Search results for: CO₂ uptake and construction and demolition waste.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6876

Search results for: CO₂ uptake and construction and demolition waste.

6006 Comparison Study on Characterization of Various Fly Ashes for Heavy Metal Adsorption

Authors: E. Moroydor Derun, N. Tugrul, N. Baran Acarali, A. S. Kipcak, S. Piskin

Abstract:

Fly ash is a waste material of coal firing thermal plants that is released from thermal power plants. It was defined as very fine particles that are drifted upward which are taken up by the flue gases. The emerging amount of fly ash in the world is approximately 600 million tons per year. In our country, it is expected that will be occurred 50 million tons of waste ash per year until 2020. The fly ashes can be evaluated by using as adsorbent material. The purpose of this study is to investigate the possibility of use of various fly ashes (Tuncbilek, Catalagzi, Orhaneli) like low-cost adsorbents for heavy metal adsorption. First of all, fly ashes were characterized. For this purpose; analyses such as XRD, XRF, SEM and FT-IR were performed.

Keywords: adsorbent, fly ash, heavy metal, waste

Procedia PDF Downloads 259
6005 Evaluation of the Gasification Process for the Generation of Syngas Using Solid Waste at the Autónoma de Colombia University

Authors: Yeraldin Galindo, Soraida Mora

Abstract:

Solid urban waste represents one of the largest sources of global environmental pollution due to the large quantities of these that are produced every day; thus, the elimination of such waste is a major problem for the environmental authorities who must look for alternatives to reduce the volume of waste with the possibility of obtaining an energy recovery. At the Autónoma de Colombia University, approximately 423.27 kg/d of solid waste are generated mainly paper, cardboard, and plastic. A large amount of these solid wastes has as final disposition the sanitary landfill of the city, wasting the energy potential that these could have, this, added to the emissions generated by the collection and transport of the same, has as consequence the increase of atmospheric pollutants. One of the alternative process used in the last years to generate electrical energy from solid waste such as paper, cardboard, plastic and, mainly, organic waste or biomass to replace the use of fossil fuels is the gasification. This is a thermal conversion process of biomass. The objective of it is to generate a combustible gas as the result of a series of chemical reactions propitiated by the addition of heat and the reaction agents. This project was developed with the intention of giving an energetic use to the waste (paper, cardboard, and plastic) produced inside the university, using them to generate a synthesis gas with a gasifier prototype. The gas produced was evaluated to determine their benefits in terms of electricity generation or raw material for the chemical industry. In this process, air was used as gasifying agent. The characterization of the synthesis gas was carried out by a gas chromatography carried out by the Chemical Engineering Laboratory of the National University of Colombia. Taking into account the results obtained, it was concluded that the gas generated is of acceptable quality in terms of the concentration of its components, but it is a gas of low calorific value. For this reason, the syngas generated in this project is not viable for the production of electrical energy but for the production of methanol transformed by the Fischer-Tropsch cycle.

Keywords: alternative energies, gasification, gasifying agent, solid urban waste, syngas

Procedia PDF Downloads 258
6004 The Porsche Pavilion in Wolfsburg, Germany

Authors: H. Pasternak, T. Krausche

Abstract:

The Porsche Pavilion is an innovative stainless steel construction using the principle, often used in ship and car design, as an advantage for building a light but stiff structure. The Pavilion is a one of a kind and outstanding construction that you can find. It fits right in the existing parts of the Autostadt within the lagoon landscape and was built in only eight months. With its curving lines and exiting bends the structure is an extraordinary work which was designed by Henn architects, Munich. The monocoque has a good balance between material and support structure. The stiffness is achieved by the upper and lower side sheathing plates and the intermediate formers. Also the roof shell has no joints and a smooth surface. The assembling of the structure requires a large time and effort cost due to many welds which are necessary to connect all section to one large shell.

Keywords: construction welding, exhibition building, light steel construction, monocoque

Procedia PDF Downloads 523
6003 Reliability Analysis of Construction Schedule Plan Based on Building Information Modelling

Authors: Lu Ren, You-Liang Fang, Yan-Gang Zhao

Abstract:

In recent years, the application of BIM (Building Information Modelling) to construction schedule plan has been the focus of more and more researchers. In order to assess the reasonable level of the BIM-based construction schedule plan, that is whether the schedule can be completed on time, some researchers have introduced reliability theory to evaluate. In the process of evaluation, the uncertain factors affecting the construction schedule plan are regarded as random variables, and probability distributions of the random variables are assumed to be normal distribution, which is determined using two parameters evaluated from the mean and standard deviation of statistical data. However, in practical engineering, most of the uncertain influence factors are not normal random variables. So the evaluation results of the construction schedule plan will be unreasonable under the assumption that probability distributions of random variables submitted to the normal distribution. Therefore, in order to get a more reasonable evaluation result, it is necessary to describe the distribution of random variables more comprehensively. For this purpose, cubic normal distribution is introduced in this paper to describe the distribution of arbitrary random variables, which is determined by the first four moments (mean, standard deviation, skewness and kurtosis). In this paper, building the BIM model firstly according to the design messages of the structure and making the construction schedule plan based on BIM, then the cubic normal distribution is used to describe the distribution of the random variables due to the collecting statistical data of the random factors influencing construction schedule plan. Next the reliability analysis of the construction schedule plan based on BIM can be carried out more reasonably. Finally, the more accurate evaluation results can be given providing reference for the implementation of the actual construction schedule plan. In the last part of this paper, the more efficiency and accuracy of the proposed methodology for the reliability analysis of the construction schedule plan based on BIM are conducted through practical engineering case.

