Search results for: Gaussian mixture model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18077

Search results for: Gaussian mixture model

17207 Reference Model for the Implementation of an E-Commerce Solution in Peruvian SMEs in the Retail Sector

Authors: Julio Kauss, Miguel Cadillo, David Mauricio

Abstract:

E-commerce is a business model that allows companies to optimize the processes of buying, selling, transferring goods and exchanging services through computer networks or the Internet. In Peru, the electronic commerce is used infrequently. This situation is due, in part to the fact that there is no model that allows companies to implement an e-commerce solution, which means that most SMEs do not have adequate knowledge to adapt to electronic commerce. In this work, a reference model is proposed for the implementation of an e-commerce solution in Peruvian SMEs in the retail sector. It consists of five phases: Business Analysis, Business Modeling, Implementation, Post Implementation and Results. The present model was validated in a SME of the Peruvian retail sector through the implementation of an electronic commerce platform, through which the company increased its sales through the delivery channel by 10% in the first month of deployment. This result showed that the model is easy to implement, is economical and agile. In addition, it allowed the company to increase its business offer, adapt to e-commerce and improve customer loyalty.

Keywords: e-commerce, retail, SMEs, reference model

Procedia PDF Downloads 320
17206 Recognition of Noisy Words Using the Time Delay Neural Networks Approach

Authors: Khenfer-Koummich Fatima, Mesbahi Larbi, Hendel Fatiha

Abstract:

This paper presents a recognition system for isolated words like robot commands. It’s carried out by Time Delay Neural Networks; TDNN. To teleoperate a robot for specific tasks as turn, close, etc… In industrial environment and taking into account the noise coming from the machine. The choice of TDNN is based on its generalization in terms of accuracy, in more it acts as a filter that allows the passage of certain desirable frequency characteristics of speech; the goal is to determine the parameters of this filter for making an adaptable system to the variability of speech signal and to noise especially, for this the back propagation technique was used in learning phase. The approach was applied on commands pronounced in two languages separately: The French and Arabic. The results for two test bases of 300 spoken words for each one are 87%, 97.6% in neutral environment and 77.67%, 92.67% when the white Gaussian noisy was added with a SNR of 35 dB.

Keywords: TDNN, neural networks, noise, speech recognition

Procedia PDF Downloads 289
17205 Kinetic Façade Design Using 3D Scanning to Convert Physical Models into Digital Models

Authors: Do-Jin Jang, Sung-Ah Kim

Abstract:

In designing a kinetic façade, it is hard for the designer to make digital models due to its complex geometry with motion. This paper aims to present a methodology of converting a point cloud of a physical model into a single digital model with a certain topology and motion. The method uses a Microsoft Kinect sensor, and color markers were defined and applied to three paper folding-inspired designs. Although the resulted digital model cannot represent the whole folding range of the physical model, the method supports the designer to conduct a performance-oriented design process with the rough physical model in the reduced folding range.

Keywords: design media, kinetic facades, tangible user interface, 3D scanning

Procedia PDF Downloads 413
17204 A Large Language Model-Driven Method for Automated Building Energy Model Generation

Authors: Yake Zhang, Peng Xu

Abstract:

The development of building energy models (BEM) required for architectural design and analysis is a time-consuming and complex process, demanding a deep understanding and proficient use of simulation software. To streamline the generation of complex building energy models, this study proposes an automated method for generating building energy models using a large language model and the BEM library aimed at improving the efficiency of model generation. This method leverages a large language model to parse user-specified requirements for target building models, extracting key features such as building location, window-to-wall ratio, and thermal performance of the building envelope. The BEM library is utilized to retrieve energy models that match the target building’s characteristics, serving as reference information for the large language model to enhance the accuracy and relevance of the generated model, allowing for the creation of a building energy model that adapts to the user’s modeling requirements. This study enables the automatic creation of building energy models based on natural language inputs, reducing the professional expertise required for model development while significantly decreasing the time and complexity of manual configuration. In summary, this study provides an efficient and intelligent solution for building energy analysis and simulation, demonstrating the potential of a large language model in the field of building simulation and performance modeling.

Keywords: artificial intelligence, building energy modelling, building simulation, large language model

Procedia PDF Downloads 26
17203 An Improved Model of Estimation Global Solar Irradiation from in situ Data: Case of Oran Algeria Region

Authors: Houcine Naim, Abdelatif Hassini, Noureddine Benabadji, Alex Van Den Bossche

Abstract:

In this paper, two models to estimate the overall monthly average daily radiation on a horizontal surface were applied to the site of Oran (35.38 ° N, 0.37 °W). We present a comparison between the first one is a regression equation of the Angstrom type and the second model is developed by the present authors some modifications were suggested using as input parameters: the astronomical parameters as (latitude, longitude, and altitude) and meteorological parameters as (relative humidity). The comparisons are made using the mean bias error (MBE), root mean square error (RMSE), mean percentage error (MPE), and mean absolute bias error (MABE). This comparison shows that the second model is closer to the experimental values that the model of Angstrom.

