Search results for: 2d and 3d data conversion
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 26320

Search results for: 2d and 3d data conversion

25450 Implementation of Big Data Concepts Led by the Business Pressures

Authors: Snezana Savoska, Blagoj Ristevski, Violeta Manevska, Zlatko Savoski, Ilija Jolevski

Abstract:

Big data is widely accepted by the pharmaceutical companies as a result of business demands create through legal pressure. Pharmaceutical companies have many legal demands as well as standards’ demands and have to adapt their procedures to the legislation. To manage with these demands, they have to standardize the usage of the current information technology and use the latest software tools. This paper highlights some important aspects of experience with big data projects implementation in a pharmaceutical Macedonian company. These projects made improvements of their business processes by the help of new software tools selected to comply with legal and business demands. They use IT as a strategic tool to obtain competitive advantage on the market and to reengineer the processes towards new Internet economy and quality demands. The company is required to manage vast amounts of structured as well as unstructured data. For these reasons, they implement projects for emerging and appropriate software tools which have to deal with big data concepts accepted in the company.

Keywords: big data, unstructured data, SAP ERP, documentum

Procedia PDF Downloads 274
25449 Saving Energy at a Wastewater Treatment Plant through Electrical and Production Data Analysis

Authors: Adriano Araujo Carvalho, Arturo Alatrista Corrales

Abstract:

This paper intends to show how electrical energy consumption and production data analysis were used to find opportunities to save energy at Taboada wastewater treatment plant in Callao, Peru. In order to access the data, it was used independent data networks for both electrical and process instruments, which were taken to analyze under an ISO 50001 energy audit, which considered, thus, Energy Performance Indexes for each process and a step-by-step guide presented in this text. Due to the use of aforementioned methodology and data mining techniques applied on information gathered through electronic multimeters (conveniently placed on substation switchboards connected to a cloud network), it was possible to identify thoroughly the performance of each process and thus, evidence saving opportunities which were previously hidden before. The data analysis brought both costs and energy reduction, allowing the plant to save significant resources and to be certified under ISO 50001.

Keywords: energy and production data analysis, energy management, ISO 50001, wastewater treatment plant energy analysis

Procedia PDF Downloads 201
25448 Calcium Phosphate Cement/Gypsum Composite as Dental Pulp Capping

Authors: Jung-Feng Lin, Wei-Tang Chen, Chung-King Hsu, Chun-Pin Lin, Feng-Huei Lin

Abstract:

One of the objectives of operative dentistry is to maintain pulp health in compromised teeth. Mostly used methods for this purpose are direct pulp capping and pulpotomy, which consist of placement of biocompatible materials and bio-inductors on the exposed pulp tissue to preserve its health and stimulate repair by mineralized tissue formation. In this study, we developed a material (calcium phosphate cement (CPC)/gypsum composite) as the dental pulp capping material for shortening setting time and improving handling properties. We further discussed the influence of five different ratio of gypsum to CPC on HAP conversion, microstructure, setting time, weight loss, pH value, temperature difference, viscosity, mechanical properties, porosity, and biocompatibility.

Keywords: calcium phosphate cement, calcium sulphate hemihydrate, pulp capping, fast setting time

Procedia PDF Downloads 391
25447 Data Clustering in Wireless Sensor Network Implemented on Self-Organization Feature Map (SOFM) Neural Network

Authors: Krishan Kumar, Mohit Mittal, Pramod Kumar

Abstract:

Wireless sensor network is one of the most promising communication networks for monitoring remote environmental areas. In this network, all the sensor nodes are communicated with each other via radio signals. The sensor nodes have capability of sensing, data storage and processing. The sensor nodes collect the information through neighboring nodes to particular node. The data collection and processing is done by data aggregation techniques. For the data aggregation in sensor network, clustering technique is implemented in the sensor network by implementing self-organizing feature map (SOFM) neural network. Some of the sensor nodes are selected as cluster head nodes. The information aggregated to cluster head nodes from non-cluster head nodes and then this information is transferred to base station (or sink nodes). The aim of this paper is to manage the huge amount of data with the help of SOM neural network. Clustered data is selected to transfer to base station instead of whole information aggregated at cluster head nodes. This reduces the battery consumption over the huge data management. The network lifetime is enhanced at a greater extent.