Keywords: BIM, construction schedule plan, cubic normal distribution, reliability analysis

Procedia PDF Downloads 147
6002 Evaluation of Shear Strength Parameters of Rudsar Sandy Soil Stabilized with Waste Rubber Chips

Authors: R. Ziaie Moayed, M. Hamidzadeh

Abstract:

The use of waste rubber chips not only can be of great importance in terms of the environment, but also can be used to increase the shear strength of soils. The purpose of this study was to evaluate the variation of the internal friction angle of liquefiable sandy soil using waste rubber chips. For this purpose, the geotechnical properties of unmodified and modified soil samples by waste lining rubber chips have been evaluated and analyzed by performing the triaxial consolidated drained test. In order to prepare the laboratory specimens, the sandy soil in part of Rudsar shores in Gilan province, north of Iran with high liquefaction potential has been replaced by two percent of waste rubber chips. Samples have been compressed until reaching the two levels of density of 15.5 and 16.7 kN/m3. Also, in order to find the optimal length of chips in sandy soil, the rectangular rubber chips with the widths of 0.5 and 1 cm and the lengths of 0.5, 1, and 2 cm were used. The results showed that the addition of rubber chips to liquefiable sandy soil greatly increases the shear resistance of these soils. Also, it can be seen that decreasing the width and increasing the length-to-width ratio of rubber chips has a direct impact on the shear strength of the modified soil samples with rubber chips.

Keywords: improvement, shear strength, internal friction angle, sandy soil, rubber chip

Procedia PDF Downloads 145
6001 Reaching New Levels: Using Systems Thinking to Analyse a Major Incident Investigation

Authors: Matthew J. I. Woolley, Gemma J. M. Read, Paul M. Salmon, Natassia Goode

Abstract:

The significance of high consequence, workplace failures within construction continues to resonate with a combined average of 12 fatal incidents occurring daily throughout Australia, the United Kingdom, and the United States. Within the Australian construction domain, more than 35 serious, compensable injury incidents are reported daily. These alarming figures, in conjunction with the continued occurrence of fatal and serious, occupational injury incidents globally suggest existing approaches to incident analysis may not be achieving required injury prevention outcomes. One reason may be that, incident analysis methods used in construction have not kept pace with advances in the field of safety science and are not uncovering the full range system-wide contributory factors that are required to achieve optimal levels of construction safety performance. Another reason underpinning this global issue may also be the absence of information surrounding the construction operating and project delivery system. For example, it is not clear who shares the responsibility for construction safety in different contexts. To respond to this issue, to the author’s best knowledge, a first of its kind, control structure model of the construction industry is presented and then used to analyse a fatal construction incident. The model was developed by applying and extending the Systems Theoretic and Incident Model and Process method to hierarchically represent the actors, constraints, feedback mechanisms, and relationships that are involved in managing construction safety performance. The Causal Analysis based on Systems Theory (CAST) method was then used to identify the control and feedback failures involved in the fatal incident. The conclusions from the Coronial investigation into the event are compared with the findings stemming from the CAST analysis. The CAST analysis highlighted additional issues across the construction system that were not identified in the coroner’s recommendations, suggested there is a potential benefit in applying a systems theory approach to incident analysis in construction. The findings demonstrate the utility applying systems theory-based methods to the analysis of construction incidents. Specifically, this study shows the utility of the construction control structure and the potential benefits for project leaders, construction entities, regulators, and construction clients in controlling construction performance.

Keywords: construction project management, construction performance, incident analysis, systems thinking

Procedia PDF Downloads 131
6000 Deviations and Defects of the Sub-Task’s Requirements in Construction Projects

Authors: Abdullah Almusharraf, Andrew Whyte

Abstract:

The sub-task pattern in terms of the deviations and defects should be identified and understand in order to improve the quality practices in construction projects. Therefore, the sub-task susceptibility to exposure to deviations and defects have been evaluated and classified via six classifications that have proposed in this study. 34 case studies on specific sub-task (from compression member in construction concrete structure) have been collected from seven construction projects in order to examined study’s classifications. The study revealed that the sub-task has high sensitive to deviation where (91%) of the cases recorded as deviations, however, only (19%) of cases recorded as defects. Another findings were that the actual work during the execution process has high source of deviation for this sub-task (74%) while only (26%) of the deviation source was due to both design documentations with the actual work. These findings significantly imply that it could be used the study’s classifications to determine the pattern of each sub-task and develop the proactive actions to overcome issues of the sub-task deviations and defects.

Keywords: sub-tasks, deviations, defects, quality, construction projects

Procedia PDF Downloads 444
5999 Study of Causes and Effects of Road Projects Abandonment in Nigeria

Authors: Monsuru Oyenola Popoola, Oladapo Samson Abiola, Wusamotu Alao Adeniji

Abstract:

The prevalent and incessant abandonment of road construction projects are alarming that it creates several negative effects to social, economic and environmental values of the project. The purpose of this paper is to investigate and determined the various causes and effects of abandoning road construction projects in Nigeria. Likert Scale questionnaire design was used to administered and analysed the data obtained for the stydy. 135 (Nr) questionnaires were completed and retrieved from the respondents, out of 200 (Nr) questionnaires sent out, representing a response rate of 67.5%. The analysis utilized the Relative Importance Index (R.I.I.) method and the results are presented in tabular form. The findings confirms that at least 20 factors were the causes of road projects abandonment in Nigeria with most including Leadership Instability, Improper Project Planning, Inconsistence in government policies and Design, Contractor Incompetence, Economy Instability and Inflation, Delay in remittance of money, Improper financial analysis, Poor risk management, Climatic Conditions, Improper Project Estimates etc. The findings also show that at least eight (8) effect were identified on the system, and these include; Waste of Financial Resources, Loss of economic value, Environmental degradation, Loss of economic value, Reduction in standard of living, Litigation and Arbitration, etc. The reflection is that allocating reasonable finance, developing appropriate and effective implementation plans and monitoring, evaluation and reporting on development project activities by key actors should enhance in resolving the problem of road projects abandonment.