Keywords: meteorology, global radiation, Angstrom model, Oran

Procedia PDF Downloads 232
17202 Expert Review on Conceptual Design Model of Assistive Courseware for Low Vision (AC4LV) Learners

Authors: Nurulnadwan Aziz, Ariffin Abdul Mutalib, Siti Mahfuzah Sarif

Abstract:

This paper reports an ongoing project regarding the development of Conceptual Design Model of Assistive Courseware for Low Vision (AC4LV) learners. Having developed the intended model, it has to be validated prior to producing it as guidance for the developers to develop an AC4LV. This study requires two phases of validation process which are through expert review and prototyping method. This paper presents a part of the validation process which is findings from experts review on Conceptual Design Model of AC4LV which has been carried out through a questionnaire. Results from 12 international and local experts from various respectable fields in Human-Computer Interaction (HCI) were discussed and justified. In a nutshell, reviewed Conceptual Design Model of AC4LV was formed. Future works of this study are to validate the reviewed model through prototyping method prior to testing it to the targeted users.

Keywords: assistive courseware, conceptual design model, expert review, low vision learners

Procedia PDF Downloads 546
17201 Identification of Nonlinear Systems Using Radial Basis Function Neural Network

Authors: C. Pislaru, A. Shebani

Abstract:

This paper uses the radial basis function neural network (RBFNN) for system identification of nonlinear systems. Five nonlinear systems are used to examine the activity of RBFNN in system modeling of nonlinear systems; the five nonlinear systems are dual tank system, single tank system, DC motor system, and two academic models. The feed forward method is considered in this work for modelling the non-linear dynamic models, where the K-Means clustering algorithm used in this paper to select the centers of radial basis function network, because it is reliable, offers fast convergence and can handle large data sets. The least mean square method is used to adjust the weights to the output layer, and Euclidean distance method used to measure the width of the Gaussian function.

Keywords: system identification, nonlinear systems, neural networks, radial basis function, K-means clustering algorithm

Procedia PDF Downloads 470
17200 Design, Development and Testing of Polymer-Glass Microfluidic Chips for Electrophoretic Analysis of Biological Sample

Authors: Yana Posmitnaya, Galina Rudnitskaya, Tatyana Lukashenko, Anton Bukatin, Anatoly Evstrapov

Abstract:

An important area of biological and medical research is the study of genetic mutations and polymorphisms that can alter gene function and cause inherited diseases and other diseases. The following methods to analyse DNA fragments are used: capillary electrophoresis and electrophoresis on microfluidic chip (MFC), mass spectrometry with electrophoresis on MFC, hybridization assay on microarray. Electrophoresis on MFC allows to analyse small volumes of samples with high speed and throughput. A soft lithography in polydimethylsiloxane (PDMS) was chosen for operative fabrication of MFCs. A master-form from silicon and photoresist SU-8 2025 (MicroChem Corp.) was created for the formation of micro-sized structures in PDMS. A universal topology which combines T-injector and simple cross was selected for the electrophoretic separation of the sample. Glass K8 and PDMS Sylgard® 184 (Dow Corning Corp.) were used for fabrication of MFCs. Electroosmotic flow (EOF) plays an important role in the electrophoretic separation of the sample. Therefore, the estimate of the quantity of EOF and the ways of its regulation are of interest for the development of the new methods of the electrophoretic separation of biomolecules. The following methods of surface modification were chosen to change EOF: high-frequency (13.56 MHz) plasma treatment in oxygen and argon at low pressure (1 mbar); 1% aqueous solution of polyvinyl alcohol; 3% aqueous solution of Kolliphor® P 188 (Sigma-Aldrich Corp.). The electroosmotic mobility was evaluated by the method of Huang X. et al., wherein the borate buffer was used. The influence of physical and chemical methods of treatment on the wetting properties of the PDMS surface was controlled by the sessile drop method. The most effective way of surface modification of MFCs, from the standpoint of obtaining the smallest value of the contact angle and the smallest value of the EOF, was the processing with aqueous solution of Kolliphor® P 188. This method of modification has been selected for the treatment of channels of MFCs, which are used for the separation of mixture of oligonucleotides fluorescently labeled with the length of chain with 10, 20, 30, 40 and 50 nucleotides. Electrophoresis was performed on the device MFAS-01 (IAI RAS, Russia) at the separation voltage of 1500 V. 6% solution of polydimethylacrylamide with the addition of 7M carbamide was used as the separation medium. The separation time of components of the mixture was determined from electropherograms. The time for untreated MFC was ~275 s, and for the ones treated with solution of Kolliphor® P 188 – ~ 220 s. Research of physical-chemical methods of surface modification of MFCs allowed to choose the most effective way for reducing EOF – the modification with aqueous solution of Kolliphor® P 188. In this case, the separation time of the mixture of oligonucleotides decreased about 20%. The further optimization of method of modification of channels of MFCs will allow decreasing the separation time of sample and increasing the throughput of analysis.