Keywords: artificial neural network, data clustering, self organization feature map, wireless sensor network

Procedia PDF Downloads 519
25446 Dioxomolybdenum (VI) Schiff Base Complex Supported on Magnetic Nanoparticles as a Green Nanocatalysis in Epoxidation of Olefins

Authors: Abolfazl Bezaatpour, Sahar Khatami

Abstract:

Fe3O4 nanoparticles were prepared by the co-precipitation method and silica was then coated on the magnetic nanoparticles followed by modification with (3-aminopropyl) trimethoxysilane. Then, dioxomolybdenum(VI) Schiff base complex of N,N′-bis(5-chloromethyl-salicylidine)-1,2-phenylenediamine) was immobilized on the surface of magnetic nanoparticles as a heterogeneous catalyst. The catalyst was identified by scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM), X-ray diffraction, IR spectroscopy, diffuse reflectance spectra and atomic absorption spectroscopy techniques. The catalyst shows excellent catalytic activity in epoxidation of olefins using tert-butylhydroperoxide in 1,2-dichloroethane. In this report, the supported complex exhibited 100% selectivity for epoxidation with 100% conversion for cyclooctene. Nanocatalyst can be easily recovered by a magnetic field and reused for subsequent reactions for at least 5 times with less deterioration in catalytic activity.

Keywords: dioxomolybdenum (VI), epoxidation, nanocatalysis, nanoparticles, Schiff base

Procedia PDF Downloads 637
25445 Review and Comparison of Associative Classification Data Mining Approaches

Authors: Suzan Wedyan

Abstract:

Data mining is one of the main phases in the Knowledge Discovery Database (KDD) which is responsible of finding hidden and useful knowledge from databases. There are many different tasks for data mining including regression, pattern recognition, clustering, classification, and association rule. In recent years a promising data mining approach called associative classification (AC) has been proposed, AC integrates classification and association rule discovery to build classification models (classifiers). This paper surveys and critically compares several AC algorithms with reference of the different procedures are used in each algorithm, such as rule learning, rule sorting, rule pruning, classifier building, and class allocation for test cases.

Keywords: associative classification, classification, data mining, learning, rule ranking, rule pruning, prediction

Procedia PDF Downloads 541
25444 Hierarchical Checkpoint Protocol in Data Grids

Authors: Rahma Souli-Jbali, Minyar Sassi Hidri, Rahma Ben Ayed

Abstract:

Grid of computing nodes has emerged as a representative means of connecting distributed computers or resources scattered all over the world for the purpose of computing and distributed storage. Since fault tolerance becomes complex due to the availability of resources in decentralized grid environment, it can be used in connection with replication in data grids. The objective of our work is to present fault tolerance in data grids with data replication-driven model based on clustering. The performance of the protocol is evaluated with Omnet++ simulator. The computational results show the efficiency of our protocol in terms of recovery time and the number of process in rollbacks.

Keywords: data grids, fault tolerance, clustering, chandy-lamport

Procedia PDF Downloads 347
25443 An Observation of the Information Technology Research and Development Based on Article Data Mining: A Survey Study on Science Direct

Authors: Muhammet Dursun Kaya, Hasan Asil

Abstract:

One of the most important factors of research and development is the deep insight into the evolutions of scientific development. The state-of-the-art tools and instruments can considerably assist the researchers, and many of the world organizations have become aware of the advantages of data mining for the acquisition of the knowledge required for the unstructured data. This paper was an attempt to review the articles on the information technology published in the past five years with the aid of data mining. A clustering approach was used to study these articles, and the research results revealed that three topics, namely health, innovation, and information systems, have captured the special attention of the researchers.

Keywords: information technology, data mining, scientific development, clustering

Procedia PDF Downloads 281
25442 Security in Resource Constraints: Network Energy Efficient Encryption

Authors: Mona Almansoori, Ahmed Mustafa, Ahmad Elshamy

Abstract:

Wireless nodes in a sensor network gather and process critical information designed to process and communicate, information flooding through such network is critical for decision making and data processing, the integrity of such data is one of the most critical factors in wireless security without compromising the processing and transmission capability of the network. This paper presents mechanism to securely transmit data over a chain of sensor nodes without compromising the throughput of the network utilizing available battery resources available at the sensor node.