Keywords: road construction, abandonment of road projects, climatic condition, project planning, contractor

Procedia PDF Downloads 299
5998 A Review on Valorisation of Chicken Feathers: Current Status and Future Prospects

Authors: Tamrat Tesfaye, Bruce Sithole, Deresh Ramjugernath

Abstract:

Worldwide, the poultry–processing industry generates large quantities of feather by-products that amount to 40 billion kilograms annually. The feathers are considered wastes although small amounts are often processed into valuable products such as feather meal and fertilizers. The remaining waste is disposed of by incineration or by burial in controlled landfills. Improper disposal of these biological wastes contributes to environmental damage and transmission of diseases. Economic pressures, environmental pressures, increasing interest in using renewable and sustainable raw materials, and the need to decrease reliance on non-renewable petroleum resources behove the industry to find better ways of dealing with waste feathers. A closer look at the structure and composition of feathers shows that the whole part of a chicken feather (rachis and barb) can be used as a source of a pure structural protein called keratin which can be exploited for conversion into a number of high-value bio products. Additionally, a number of technologies can be used to convert other biological components of feathers into high value added products. Thus, conversion of the waste into valuable products can make feathers an attractive raw material for the production of bio products. In this review, possible applications of chicken feathers in a variety of technologies and products are discussed. Thus, using waste feathers as a valuable resource can help the poultry industry to dispose of the waste feathers in an environmentally sustainable manner that also generates extra income for the industry. Their valorisation can result in their sustainable conversion into high-value materials and products on the proviso of existence or development of cost-effective technologies for converting this waste into the useful products.

Keywords: biodegradable product, keratin, poultry waste, feathers, valorisation

Procedia PDF Downloads 296
5997 Benefit Of Waste Collection Route Optimisation

Authors: Bojana Tot, Goran BošKović, Goran Vujić

Abstract:

Route optimisation is a process of planning one or multiple routes, with the purpose of minimizing overall costs, while achieving the highest possible performance under a set of given constraints. It combines routing or route planning, which is the process of creating the most cost-effective route by minimizing the distance or travelled time necessary to reach a set of planned stops, and route scheduling, which is the process of assigning an arrival and service time for each stop, with drivers being given shifts that adhere to their working hours. The objective of this paper is to provide benefits on the implementation of waste collection route optimisation and thus achieve economic efficiency for public utility companies, better service for citizens and positive environment and health.

Keywords: waste management, environment, collection route optimisation, GIS

Procedia PDF Downloads 162
5996 Enhancement of Radiosensitization by Aptamer 5TR1-Functionalized AgNCs for Triple-Negative Breast Cancer

Authors: Xuechun Kan, Dongdong Li, Fan Li, Peidang Liu

Abstract:

Triple-negative breast cancer (TNBC) is the most malignant subtype of breast cancer with a poor prognosis, and radiotherapy is one of the main treatment methods. However, due to the obvious resistance of tumor cells to radiotherapy, high dose of ionizing radiation is required during radiotherapy, which causes serious damage to normal tissues near the tumor. Therefore, how to improve radiotherapy resistance and enhance the specific killing of tumor cells by radiation is a hot issue that needs to be solved in clinic. Recent studies have shown that silver-based nanoparticles have strong radiosensitization, and silver nanoclusters (AgNCs) also provide a broad prospect for tumor targeted radiosensitization therapy due to their ultra-small size, low toxicity or non-toxicity, self-fluorescence and strong photostability. Aptamer 5TR1 is a 25-base oligonucleotide aptamer that can specifically bind to mucin-1 highly expressed on the membrane surface of TNBC 4T1 cells, and can be used as a highly efficient tumor targeting molecule. In this study, AgNCs were synthesized by DNA template based on 5TR1 aptamer (NC-T5-5TR1), and its role as a targeted radiosensitizer in TNBC radiotherapy was investigated. The optimal DNA template was first screened by fluorescence emission spectroscopy, and NC-T5-5TR1 was prepared. NC-T5-5TR1 was characterized by transmission electron microscopy, ultraviolet-visible spectroscopy and dynamic light scattering. The inhibitory effect of NC-T5-5TR1 on cell activity was evaluated using the MTT method. Laser confocal microscopy was employed to observe NC-T5-5TR1 targeting 4T1 cells and verify its self-fluorescence characteristics. The uptake of NC-T5-5TR1 by 4T1 cells was observed by dark-field imaging, and the uptake peak was evaluated by inductively coupled plasma mass spectrometry. The radiation sensitization effect of NC-T5-5TR1 was evaluated through cell cloning and in vivo anti-tumor experiments. Annexin V-FITC/PI double staining flow cytometry was utilized to detect the impact of nanomaterials combined with radiotherapy on apoptosis. The results demonstrated that the particle size of NC-T5-5TR1 is about 2 nm, and the UV-visible absorption spectrum detection verifies the successful construction of NC-T5-5TR1, and it shows good dispersion. NC-T5-5TR1 significantly inhibited the activity of 4T1 cells and effectively targeted and fluoresced within 4T1 cells. The uptake of NC-T5-5TR1 reached its peak at 3 h in the tumor area. Compared with AgNCs without aptamer modification, NC-T5-5TR1 exhibited superior radiation sensitization, and combined radiotherapy significantly inhibited the activity of 4T1 cells and tumor growth in 4T1-bearing mice. The apoptosis level of NC-T5-5TR1 combined with radiation was significantly increased. These findings provide important theoretical and experimental support for NC-T5-5TR1 as a radiation sensitizer for TNBC.