Keywords: electrophoresis, microfluidic chip, modification, nucleic acid, polydimethylsiloxane, soft lithography

Procedia PDF Downloads 413
17199 Application of Model Tree in the Prediction of TBM Rate of Penetration with Synthetic Minority Oversampling Technique

Authors: Ehsan Mehryaar

Abstract:

The rate of penetration is (RoP) one of the vital factors in the cost and time of tunnel boring projects; therefore, predicting it can lead to a substantial increase in the efficiency of the project. RoP is heavily dependent geological properties of the project site and TBM properties. In this study, 151-point data from Queen’s water tunnel is collected, which includes unconfined compression strength, peak slope index, angle with weak planes, and distance between planes of weaknesses. Since the size of the data is small, it was observed that it is imbalanced. To solve that problem synthetic minority oversampling technique is utilized. The model based on the model tree is proposed, where each leaf consists of a support vector machine model. Proposed model performance is then compared to existing empirical equations in the literature.

Keywords: Model tree, SMOTE, rate of penetration, TBM(tunnel boring machine), SVM

Procedia PDF Downloads 174
17198 An Agent-Based Modeling and Simulation of Human Muscle

Authors: Sina Saadati, Mohammadreza Razzazi

Abstract:

In this article, we have tried to present an agent-based model of human muscle. A suitable model of muscle is necessary for the analysis of mankind's movements. It can be used by clinical researchers who study the influence of motion sicknesses, like Parkinson's disease. It is also useful in the development of a prosthesis that receives the electromyography signals and generates force as a reaction. Since we have focused on computational efficiency in this research, the model can compute the calculations very fast. As far as it concerns prostheses, the model can be known as a charge-efficient method. In this paper, we are about to illustrate an agent-based model. Then, we will use it to simulate the human gait cycle. This method can also be done reversely in the analysis of gait in motion sicknesses.

Keywords: agent-based modeling and simulation, human muscle, gait cycle, motion sickness

Procedia PDF Downloads 114
17197 Microencapsulation of Tuna Oil and Mentha Piperita Oil Mixture using Different Combinations of Wall Materials with Whey Protein Isolate

Authors: Amr Mohamed Bakry Ibrahim, Yingzhou Ni, Hao Cheng, Li Liang

Abstract:

Tuna oil (omega-3 oil) has become increasingly popular in the last ten years, because it is considered one of the treasures of food which has many beneficial health effects for the humans. Nevertheless, the susceptibility of omega-3 oils to oxidative deterioration, resulting in the formation of oxidation products, in addition to organoleptic problems including “fishy” flavors, have presented obstacles to the more widespread use of tuna oils in the food industry. This study sought to evaluate the potential impact of Mentha piperita oil on physicochemical characteristics and oxidative stability of tuna oil microcapsules formed by spray drying using the partial substitution to whey protein isolate by carboxymethyl cellulose and pullulan. The emulsions before the drying process were characterized regarding size and ζ-potential, viscosity, surface tension. Confocal laser scanning microscopy showed that all emulsions were sphericity and homogeneous distribution without any visible particle aggregation. The microcapsules obtained after spray drying were characterized regarding microencapsulation efficiency, water activity, color, bulk density, flowability, scanning surface morphology and oxidative stability. The microcapsules were spherical shape had low water activity (0.11-0.23 aw). The microcapsules containing both tuna oil and Mentha piperita oil were smaller than others and addition of pullulan into wall materials improved the morphology of microcapsules. Microencapsulation efficiency of powdered oil ranged from 90% to 94%. Using Mentha piperita oil in the process of microencapsulation tuna oil enhanced the oxidative stability using whey protein isolate only or with carboxymethyl cellulose or pullulan as wall materials, resulting in improved storage stability and mask fishy odor. Therefore, it is foreseen using tuna-Mentha piperita oil mixture microcapsules in the applications of the food industries.

