus fruits in the spirit volatile composition and quality.Keywords: arbutus fruit, maturation, quality, spirit
Procedia PDF Downloads 3825565 A Multi-Criteria Decision Method for the Recruitment of Academic Personnel Based on the Analytical Hierarchy Process and the Delphi Method in a Neutrosophic Environment
Authors: Antonios Paraskevas, Michael Madas
Abstract:
For a university to maintain its international competitiveness in education, it is essential to recruit qualitative academic staff as it constitutes its most valuable asset. This selection demonstrates a significant role in achieving strategic objectives, particularly by emphasizing a firm commitment to the exceptional student experience and innovative teaching and learning practices of high quality. In this vein, the appropriate selection of academic staff establishes a very important factor of competitiveness, efficiency and reputation of an academic institute. Within this framework, our work demonstrates a comprehensive methodological concept that emphasizes the multi-criteria nature of the problem and how decision-makers could utilize our approach in order to proceed to the appropriate judgment. The conceptual framework introduced in this paper is built upon a hybrid neutrosophic method based on the Neutrosophic Analytical Hierarchy Process (N-AHP), which uses the theory of neutrosophy sets and is considered suitable in terms of a significant degree of ambiguity and indeterminacy observed in the decision-making process. To this end, our framework extends the N-AHP by incorporating the Neutrosophic Delphi Method (N-DM). By applying the N-DM, we can take into consideration the importance of each decision-maker and their preferences per evaluation criterion. To the best of our knowledge, the proposed model is the first which applies the Neutrosophic Delphi Method in the selection of academic staff. As a case study, it was decided to use our method for a real problem of academic personnel selection, having as the main goal to enhance the algorithm proposed in previous scholars’ work, and thus taking care of the inherent ineffectiveness which becomes apparent in traditional multi-criteria decision-making methods when dealing with situations alike. As a further result, we prove that our method demonstrates greater applicability and reliability when compared to other decision models.Keywords: multi-criteria decision making methods, analytical hierarchy process, delphi method, personnel recruitment, neutrosophic set theory
Procedia PDF Downloads 1225564 Particle Swarm Optimization and Quantum Particle Swarm Optimization to Multidimensional Function Approximation
Authors: Diogo Silva, Fadul Rodor, Carlos Moraes
Abstract:
This work compares the results of multidimensional function approximation using two algorithms: the classical Particle Swarm Optimization (PSO) and the Quantum Particle Swarm Optimization (QPSO). These algorithms were both tested on three functions - The Rosenbrock, the Rastrigin, and the sphere functions - with different characteristics by increasing their number of dimensions. As a result, this study shows that the higher the function space, i.e. the larger the function dimension, the more evident the advantages of using the QPSO method compared to the PSO method in terms of performance and number of necessary iterations to reach the stop criterion.Keywords: PSO, QPSO, function approximation, AI, optimization, multidimensional functions
Procedia PDF Downloads 5935563 The Role of Emotions in Addressing Social and Environmental Issues in Ethical Decision Making
Authors: Kirsi Snellman, Johannes Gartner, , Katja Upadaya
Abstract:
A transition towards a future where the economy serves society so that it evolves within the safe operating space of the planet calls for fundamental changes in the way managers think, feel and act, and make decisions that relate to social and environmental issues. Sustainable decision-making in organizations are often challenging tasks characterized by trade-offs between environmental, social and financial aspects, thus often bringing forth ethical concerns. Although there have been significant developments in incorporating uncertainty into environmental decision-making and measuring constructs and dimensions in ethical behavior in organizations, the majority of sustainable decision-making models are rationalist-based. Moreover, research in psychology indicates that one’s readiness to make a decision depends on the individual’s state of mind, the feasibility of the implied change, and the compatibility of strategies and tactics of implementation. Although very informative, most of this extant research is limited in the sense that it often directs attention towards the rational instead of the emotional. Hence, little is known about the role of emotions in sustainable decision making, especially in situations where decision-makers evaluate a variety of options and use their feelings as a source of information in tackling the uncertainty. To fill this lacuna, and to embrace the uncertainty and perceived risk involved in decisions that touch upon social and environmental aspects, it is important to add emotion to the evaluation when aiming to reach the one right and good ethical decision outcome. This analysis builds on recent findings in moral psychology that associate feelings and intuitions with ethical decisions and suggests that emotions can sensitize the manager to evaluate the rightness or wrongness of alternatives if ethical concerns are present in sustainable decision making. Capturing such sensitive evaluation as triggered by intuitions, we suggest that rational justification can be complemented by using emotions as a tool to tune in to what feels right in making sustainable decisions. This analysis integrates ethical decision-making theories with recent advancements in emotion theories. It determines the conditions under which emotions play a role in sustainability decisions by contributing to a personal equilibrium in which intuition and rationality are both activated and in accord. It complements the rationalist ethics view according to which nothing fogs the mind in decision making so thoroughly as emotion, and the concept of cheater’s high that links unethical behavior with positive affect. This analysis contributes to theory with a novel theoretical model that specifies when and why managers, who are more emotional, are, in fact, more likely to make ethical decisions than those managers who are more rational. It also proposes practical advice on how emotions can convert the manager’s preferences into choices that benefit both common good and one’s own good throughout the transition towards a more sustainable future.Keywords: emotion, ethical decision making, intuition, sustainability
Procedia PDF Downloads 1385562 Re-Stating the Origin of Tetrapod Using Measures of Phylogenetic Support for Phylogenomic Data
Authors: Yunfeng Shan, Xiaoliang Wang, Youjun Zhou
Abstract:
Whole-genome data from two lungfish species, along with other species, present a valuable opportunity to re-investigate the longstanding debate regarding the evolutionary relationships among tetrapods, lungfishes, and coelacanths. However, the use of bootstrap support has become outdated for large-scale phylogenomic data. Without robust phylogenetic support, the phylogenetic trees become meaningless. Therefore, it is necessary to re-evaluate the phylogenies of tetrapods, lungfishes, and coelacanths using novel measures of phylogenetic support specifically designed for phylogenomic data, as the previous phylogenies were based on 100% bootstrap support. Our findings consistently provide strong evidence favoring lungfish as the closest living relative of tetrapods. This conclusion is based on high internode certainty, relative gene support, and high gene concordance factor. The evidence stems from five previous datasets derived from lungfish transcriptomes. These results yield fresh insights into the three hypotheses regarding the phylogenies of tetrapods, lungfishes, and coelacanths. Importantly, these hypotheses are not mere conjectures but are substantiated by a significant number of genes. Analyzing real biological data further demonstrates that the inclusion of additional taxa leads to more diverse tree topologies. Consequently, gene trees and species trees may not be identical even when whole-genome sequencing data is utilized. However, it is worth noting that many gene trees can accurately reflect the species tree if an appropriate number of taxa, typically ranging from six to ten, are sampled. Therefore, it is crucial to carefully select the number of taxa and an appropriate outgroup, such as slow-evolving species, while excluding fast-evolving taxa as outgroups to mitigate the adverse effects of long-branch attraction and achieve an accurate reconstruction of the species tree. This is particularly important as more whole-genome sequencing data becomes available.Keywords: novel measures of phylogenetic support for phylogenomic data, gene concordance factor confidence, relative gene support, internode certainty, origin of tetrapods
Procedia PDF Downloads 665561 Generation of Knowlege with Self-Learning Methods for Ophthalmic Data
Authors: Klaus Peter Scherer, Daniel Knöll, Constantin Rieder
Abstract:
Problem and Purpose: Intelligent systems are available and helpful to support the human being decision process, especially when complex surgical eye interventions are necessary and must be performed. Normally, such a decision support system consists of a knowledge-based module, which is responsible for the real assistance power, given by an explanation and logical reasoning processes. The interview based acquisition and generation of the complex knowledge itself is very crucial, because there are different correlations between the complex parameters. So, in this project (semi)automated self-learning methods are researched and developed for an enhancement of the quality of such a decision support system. Methods: For ophthalmic data sets of real patients in a hospital, advanced data mining procedures seem to be very helpful. Especially subgroup analysis methods are developed, extended and used to analyze and find out the correlations and conditional dependencies between the structured patient data. After finding causal dependencies, a ranking must be performed for the generation of rule-based representations. For this, anonymous patient data are transformed into a special machine language format. The imported data are used as input for algorithms of conditioned probability methods to calculate the parameter distributions concerning a special given goal parameter. Results: In the field of knowledge discovery advanced methods and applications could be performed to produce operation and patient related correlations. So, new knowledge was generated by finding causal relations between the operational equipment, the medical instances and patient specific history by a dependency ranking process. After transformation in association rules logically based representations were available for the clinical experts to evaluate the new knowledge. The structured data sets take account of about 80 parameters as special characteristic features per patient. For different extended patient groups (100, 300, 500), as well one target value as well multi-target values were set for the subgroup analysis. So the newly generated hypotheses could be interpreted regarding the dependency or independency of patient number. Conclusions: The aim and the advantage of such a semi-automatically self-learning process are the extensions of the knowledge base by finding new parameter correlations. The discovered knowledge is transformed into association rules and serves as rule-based representation of the knowledge in the knowledge base. Even more, than one goal parameter of interest can be considered by the semi-automated learning process. With ranking procedures, the most strong premises and also conjunctive associated conditions can be found to conclude the interested goal parameter. So the knowledge, hidden in structured tables or lists can be extracted as rule-based representation. This is a real assistance power for the communication with the clinical experts.Keywords: an expert system, knowledge-based support, ophthalmic decision support, self-learning methods
Procedia PDF Downloads 2545560 A Supervised Goal Directed Algorithm in Economical Choice Behaviour: An Actor-Critic Approach
Authors: Keyvanl Yahya
Abstract:
This paper aims to find a algorithmic structure that affords to predict and explain economic choice behaviour particularly under uncertainty (random policies) by manipulating the prevalent Actor-Critic learning method that complies with the requirements we have been entrusted ever since the field of neuroeconomics dawned on us. Whilst skimming some basics of neuroeconomics that might be relevant to our discussion, we will try to outline some of the important works which have so far been done to simulate choice making processes. Concerning neurological findings that suggest the existence of two specific functions that are executed through Basal Ganglia all the way down to sub-cortical areas, namely 'rewards' and 'beliefs', we will offer a modified version of actor/critic algorithm to shed a light on the relation between these functions and most importantly resolve what is referred to as a challenge for actor-critic algorithms, that is lack of inheritance or hierarchy which avoids the system being evolved in continuous time tasks whence the convergence might not emerge.Keywords: neuroeconomics, choice behaviour, decision making, reinforcement learning, actor-critic algorithm
Procedia PDF Downloads 3995559 Minimizing Total Completion Time in No-Wait Flowshops with Setup Times
Authors: Ali Allahverdi
Abstract:
The m-machine no-wait flowshop scheduling problem is addressed in this paper. The objective is to minimize total completion time subject to the constraint that the makespan value is not greater than a certain value. Setup times are treated as separate from processing times. Several recent algorithms are adapted and proposed for the problem. An extensive computational analysis has been conducted for the evaluation of the proposed algorithms. The computational analysis indicates that the best proposed algorithm performs significantly better than the earlier existing best algorithm.Keywords: scheduling, no-wait flowshop, algorithm, setup times, total completion time, makespan
Procedia PDF Downloads 344