Keywords: 5TR1 aptamer, silver nanoclusters, radio sensitization, triple-negative breast cancer

Procedia PDF Downloads 60
5995 Analysis of Flexural Behavior of Wood-Concrete Beams

Authors: M. Li, V. D. Thi, M. Khelifa, M. El Ganaoui

Abstract:

This study presents an overview of the work carried out by the use of wood waste as coarse aggregate in mortar. The paper describes experimental and numerical investigations carried on pervious concrete made of wood chips and also sheds lights on the mechanical properties of this new product. The properties of pervious wood-concrete such as strength, elastic modulus, and failure modes are compared and evaluated. The characterization procedure of the mechanical properties of wood waste ash are presented and discussed. The numerical and tested load–deflection response results are compared. It was observed that the numerical results are in good agreement with the experimental results.

Keywords: wood waste ash, characterization, mechanical properties, bending tests

Procedia PDF Downloads 307
5994 Sulfate Reducing Bacteria Based Bio-Electrochemical System: Towards Sustainable Landfill Leachate and Solid Waste Treatment

Authors: K. Sushma Varma, Rajesh Singh

Abstract:

Non-engineered landfills cause serious environmental damage due to toxic emissions and mobilization of persistent pollutants, organic and inorganic contaminants, as well as soluble metal ions. The available treatment technologies for landfill leachate and solid waste are not effective from an economic, environmental, and social standpoint. The present study assesses the potential of the bioelectrochemical system (BES) integrated with sulfate-reducing bacteria (SRB) in the sustainable treatment and decontamination of landfill wastes. For this purpose, solid waste and landfill leachate collected from different landfill sites were evaluated for long-term treatment using the integrated SRB-BES anaerobic designed bioreactors after pre-treatment. Based on periodic gas composition analysis, physicochemical characterization of the leachate and solid waste, and metal concentration determination, the present system demonstrated significant improvement in volumetric hydrogen production by suppressing methanogenesis. High reduction percentages of Be, Cr, Pb, Cd, Sb, Ni, Cr, COD, and sTOC removal were observed. This mineralization can be attributed to the synergistic effect of ammonia-assisted pre-treatment complexation and microbial sulphide formation. Despite being amended with 0.1N ammonia, the treated leachate level of NO³⁻ was found to be reduced along with SO₄²⁻. This integrated SRB-BES system can be recommended as an eco-friendly solution for landfill reclamation. The BES-treated solid waste was evidently more stabilized, as shown by a five-fold increase in surface area, and potentially useful for leachate immobilization and bio-fortification of agricultural fields. The vector arrangement and magnitude showed similar treatment with differences in magnitudes for both leachate and solid waste. These findings support the efficacy of SRB-BES in the treatment of landfill leachate and solid waste sustainably, inching a step closer to our sustainable development goals. It utilizes low-cost treatment, and anaerobic SRB adapted to landfill sites. This technology may prove to be a sustainable treatment strategy upon scaling up as its outcomes are two-pronged: landfill waste treatment and energy recovery.

Keywords: bio-electrochemical system, leachate /solid waste treatment, landfill leachate, sulfate-reducing bacteria

Procedia PDF Downloads 102
5993 Integrating Sustainable Construction Principles into Curriculum Design for Built Environment Professional Programs in Nigeria

Authors: M. Yakubu, M. B. Isah, S. Bako

Abstract:

This paper presents the findings of a research which sought to investigate the readiness to integrate sustainable construction principles into curriculum design for built environment professional programs in the Nigerian Universities. Developing the knowledge and understanding that construction professionals acquire of sustainable construction practice leads to considerable improvement in the environmental performance of the construction sector. Integrating sustainable environmental issues within the built environment education curricula provide the basis of this research. An integration of sustainable development principles into the universities built environment professional programmes are carried out with a view of finding solutions to the key issues identified. The perspectives of academia have been assessed and findings tested for validity through the analysis of primary quantitative data that has been collected. The secondary data generated has shown that there are significant differences in the approach to curriculum design within the built environment professional programmes, and this reveals that there is no ‘best practice’ that is clearly identifiable. Sequel to the above, this research reveals that engaging all stakeholders would be a useful component of built environment curriculum development, and that the curriculum be negotiated with interested parties. These parties have been identified as academia, government, construction industry and built environment professionals.