Keywords: Mentha piperita oil, microcapsule, tuna oil, whey protein isolate

Procedia PDF Downloads 352
17196 A High Performance Piano Note Recognition Scheme via Precise Onset Detection and Segmented Short-Time Fourier Transform

Authors: Sonali Banrjee, Swarup Kumar Mitra, Aritra Acharyya

Abstract:

A piano note recognition method has been proposed by the authors in this paper. The authors have used a comprehensive method for onset detection of each note present in a piano piece followed by segmented short-time Fourier transform (STFT) for the identification of piano notes. The performance evaluation of the proposed method has been carried out in different harsh noisy environments by adding different levels of additive white Gaussian noise (AWGN) having different signal-to-noise ratio (SNR) in the original signal and evaluating the note detection error rate (NDER) of different piano pieces consisting of different number of notes at different SNR levels. The NDER is found to be remained within 15% for all piano pieces under consideration when the SNR is kept above 8 dB.

Keywords: AWGN, onset detection, piano note, STFT

Procedia PDF Downloads 160
17195 The Use of Haar Wavelet Mother Signal Tool for Performance Analysis Response of Distillation Column (Application to Moroccan Case Study)

Authors: Mahacine Amrani

Abstract:

This paper aims at reviewing some Moroccan industrial applications of wavelet especially in the dynamic identification of a process model using Haar wavelet mother response. Two recent Moroccan study cases are described using dynamic data originated by a distillation column and an industrial polyethylene process plant. The purpose of the wavelet scheme is to build on-line dynamic models. In both case studies, a comparison is carried out between the Haar wavelet mother response model and a linear difference equation model. Finally it concludes, on the base of the comparison of the process performances and the best responses, which may be useful to create an estimated on-line internal model control and its application towards model-predictive controllers (MPC). All calculations were implemented using AutoSignal Software.

Keywords: process performance, model, wavelets, Haar, Moroccan

Procedia PDF Downloads 317
17194 Classification of Coughing and Breathing Activities Using Wearable and a Light-Weight DL Model

Authors: Subham Ghosh, Arnab Nandi

Abstract:

Background: The proliferation of Wireless Body Area Networks (WBAN) and Internet of Things (IoT) applications demonstrates the potential for continuous monitoring of physical changes in the body. These technologies are vital for health monitoring tasks, such as identifying coughing and breathing activities, which are necessary for disease diagnosis and management. Monitoring activities such as coughing and deep breathing can provide valuable insights into a variety of medical issues. Wearable radio-based antenna sensors, which are lightweight and easy to incorporate into clothing or portable goods, provide continuous monitoring. This mobility gives it a substantial advantage over stationary environmental sensors like as cameras and radar, which are constrained to certain places. Furthermore, using compressive techniques provides benefits such as reduced data transmission speeds and memory needs. These wearable sensors offer more advanced and diverse health monitoring capabilities. Methodology: This study analyzes the feasibility of using a semi-flexible antenna operating at 2.4 GHz (ISM band) and positioned around the neck and near the mouth to identify three activities: coughing, deep breathing, and idleness. Vector network analyzer (VNA) is used to collect time-varying complex reflection coefficient data from perturbed antenna nearfield. The reflection coefficient (S11) conveys nuanced information caused by simultaneous variations in the nearfield radiation of three activities across time. The signatures are sparsely represented with gaussian windowed Gabor spectrograms. The Gabor spectrogram is used as a sparse representation approach, which reassigns the ridges of the spectrogram images to improve their resolution and focus on essential components. The antenna is biocompatible in terms of specific absorption rate (SAR). The sparsely represented Gabor spectrogram pictures are fed into a lightweight deep learning (DL) model for feature extraction and classification. Two antenna locations are investigated in order to determine the most effective localization for three different activities. Findings: Cross-validation techniques were used on data from both locations. Due to the complex form of the recorded S11, separate analyzes and assessments were performed on the magnitude, phase, and their combination. The combination of magnitude and phase fared better than the separate analyses. Various sliding window sizes, ranging from 1 to 5 seconds, were tested to find the best window for activity classification. It was discovered that a neck-mounted design was effective at detecting the three unique behaviors.