Keywords: hybrid protocol, data integrity, lightweight encryption, neighbor based key sharing, sensor node data processing, Z-MAC

Procedia PDF Downloads 147
25441 Data Mining Techniques for Anti-Money Laundering

Authors: M. Sai Veerendra

Abstract:

Today, money laundering (ML) poses a serious threat not only to financial institutions but also to the nation. This criminal activity is becoming more and more sophisticated and seems to have moved from the cliché of drug trafficking to financing terrorism and surely not forgetting personal gain. Most of the financial institutions internationally have been implementing anti-money laundering solutions (AML) to fight investment fraud activities. However, traditional investigative techniques consume numerous man-hours. Recently, data mining approaches have been developed and are considered as well-suited techniques for detecting ML activities. Within the scope of a collaboration project on developing a new data mining solution for AML Units in an international investment bank in Ireland, we survey recent data mining approaches for AML. In this paper, we present not only these approaches but also give an overview on the important factors in building data mining solutions for AML activities.

Keywords: data mining, clustering, money laundering, anti-money laundering solutions

Procedia PDF Downloads 543
25440 Response of Broiler Chickens Fed Pelleted or Non-Pelleted Diets, Containing Graded Levels of Raw Full-Fat Soybean

Authors: G. Berhane, F. Kebede

Abstract:

A feeding trial was conducted to enhance the utilization of locally produced full-fat soybean by the broiler industry. The study had three phases such as starter (1-14d), grower (15–28d), and finisher (29–49d) phases. A completely randomized design (CRD) was used in the starter phase with three treatments (commercial soybean meal (SBM) was replaced by raw full-fat soybean (RFSB) at 0, 10, or 20%), and each was replicated eight times. A total of 408 unsexed one-day-old Cobb-500 broiler chicks were randomly allocated to replicates. A 2 x 3 factorial arrangement was used in both second (grower) and third (finisher) phase trials, which had six experimental diets. These six treatments were formed by dividing the original three diets (containing 0, 10, or 20% of RFSB into two and then by pelleting anyone from each respective group and leaving the other as mash. Every treatment had four replications and 17 birds in each. Chemical compositions of feed ingredients were analyzed, and data on the initial body weight of chicks, feed offered, feed leftover, body weight (BW) of chickens, and mortality were collected. At the end of the experiment, two birds (one male and one female) per replicate were randomly selected and humanly slaughtered. Weights of dressed, eviscerated, cut parts of the carcass and visceral organs were weighed and recorded. Results indicated that feed intake (FI), body weight gain (BWG), BW, and feed conversion ratio (FCR) of broilers were not significantly affected (P=0.05) by supplementation of a leveled RFSB on diets at starter, grower, and finisher phases. The FI at the finisher stage was also significantly (P=0.05) influenced by the feed forms. However, weights of dressed, eviscerated, cut parts of the carcass and visceral organs were not significantly (P=0.05) affected by both RFSB supplementation, up to 20%, and feed forms. It is concluded that commercial SBM can be replaced by locally produced RFSB up to 20% without pelleting the diets.

Keywords: broilers, carcass characteristics, raw full-fat soybean, weight gain

Procedia PDF Downloads 152
25439 Fermentable Sugars from Palm Empty Fruit Bunch Biomass for Bioethanol Production

Authors: U. A. Asli, H. Hamid, Z. A. Zakaria, A. N. Sadikin, R. Rasit

Abstract:

This study investigated the effect of a dilute acid, lime and ammonia aqueous pretreatment on the fermentable sugars conversion from empty fruit bunch (EFB) biomass. The dilute acid treatment was carried out in an autoclave, at 121ºC with 4 % of sulphuric acid. In the lime pretreatment, 3 wt % of calcium hydroxide was used, whereas the third method was done by soaking EFB with 28 % ammonia solution. Then the EFB biomass was subjected to a two-stage-acid hydrolysis process. Subsequently, the hydrolysate was fermented by using instant baker’s yeast to produce bioethanol. The highest glucose yield was 890 mg/g of biomass, obtained from the sample which underwent lime pretreatment. The highest bioethanol yield of 6.1mg/g of glucose was achieved from acid pretreatment. This showed that the acid pretreatment gave the most fermentable sugars compared to the other two pretreatments.