Keywords: built environment, curriculum development, sustainable construction, sustainable development

Procedia PDF Downloads 420
5992 The Successful in Construction Project via Effectiveness of Project Team

Authors: Zarabizan Zakaria, Hayati Zainal

Abstract:

The construction industry is one of the most important sectors that contribute to the nation’s economy and catalyze towards the growth of other industries. However, some construction projects have not been completed on its stipulated time and duration, scope and budget due to several factors. This problem arises due to the weaknesses of human factors, especially from ineffective leadership quality practiced by project managers and contractors in managing project teams. Therefore, a construction project should impose the element of Project Team. The project team is formed in the implementation of the project which includes the project brief, project scope, customer requirements and provided designs. Many organizations in the construction sector use teams to meet today's global competition and customer expectations, however, team effectiveness evaluation is required. In insuring the construction team is successful and effectiveness, the construction department must encourage, measure, set up, and evaluate or review the effectiveness of project team that was formed. In order to produce a better outcome for a high-end project, an effective and efficient project team is required which also help in increasing overall productivity. The purpose of this study is to determine the role of team effectiveness in the construction project team based on the overall construction project performance. It examines several different factors which related to team effectiveness. It also examines the relationship between team effectiveness factor and project performance aspect. Team Effect Review and Project Performance Review are developed to be used for data collection. Data collected were analyzed using several statistical tests. Results obtained from data analysis are validated using semi-structured interviews. Besides that, a comprehensive survey were developed to assess the way construction project teams in order to maintain its effectiveness throughout the project phase. In order to determine a project successful it has been found that Project Team Leadership is the most important factor. In addition, the definition of team effectiveness in the construction project team is developed based on the perspective of project clients and project team members. The results of this study are expected to provide an idea on the factors that are needed to be focused on improving the team's effectiveness towards project performance aspects. At the same time, the definition of team effectiveness from team members and owner views has been developed in order to provide a better understanding of the word team's effectiveness in construction projects.

Keywords: project team, leadership, construction project, project successful

Procedia PDF Downloads 177
5991 Development of Work Breakdown Structure for EVMS in South Korea

Authors: Dong-Ho Kim, Su-Sang Lim, Sang-Won Han, Chang-Taek Hyun

Abstract:

In the construction site, the cost and schedules are the most important management elements. Despite efforts to integrated management the cost and schedule, WBS classification is struggling to differ from each other. The cost and schedule can be integrated and can be managed due to the characteristic of the detail system in the case of Korea around the axis of pressure and official fixture system. In this research, the Work Breakdown Structure (WBS) integrating the cost and schedules around in government office construction, WBS which can be used in common was presented in order to analyze the detail system of the public institution construction and improve. As to this method, the efficient administration of not only the link application of the cost and schedule but also construction project is expected.

Keywords: WBS, EVMS, integrated cost and schedule, Korea case

Procedia PDF Downloads 384
5990 Factors Affecting Implementation of Construction Health and Safety Regulations, Their Effects and Mitigation Measures in Building Construction Project Sites of Hawassa City

Authors: Tadewos Awugchew Wudineh

Abstract:

Health and safety issues have always been a major problem and concern in the building construction industry. The health and safety regulations are stated to eliminate the potential hazards and to reduce the consequential risks. However, the importance of the regulations seems to be overlooked in building construction sites of Hawassa City. Accordingly, many companies don’t follow the regulations as construction workers are more likely to be injured and killed by construction accident than any other type of employment. This paper aimed to identify factors that affect the implementation of construction health and safety regulations, their effects and mitigation measures in building construction project sites of Hawassa City. To reach this objective, a review of literature as well as the Ethiopian construction health and safety regulations have been undertaken. Mainly a five-point Likert scale questionnaire was distributed, and statistical analysis was used to summarize, interpret the data, and to find the significances of the responses. In addition, interviews were carried out. Accordingly, the findings indicate that the top factors which affect the implementation of CHS regulations are, availability and development of a clear health and safety policy, health and safety inspections by top management, conducting health and safety training and orientation, provision of healthy and safe working environment and employment of trained safety officers. The study revealed that implementation or non-implementation of CHS regulations have effects on the worker’s productivity, job satisfaction, rate of accidents, and cost greatly. Thus, the suggestion to minimize the impact on worker’s job performance are, developing of a clear health and safety policy, management commitment towards implementation of health and safety regulations, health and safety education and training and conducting regular health and safety inspections. It was concluded from the study that good implementation of health and safety regulations are the results from administrative and management commitment which calls for more attention to be paid to improve the implementation of CHS regulations in building construction sites of Hawassa City.

Keywords: construction health and safety regulations, effects, factors, mitigation

Procedia PDF Downloads 261
5989 Reclamation of Molding Sand: A Chemical Approach to Recycle Waste Foundry Sand

Authors: Mohd Moiz Khan, S. M. Mahajani, G. N. Jadhav

Abstract:

Waste foundry sand (total clay content 15%) contains toxic heavy metals and particulate matter which make dumping of waste sand an environmental and health hazard. Disposal of waste foundry sand (WFS) remains one of the substantial challenges faced by Indian foundries nowadays. To cope up with this issue, the chemical method was used to reclaim WFS. A stirrer tank reactor was used for chemical reclamation. Experiments were performed to reduce the total clay content from 15% to as low as 0.9% in chemical reclamation. This method, although found to be effective for WFS reclamation, it may face a challenge due to the possibly high operating cost. Reclaimed sand was found to be satisfactory in terms of sand qualities such as total clay (0.9%), active clay (0.3%), acid demand value (ADV) (2.6%), loss on igniting (LOI) (3 %), grain fineness number (GFN) (56), and compressive strength (60 kPa). The experimental data generated on chemical reactor under different conditions is further used to optimize the design and operating parameters (rotation speed, sand to acidic solution ratio, acid concentration, temperature and time) for the best performance. The use of reclaimed sand within the foundry would improve the economics and efficiency of the process and reduce environmental concerns.