Keywords: activity recognition, antenna, deep-learning, time-frequency

Procedia PDF Downloads 9
17193 Effects of Moisture on Fatigue Behavior of Asphalt Concrete Mixtures Using Four-Point Bending Test

Authors: Mohit Chauhan, Atul Narayan

Abstract:

Moisture damage is the continuous deterioration of asphalt concrete mixtures by the loss of adhesive bond between the asphalt binder and aggregates, or loss of cohesive bonds within the asphalt binder in the presence of moisture. Moisture has been known to either cause or exacerbates distresses in asphalt concrete pavements. Since moisture would often retain for a relatively long duration at the bottom of asphalt concrete layer, the movement of traffic loading in this saturated condition would cause excess stresses or strains within the mixture. This would accelerate the degradation of the adhesion and cohesion within the mixture and likely to contribute the development of fatigue cracking in asphalt concrete pavements. In view of this, it is important to investigate the effect of moisture on the fatigue behavior of asphalt concrete mixtures. In this study, changes in fatigue characteristics after moisture conditioning were evaluated by conducting four-point beam fatigue tests on dry and moisture conditioned specimens. For this purpose, mixtures with two different types of binders were prepared and saturated with moisture using 700 mm Hg vacuum. Beam specimens, in this way, were taken to a saturation level of 65-75 percent. After preconditioning specimens in this degree of saturation and 60°C for a period of 24 hours, they were subjected to four point beam fatigue tests in strain-controlled mode with a strain amplitude of 400 microstrain. The results were then compared with the fatigue test results obtained with beam specimens that were not subjected to moisture conditioning. Test results show that the conditioning reduces both fatigue life and initial flexural stiffness of specimen significantly. The moisture conditioning was also found to increase the rate of reduction of flexural stiffness. Moreover, it was observed that the fatigue life ratio (FLR), the ratio of the fatigue life of the moisture conditioned sample to that of the dry sample, is significantly lower than the flexural stiffness ratio (FSR). The study indicates that four-point bending test is an appropriate tool with FLR and FSR as the potential parameters for moisture-sensitivity evaluation.

Keywords: asphalt concrete, fatigue cracking, moisture damage, preconditioning

Procedia PDF Downloads 139
17192 Model Estimation and Error Level for Okike’s Merged Irregular Transposition Cipher

Authors: Okike Benjamin, Garba E. J. D.

Abstract:

The researcher has developed a new encryption technique known as Merged Irregular Transposition Cipher. In this cipher method of encryption, a message to be encrypted is split into parts and each part encrypted separately. Before the encrypted message is transmitted to the recipient(s), the positions of the split in the encrypted messages could be swapped to ensure more security. This work seeks to develop a model by considering the split number, S and the average number of characters per split, L as the message under consideration is split from 2 through 10. Again, after developing the model, the error level in the model would be determined.

Keywords: merged irregular transposition, error level, model estimation, message splitting

Procedia PDF Downloads 314
17191 3D Multimedia Model for Educational Design Engineering

Authors: Mohanaad Talal Shakir

Abstract:

This paper tries to propose educational design by using multimedia technology for Engineering of computer Technology, Alma'ref University College in Iraq. This paper evaluates the acceptance, cognition, and interactiveness of the proposed model by students by using the statistical relationship to determine the stage of the model. Objectives of proposed education design are to develop a user-friendly software for education purposes using multimedia technology and to develop animation for 3D model to simulate assembling and disassembling process of high-speed flow.

Keywords: CAL, multimedia, shock tunnel, interactivity, engineering education

Procedia PDF Downloads 623
17190 Flow-Through Supercritical Installation for Producing Biodiesel Fuel

Authors: Y. A. Shapovalov, F. M. Gumerov, M. K. Nauryzbaev, S. V. Mazanov, R. A. Usmanov, A. V. Klinov, L. K. Safiullina, S. A. Soshin

Abstract:

A flow-through installation was created and manufactured for the transesterification of triglycerides of fatty acids and production of biodiesel fuel under supercritical fluid conditions. Transesterification of rapeseed oil with ethanol was carried out according to two parameters: temperature and the ratio of alcohol/oil mixture at the constant pressure of 19 MPa. The kinetics of the yield of fatty acids ethyl esters (FAEE) was determined in the temperature range of 320-380 °C at the alcohol/oil molar ratio of 6:1-20:1. The content of the formed FAEE was determined by the method of correlation of the resulting biodiesel fuel by its kinematic viscosity. The maximum FAEE yield (about 90%) was obtained within 30 min at the ethanol/oil molar ratio of 12:1 and a temperature of 380 °C. When studying of transesterification of triglycerides, a kinetic model of an isothermal flow reactor was used. The reaction order implemented in the flow reactor has been determined. The first order of the reaction was confirmed by data on the conversion of FAEE during the reaction at different temperatures and the molar ratios of the initial reagents (ethanol/oil). Using the Arrhenius equation, the values of the effective constants of the transesterification reaction rate were calculated at different reaction temperatures. In addition, based on the experimental data, the activation energy and the pre-exponential factor of the transesterification reaction were determined.