Keywords: chemical reclamation, clay content, environmental concerns, recycle, waste foundry sand

Procedia PDF Downloads 147
5988 Unstructured Learning: Development of Free Form Construction in Waldorf and Normative Preschools

Authors: Salam Kodsi

Abstract:

In this research, we sought to focus on constructive play and examine its components in the context of two different educational approaches: Waldorf and normative schools. When they are free to choose, construction is one of the forms of play most favored by children. Its short-term and long-term cognitive contributions are apparent in various areas of development. The lack of empirical studies about play in Waldorf schools, which addresses the possibility of this incidental learning inspired the need to enrich the body of existing knowledge. 90 children (4-6 yrs.old) four preschools ( two normative, two Waldorf) participated in a small homogeneous city. Naturalistic observations documented the time frame, physical space, and construction materials related to the freeform building; processes of construction among focal representative children and its products. The study’s main finding with respect to the construction output points to a connection between educational approach and level of construction sophistication. Higher levels of sophistication were found at the Waldorf preschools than at the mainstream preschools. This finding emerged due to the differences in the level of sophistication among the older children in the two types of preschools, while practically no differences emerged among the younger children. Discussion of the research findings considered the differences between the play environments in terms of time, physical space, and construction materials. The construction processes were characterized according to the design model stages. The construction output was characterized according to the sophistication scale dimensions and the connections between approach, age and gender, and sophistication level.

Keywords: constructive play, preschool, design process model, complexity

Procedia PDF Downloads 118
5987 Contributing Factors to Building Failures and Defects in the Nigerian Construction Industry

Authors: Ndibarafinia Tobin

Abstract:

Building defect and failure are common phenomena in the Nigerian construction industry. The activities of the inexperienced labor force in the Nigerian construction industry have tarnished the image of practicing construction professionals in recent past. Defects and collapse can cause unnecessary expenditure, delays, loss of lives, property and left many people injured. They are also generating controversies among parties involved. Also, if this situation is left unanswered and untreated, it will lead to more serious problems in the future upcoming construction projects in Nigeria. Quite a number of factors are responsible for collapse of high-rise, reinforced concrete buildings in Nigeria. Government, professional bodies and stakeholders are asking countless questions as to who should be responsible and how solutions could be proffered. Therefore this study is aimed to identify the contributing factors to high-rise buildings defects and failures in Nigeria, which frequently occur in construction project in order to minimize time and cost and also the roles of professionals and other participants play in the industry in terms of the use of building materials, placement and curing of concrete, modification in the use of a building, collapse of building induced by fire and other causes. The data is collected from questionnaire from various players in construction industry in Nigeria. This study is succeeds in identifying the causes of building failure and also suggesting possible measures to be taken by government and other regulatory bodies in the building industry to avert this and also improve the effectiveness of managing appraisal process of failures and defects in the future.

Keywords: building defects, building failures, Nigerian construction industry, professionals

Procedia PDF Downloads 297
5986 Rubber Crumbs in Alkali Activated Clay Roof Tiles at Low Temperature

Authors: Aswin Kumar Krishnan, Yat Choy Wong, Reiza Mukhlis, Zipeng Zhang, Arul Arulrajah

Abstract:

The continuous increase in vehicle uptake escalates the number of rubber tyre waste which need to be managed to avoid landfilling and stockpiling. The present research focused on the sustainable use of rubber crumbs in clay roof tiles. The properties of roof tiles composed of clay, rubber crumbs, NaOH, and Na₂SiO₃ with a 10% alkaline activator were studied. Tile samples were fabricated by heating the compacted mixtures at 50°C for 72 hours, followed by a higher heating temperature of 200°C for 24 hours. The effect of rubber crumbs aggregates as a substitution for the raw clay materials was investigated by varying their concentration from 0% to 2.5%. X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses have been conducted to study the phases and microstructures of the samples. It was found that the optimum rubber crumbs concentration was at 0.5% and 1%, while cracks and larger porosity were found at higher crumbs concentrations. Water absorption and compressive strength test results demonstrated that rubber crumbs and clay satisfied the standard requirement for the roof tiles.

Keywords: rubber crumbs, clay, roof tiles, alkaline activators

Procedia PDF Downloads 104
5985 The Learning Impact of a 4-Dimensional Digital Construction Learning Environment

Authors: Chris Landorf, Stephen Ward

Abstract:

This paper addresses a virtual environment approach to work integrated learning for students in construction-related disciplines. The virtual approach provides a safe and pedagogically rigorous environment where students can apply theoretical knowledge in a simulated real-world context. The paper describes the development of a 4-dimensional digital construction environment and associated learning activities funded by the Australian Office for Learning and Teaching. The environment was trialled with over 1,300 students and evaluated through questionnaires, observational studies and coursework analysis. Results demonstrate a positive impact on students’ technical learning and collaboration skills, but there is need for further research in relation to critical thinking skills and work-readiness.

Keywords: architectural education, construction industry, digital learning environments, immersive learning

Procedia PDF Downloads 411
5984 Mechanical Properties of Cement Slurry by Partially Substitution of Industry Waste Natural Pozzolans

Authors: R. Ziaie Moayed, S. P. Emadoleslami Oskoei, S. D. Beladi Mousavi, A. Taleb Beydokhti

Abstract:

There have been many reports of the destructive effects of cement on the environment in recent years. In the present research, it has been attempted to reduce the destructive effects of cement by replacing silica fume as adhesive materials instead of cement. The present study has attempted to improve the mechanical properties of cement slurry by using waste material from a glass production factory, located in Qazvin city of Iran, in which accumulation volume has become an environmental threat. The chemical analysis of the waste material indicates that this material contains about 94% of SiO2 and AL2O3 and has a close structure to silica fume. Also, the particle grain size test was performed on the mentioned waste. Then, the unconfined compressive strength test of the slurry was performed by preparing a mixture of water and adhesives with different percentages of cement and silica fume. The water to an adhesive ratio of this mixture is 1:3, and the curing process last 28 days. It was found that the sample had an unconfined compressive strength of about 300 kg/cm2 in a mixture with equal proportions of cement and silica fume. Besides, the sample had a brittle fracture in the slurry sample made of pure cement, however, the fracture in cement-silica fume slurry mixture is flexible and the structure of the specimen remains coherent after fracture. Therefore, considering the flexibility that is achieved by replacing this waste, it can be used to stabilize soils with cracking potential.