Keywords: biodiesel, fatty acid esters, supercritical fluid technology, transesterification

Procedia PDF Downloads 114
17189 Diagnostic Assessment for Mastery Learning of Engineering Students with a Bayesian Network Model

Authors: Zhidong Zhang, Yingchen Yang

Abstract:

In this study, a diagnostic assessment model for Mastery Engineering Learning was established based on a group of undergraduate students who studied in an engineering course. A diagnostic assessment model can examine both students' learning process and report achievement results. One very unique characteristic is that the diagnostic assessment model can recognize the errors and anything blocking students in their learning processes. The feedback is provided to help students to know how to solve the learning problems with alternative strategies and help the instructor to find alternative pedagogical strategies in the instructional designs. Dynamics is a core course in which is a common course being shared by several engineering programs. This course is a very challenging for engineering students to solve the problems. Thus knowledge acquisition and problem-solving skills are crucial for student success. Therefore, developing an effective and valid assessment model for student learning are of great importance. Diagnostic assessment is such a model which can provide effective feedback for both students and instructor in the mastery of engineering learning.

Keywords: diagnostic assessment, mastery learning, engineering, bayesian network model, learning processes

Procedia PDF Downloads 152
17188 Modelling Residential Space Heating Energy for Romania

Authors: Ion Smeureanu, Adriana Reveiu, Marian Dardala, Titus Felix Furtuna, Roman Kanala

Abstract:

This paper proposes a linear model for optimizing domestic energy consumption, in Romania. Both techno-economic and consumer behavior approaches have been considered, in order to develop the model. The proposed model aims to reduce the energy consumption, in households, by assembling in a unitary model, aspects concerning: residential lighting, space heating, hot water, and combined space heating – hot water, space cooling, and passenger transport. This paper focuses on space heating domestic energy consumption model, and quantify not only technical-economic issues, but also consumer behavior impact, related to people decision to envelope and insulate buildings, in order to minimize energy consumption.

Keywords: consumer behavior, open source energy modeling system (OSeMOSYS), MARKAL/TIMES Romanian energy model, virtual technologies

Procedia PDF Downloads 542
17187 Purification of Bilge Water by Adsorption

Authors: Fatiha Atmani, Lamia Djellab, Nacera Yeddou Mezenner, Zohra Bensaadi

Abstract:

Generally, bilge waters can be briefly defined as saline and greasy wastewaters. The oil and grease are mixed with the sea water, which affects many marine species. Bilge water is a complex mixture of various compounds such as solvents, surfactants, fuel, lubricating oils, and hydraulic oils. It is resulted mainly by the leakage from the machinery and fresh water washdowns,which are allowed to drain to the lowest inner part of the ship's hull. There are several physicochemical methods used for bilge water treatment such as biodegradation electrochemical and electro-coagulation/flotation.The research herein presented discusses adsorption as a method to treat bilge water and eggshells were studied as an adsorbent. The influence of operating parameters as contact time, temperature and adsorbent dose (0,2 - 2g/l) on the removal efficiency of Chemical oxygen demand, COD, and turbidity was analyzed. The bilge wastewater used for this study was supplied by Harbour Bouharoune. Chemical oxygen demand removal increased from 26.7% to 68.7% as the adsorbent dose increased from 0.2 to 2 g. The kinetics of adsorption by eggshells were fast, reaching 55 % of the total adsorption capacity in ten minutes (T= 20°C, pH =7.66, m=2g/L). It was found that the turbidity removal efficiency decreased and 95% were achieved at the end of 90 min reaction. The adsorption process was found to be effective for the purification of bilge water and pseudo-second-order kinetic model was fitted for COD removal.

Keywords: adsorption, bilge water, eggshells and kinetics, equilibrium and kinetics

Procedia PDF Downloads 355
17186 Ecosystem Model for Environmental Applications

Authors: Cristina Schreiner, Romeo Ciobanu, Marius Pislaru

Abstract:

This paper aims to build a system based on fuzzy models that can be implemented in the assessment of ecological systems, to determine appropriate methods of action for reducing adverse effects on environmental and implicit the population. The model proposed provides new perspective for environmental assessment, and it can be used as a practical instrument for decision-making.