Keywords: cement replacement, cement slurry, environmental threat, natural pozzolan, silica fume, waste material

Procedia PDF Downloads 130
5983 Antidiabetic Potential of Pseuduvaria monticola Bark Extract on the Pancreatic Cells, NIT-1 and Type 2 Diabetic Rat Model

Authors: Hairin Taha, Aditya Arya, M. A. Hapipah, A. M. Mustafa

Abstract:

Plants have been an important source of medicine since ancient times. Pseuduvaria monticola is a rare montane forest species from the Annonaceae family. Traditionally, the plant was used to cure symptoms of fever, inflammation, stomach-ache and also to reduce the elevated levels of blood glucose. Scientifically, we have evaluated the antidiabetic potential of the Pseuduvaria monticola bark methanolic extract on certain in vitro cell based assays, followed by in vivo study. Results from in vitro models displayed PMm upregulated glucose uptake and insulin secretion in mouse pancreatic β-cells. In vivo study demonstrated the PMm down-regulated hyperglycaemia, oxidative stress and elevated levels of pro-inflammatory cytokines in type 2 diabetic rat models. Altogether, the study revealed that Pseuduvaria monticola might be used as a potential candidate for the management of type 2 diabetes and its related complications.

Keywords: type 2 diabetes, Pseuduvaria monticola, insulin secretion, glucose uptake

Procedia PDF Downloads 439
5982 Enhance Construction Visual As-Built Schedule Management Using BIM Technology

Authors: Shu-Hui Jan, Hui-Ping Tserng, Shih-Ping Ho

Abstract:

Construction project control attempts to obtain real-time as-built schedule information and to eliminate project delays by effectively enhancing dynamic schedule control and management. Suitable platforms for enhancing an as-built schedule visually during the construction phase are necessary and important for general contractors. As the application of building information modeling (BIM) becomes more common, schedule management integrated with the BIM approach becomes essential to enhance visual construction management implementation for the general contractor during the construction phase. To enhance visualization of the updated as-built schedule for the general contractor, this study presents a novel system called the Construction BIM-assisted Schedule Management (ConBIM-SM) system for general contractors in Taiwan. The primary purpose of this study is to develop a web ConBIM-SM system for the general contractor to enhance visual as-built schedule information sharing and efficiency in tracking construction as-built schedule. Finally, the ConBIM-SM system is applied to a case study of a commerce building project in Taiwan to verify its efficacy and demonstrate its effectiveness during the construction phase. The advantages of the ConBIM-SM system lie in improved project control and management efficiency for general contractors, and in providing BIM-assisted as-built schedule tracking and management, to access the most current as-built schedule information through a web browser. The case study results show that the ConBIM-SM system is an effective visual as-built schedule management platform integrated with the BIM approach for general contractors in a construction project.

Keywords: building information modeling (BIM), construction schedule management, as-built schedule management, BIM schedule updating mechanism

Procedia PDF Downloads 375
5981 The Modified WBS Based on LEED Rating System in Decreasing Energy Consumption and Cost of Buildings

Authors: Mehrab Gholami Zangalani, Siavash Rajabpour

Abstract:

In compliance with the Statistical Centre of Iran (SCI)’s results, construction and housing section in Iran is consuming 40% of energy, which is 5 times more than the world average consumption. By considering the climate in Iran, the solutions in terms of design, construction and exploitation of the buildings by utilizing the LEED rating system (LRS) is presented, regarding to the reasons for the high levels of energy consumption during construction and housing in Iran. As a solution, innovative Work Break Structure (WBS) in accordance with LRS and Iranian construction’s methods is unveiled in this research. Also, by amending laws pertaining to the construction in Iran, the huge amount of energy and cost can be saved. Furthermore, with a scale-up of these results to the scale of big cities such as Tehran (one of the largest metropolitan areas in the middle east) in which the license to build more than two hundred and fifty units each day is issued, the amount of energy and cost that can be saved is estimated.

Keywords: costs reduction, energy statistics, leed rating system (LRS), work brake structure (WBS)

Procedia PDF Downloads 528
5980 Sustainable Use of Agricultural Waste to Enhance Food Security and Conserve the Environment

Authors: M. M. Tawfik, Ezzat M. Abd El Lateef, B. B. Mekki, Amany A. Bahr, Magda H. Mohamed, Gehan S. Bakhoom

Abstract:

The rapid increase in the world’s population coupled by decrease the arable land per capita has resulted into an increased demand for food which has in turn led to the production of large amounts of agricultural wastes, both at the farmer, municipality and city levels. Agricultural wastes can be a valuable resource for improving food security. Unfortunately, agricultural wastes are likely to cause pollution to the environment or even harm to human health. This calls for increased public awareness on the benefits and potential hazards of agricultural wastes, especially in developing countries. Agricultural wastes (residual stalks, straw, leaves, roots, husks, shells etcetera) and animal waste (manures) are widely available, renewable and virtually free, hence they can be an important resource. They can be converted into heat, steam, charcoal, methanol, ethanol, bio diesel as well as raw materials (animal feed, composting, energy and biogas construction etcetera). agricultural wastes are likely to cause pollution to the environment or even harm to human health, if it is not used in a sustainable manner. Organic wastes could be considered an important source of biofertilizer for enhancing food security in the small holder farming communities that would not afford use of expensive inorganic fertilizers. Moreover, these organic wastes contain high levels of nitrogen, phosphorus, potassium, and organic matter important for improving nutrient status of soils in urban agriculture. Organic compost leading to improved crop yields and its nutritional values as compared with inorganic fertilization. This paper briefly reviews how agricultural wastes can be used to enhance food security and conserve the environment.

Keywords: agricultural waste, organic compost, environment, valuable resources

Procedia PDF Downloads 520
5979 An Evaluation of Medical Waste in Health Facilities through Data Envelopment Analysis (DEA) Method: Turkey-Amasya Public Hospitals Union Model

Authors: Murat Iskender Aktaş, Sadi Ergin, Rasime Acar Aktaş

Abstract:

In the light of fast-paced changes and developments in the health sector, the Ministry of Health started a new structuring with decree law numbered 663 within the scope of the Project of Transformation in Health. Accordingly, hospitals should ensure patient satisfaction through more efficient, more effective use of resources and sustainable finance by placing patients in the centre and should operate to increase efficiency to its maximum level while doing these. Within this study, in order to find out how efficient the hospitals were in terms of medical waste management between the years 2011-2014, the data from six hospitals of Amasya Public Hospitals Union were evaluated separately through Data Envelopment Analysis (DEA) method. First of all, input variables were determined. Input variables were the number of patients admitted to polyclinics, the number of inpatients in clinics, the number of patients who were operated and the number of patients who applied to the laboratory. Output variable was the cost of medical wastes in Turkish liras. Each hospital’s total medical waste level before and after public hospitals union; the amounts of average medical waste per patient admitted to polyclinics, per inpatient in clinics, per patient admitted to laboratory and per operated patient were compared within each group. In addition, average medical waste levels and costs were compared for Turkey in general and Europe in general. Paired samples t-test was used to find out whether the changes (increase-decrease) after public hospitals union were statistically significant. The health facilities that were unsuccessful in terms of medical waste management before and after public hospital union and the factors that caused this failure were determined. Based on the results, for each health facility that was ineffective in terms of medical waste management, the level of improvement required for each input was determined. The results of the study showed that there was an improvement in medical waste management applications after the health facilities became a member of public hospitals union; their medical waste levels were lower than the average of Turkey and Europe while the averages of cost of disposal were the highest.

Keywords: medical waste management, cost of medical waste, public hospitals, data envelopment analysis

Procedia PDF Downloads 415
5978 Estimation and Utilization of Landfill Gas from Egyptian Municipal Waste: A Case Study

Authors: Ali A. Hashim Habib, Ahmed A. Abdel-Rehim

Abstract:

Assuredly, massive amounts of wastes that are not utilized and dumped in uncontrolled dumpsites will be one of the major sources of diseases, fires, and emissions. With easy steps and minimum effort, energy can be produced from these gases. The present work introduces an experimental and theoretical analysis to estimate the amount of landfill gas and the corresponding energy which can be produced based on actual Egyptian municipal wastes composition. Two models were utilized and compared, EPA (Environmental Protection Agency) model and CDM (Clean Development Mechanisms) model to estimate methane generation rates and total CH4 emissions based on a particular landfill. The results showed that for every ton of municipal waste, 140 m3 of landfill gas can be produced. About 800 kW of electricity for a minimum of 24 years can be generated form one million ton of municipal waste. A total amount of 549,025 ton of carbon emission can be avoided during these 24 years.

Keywords: energy from landfill gases, landfill biogas, methane emission, municipal solid waste, renewable energy sources

Procedia PDF Downloads 225
5977 Presence of High Concentrations of Toxic Metals from the Collected Soil Samples Due to Excessive E-Waste Burning in the Various Areas of Moradabad City, U.P India

Authors: Aprajita Singh, Anamika Tripathi, Surya P. Dwivedi

Abstract:

Moradabad is a small town in the Northern area of Uttar Pradesh, India. It is situated on the bank of river Ramganga which is also known as ‘Brass City of India’. There is eventually increase in the environmental pollution due to uncontrolled and inappropriate e-waste burning (recycling) activities which have been reported in many areas of Moradabad. In this paper, analysis of toxic heavy metals, causing pollution to the surrounding environment released from the e-waste burning and much other recycling process. All major e-waste burning sites are situated on the banks of the river which is burned in open environmental conditions. Soil samples were collected from seven (n=3) different sites including control site, after digestion of soil samples using triacid mixture, analysis of different toxic metals (Pb, Ar, Hg, Cd, Cr, Cu, Zn, Fe, and Ni) has been carried out with the help of instrument ICP-AAS. After the study, the outcome is that the soil of those areas contains a relatively high level of the toxic metals in order of Cu>Fe>Pb>Cd>Cr>Zn>Ar>Hg. The concentration of Cd, Pb, Cr, Ar and Zn (the majority of samples experimentally proved) exceeded the maximum standard level of WHO. Sequentially this study showed that uncontrolled e-waste processing operations caused serious pollution to local soil and release of toxic metals in the environment is also causing adverse effect on the health of people living in the nearby areas making them more prone to various harmful diseases.

Keywords: brass city, environment pollution, e-waste, toxic heavy metals

Procedia PDF Downloads 300