Keywords: ecosystem model, environmental security, fuzzy logic, sustainability of habitable regions

Procedia PDF Downloads 420
17185 Preparation and Characterization of Dendrimer-Encapsulated Ytterbium Nanoparticles to Produce a New Nano-Radio Pharmaceutical

Authors: Aghaei Amirkhizi Navideh, Sadjadi Soodeh Sadat, Moghaddam Banaem Leila, Athari Allaf Mitra, Johari Daha Fariba

Abstract:

Dendrimers are good candidates for preparing metal nanoparticles because they can structurally and chemically well-defined templates and robust stabilizers. Poly amidoamine (PAMAM) dendrimer-based multifunctional cancer therapeutic conjugates have been designed and synthesized in pharmaceutical industry. In addition, encapsulated nanoparticle surfaces are accessible to substrates so that catalytic reactions can be carried out. For preparation of dendimer-metal nanocomposite, a dendrimer solution containing an average of 55 Yb+3 ions per dendrimer was prepared. Prior to reduction, the pH of this solution was adjusted to 7.5 using NaOH. NaBH4 was used to reduce the dendrimer-encapsulated Yb+3 to the zerovalent metal. The pH of the resulting solution was then adjusted to 3, using HClO4, to decompose excess BH4-. The UV-Vis absorption spectra of the mixture were recorded to ensure the formation of Yb-G5-NH2 complex. High-resolution electron microscopy (HRTEM) and size distribution results provide additional information about dendimer-metal nanocomposite shape, size, and size distribution of the particles. The resulting mixture was irradiated in Tehran Research Reactor 2h and neutron fluxes were 3×1011 n/cm2.Sec and the specific activity was 7MBq. Radiochemical and chemical and radionuclide quality control testes were carried. Gamma Spectroscopy and High-performance Liquid Chromatography HPLC, Thin-Layer Chromatography TLC were recorded. The injection of resulting solution to solid tumor in mice shows that it could be resized the tumor. The studies about solid tumors and nano composites show that ytterbium encapsulated-dendrimer radiopharmaceutical could be introduced as a new therapeutic for the treatment of solid tumors.

Keywords: nano-radio pharmaceutical, ytterbium, PAMAM, dendrimers

Procedia PDF Downloads 503
17184 Mathematical and Numerical Analysis of a Nonlinear Cross Diffusion System

Authors: Hassan Al Salman

Abstract:

We consider a nonlinear parabolic cross diffusion model arising in applied mathematics. A fully practical piecewise linear finite element approximation of the model is studied. By using entropy-type inequalities and compactness arguments, existence of a global weak solution is proved. Providing further regularity of the solution of the model, some uniqueness results and error estimates are established. Finally, some numerical experiments are performed.

Keywords: cross diffusion model, entropy-type inequality, finite element approximation, numerical analysis

Procedia PDF Downloads 383
17183 ACBM: Attention-Based CNN and Bi-LSTM Model for Continuous Identity Authentication

Authors: Rui Mao, Heming Ji, Xiaoyu Wang

Abstract:

Keystroke dynamics are widely used in identity recognition. It has the advantage that the individual typing rhythm is difficult to imitate. It also supports continuous authentication through the keyboard without extra devices. The existing keystroke dynamics authentication methods based on machine learning have a drawback in supporting relatively complex scenarios with massive data. There are drawbacks to both feature extraction and model optimization in these methods. To overcome the above weakness, an authentication model of keystroke dynamics based on deep learning is proposed. The model uses feature vectors formed by keystroke content and keystroke time. It ensures efficient continuous authentication by cooperating attention mechanisms with the combination of CNN and Bi-LSTM. The model has been tested with Open Data Buffalo dataset, and the result shows that the FRR is 3.09%, FAR is 3.03%, and EER is 4.23%. This proves that the model is efficient and accurate on continuous authentication.

Keywords: keystroke dynamics, identity authentication, deep learning, CNN, LSTM

Procedia PDF Downloads 155
17182 A Genetic-Neural-Network Modeling Approach for Self-Heating in GaN High Electron Mobility Transistors

Authors: Anwar Jarndal

Abstract:

In this paper, a genetic-neural-network (GNN) based large-signal model for GaN HEMTs is presented along with its parameters extraction procedure. The model is easy to construct and implement in CAD software and requires only DC and S-parameter measurements. An improved decomposition technique is used to model self-heating effect. Two GNN models are constructed to simulate isothermal drain current and power dissipation, respectively. The two model are then composed to simulate the drain current. The modeling procedure was applied to a packaged GaN-on-Si HEMT and the developed model is validated by comparing its large-signal simulation with measured data. A very good agreement between the simulation and measurement is obtained.

Keywords: GaN HEMT, computer-aided design and modeling, neural networks, genetic optimization

Procedia PDF Downloads 382
17181 Energy and Exergy Analysis of Anode-Supported and Electrolyte–Supported Solid Oxide Fuel Cells Gas Turbine Power System

Authors: Abdulrazzak Akroot, Lutfu Namli

Abstract:

Solid oxide fuel cells (SOFCs) are one of the most promising technologies since they can produce electricity directly from fuel and generate a lot of waste heat that is generally used in the gas turbines to promote the general performance of the thermal power plant. In this study, the energy, and exergy analysis of a solid oxide fuel cell/gas turbine hybrid system was proceed in MATLAB to examine the performance characteristics of the hybrid system in two different configurations: anode-supported model and electrolyte-supported model. The obtained results indicate that if the fuel utilization factor reduces from 0.85 to 0.65, the overall efficiency decreases from 64.61 to 59.27% for the anode-supported model whereas it reduces from 58.3 to 56.4% for the electrolyte-supported model. Besides, the overall exergy reduces from 53.86 to 44.06% for the anode-supported model whereas it reduces from 39.96 to 33.94% for the electrolyte-supported model. Furthermore, increasing the air utilization factor has a negative impact on the electrical power output and the efficiencies of the overall system due to the reduction in the O₂ concentration at the cathode-electrolyte interface.

Keywords: solid oxide fuel cell, anode-supported model, electrolyte-supported model, energy analysis, exergy analysis

Procedia PDF Downloads 152
17180 Numerical Modeling of Storm Swells in Harbor by Boussinesq Equations Model

Authors: Mustapha Kamel Mihoubi, Hocine Dahmani

Abstract:

The purpose of work is to study the phenomenon of agitation of storm waves at basin caused by different directions of waves relative to the current provision thrown numerical model based on the equation in shallow water using Boussinesq model MIKE 21 BW. According to the diminishing effect of penetration of a wave optimal solution will be available to be reproduced in reduced model. Another alternative arrangement throws will be proposed to reduce the agitation and the effects of the swell reflection caused by the penetration of waves in the harbor.

Keywords: agitation, Boussinesq equations, combination, harbor

Procedia PDF Downloads 389
17179 Bottling the Darkness of Inner Life: Considering the Origins of Model Psychosis

Authors: Matthew Perkins-McVey

Abstract:

The pharmacological arm of mental health treatment is in a state of crisis. The promises of the Prozac century have fallen short; the number of different therapeutically significant medications that successfully complete development shrinks with every passing year, and the demand for better treatments only grows. Answering these hardships is a renewed optimism concerning the efficacy of controlled psychedelic therapy, a renaissance that has seen the return of a familiar concept: intoxication as a model psychosis. First appearing in the mid-19th century and featuring in an array of 20th century efforts in psychedelic research, model psychosis has, once more, come to the foreground of psychedelic research. And yet, little has been made of where this peculiar, perhaps even intoxicatingly mad, the idea originates. This paper seeks to uncover the conceptual foundations underlying the early emergence of model psychosis. This narrative will explore the conceptual foundations behind their independent development of the concept of model psychosis, considering their similarities and differences. In the course of this examination, it becomes apparent that the definition of endogenous psychosis, which formed in the mid-19th century, is the direct product of emerging understandings of exogenous psychosis, or model psychosis. Ultimately, the goal is not merely to understand how and why model psychosis became thinkable but to examine how seemingly secondary concept changes can engender new ways of being a psychiatric subject.

Keywords: history of psychiatry, model psychosis, history of medicine, history of science

Procedia PDF Downloads 88
17178 An Agent-Based Model of Innovation Diffusion Using Heterogeneous Social Interaction and Preference

Authors: Jang kyun Cho, Jeong-dong Lee

Abstract:

The advent of the Internet, mobile communications, and social network services has stimulated social interactions among consumers, allowing people to affect one another’s innovation adoptions by exchanging information more frequently and more quickly. Previous diffusion models, such as the Bass model, however, face limitations in reflecting such recent phenomena in society. These models are weak in their ability to model interactions between agents; they model aggregated-level behaviors only. The agent based model, which is an alternative to the aggregate model, is good for individual modeling, but it is still not based on an economic perspective of social interactions so far. This study assumes the presence of social utility from other consumers in the adoption of innovation and investigates the effect of individual interactions on innovation diffusion by developing a new model called the interaction-based diffusion model. By comparing this model with previous diffusion models, the study also examines how the proposed model explains innovation diffusion from the perspective of economics. In addition, the study recommends the use of a small-world network topology instead of cellular automata to describe innovation diffusion. This study develops a model based on individual preference and heterogeneous social interactions using utility specification, which is expandable and, thus, able to encompass various issues in diffusion research, such as reservation price. Furthermore, the study proposes a new framework to forecast aggregated-level market demand from individual level modeling. The model also exhibits a good fit to real market data. It is expected that the study will contribute to our understanding of the innovation diffusion process through its microeconomic theoretical approach.

Keywords: innovation diffusion, agent based model, small-world network, demand forecasting

Procedia PDF Downloads 341