Keywords: bioethanol, biomass, empty fruit bunch (EFB), fermentable sugars

Procedia PDF Downloads 621
25438 Reinforcement of Calcium Phosphate Cement with E-Glass Fibre

Authors: Kanchan Maji, Debasmita Pani, Sudip Dasgupta

Abstract:

Calcium phosphate cement (CPC) due to its high bioactivity and optimum bioresorbability shows excellent bone regeneration capability. Despite it has limited applications as bone implant due to its macro-porous microstructure causing its poor mechanical strength. The reinforcement of apatitic CPCs with biocompatible fibre glass phase is an attractive area of research to improve its mechanical strength. Here we study the setting behaviour of Si-doped and un-doped alpha tri-calcium phosphate (α-TCP) based CPC and its reinforcement with the addition of E-glass fibre. Alpha tri-calcium phosphate powders were prepared by solid state sintering of CaCO3, CaHPO4 and tetra ethyl ortho silicate (TEOS) was used as silicon source to synthesise Si doped α-TCP powders. Alpha tri-calcium phosphate based CPC hydrolyzes to form hydroxyapatite (HA) crystals having excellent osteoconductivity and bone-replacement capability thus self-hardens through the entanglement of HA crystals. Setting time, phase composition, hydrolysis conversion rate, microstructure, and diametral tensile strength (DTS) of un-doped CPC and Si-doped CPC were studied and compared. Both initial and final setting time of the developed cement was delayed because of Si addition. Crystalline phases of HA (JCPDS 9-432), α-TCP (JCPDS 29-359) and β-TCP (JCPDS 9-169) were detected in the X-ray diffraction (XRD) pattern after immersion of CPC in simulated body fluid (SBF) for 0 hours to 10 days. The intensities of the α-TCP peaks of (201) and (161) at 2θ of 22.2°and 24.1° decreased when the time of immersion of CPC in SBF increased from 0 hours to 10 days, due to its transformation into HA. As Si incorporation in the crystal lattice stabilised the TCP phase, Si doped CPC showed a little slower rate of conversion into HA phase as compared to un-doped CPC. The SEM image of the microstructure of hardened CPC showed lower grain size of HA in un-doped CPC because of premature setting and faster hydrolysis of un-doped CPC in SBF as compared that in Si-doped CPC. Premature setting caused generation of micro and macro porosity in un-doped CPC structure which resulted in its lower mechanical strength as compared to that in Si-doped CPC. This lower porosity and greater compactness in the microstructure attributes to greater DTS values observed in Si-doped CPC. E-glass fibres of the average diameter of 12 μm were cut into approximately 1 mm in length and immersed in SBF to deposit carbonated apatite on its surface. This was performed to promote HA crystal growth and entanglement along the fibre surface to promote stronger interface between dispersed E-glass fibre and CPC matrix. It was found that addition of 10 wt% of E-glass fibre into Si-doped α-TCP increased the average DTS of CPC from 8 MPa to 15 MPa as the fibres could resist the propagation of crack by deflecting the crack tip. Our study shows that biocompatible E-glass fibre in optimum proportion in CPC matrix can enhance the mechanical strength of CPC without affecting its bioactivity.

Keywords: Calcium phosphate cement, biocompatibility, e-glass fibre, diametral tensile strength

Procedia PDF Downloads 350
25437 Development of New Technology Evaluation Model by Using Patent Information and Customers' Review Data

Authors: Kisik Song, Kyuwoong Kim, Sungjoo Lee

Abstract:

Many global firms and corporations derive new technology and opportunity by identifying vacant technology from patent analysis. However, previous studies failed to focus on technologies that promised continuous growth in industrial fields. Most studies that derive new technology opportunities do not test practical effectiveness. Since previous studies depended on expert judgment, it became costly and time-consuming to evaluate new technologies based on patent analysis. Therefore, research suggests a quantitative and systematic approach to technology evaluation indicators by using patent data to and from customer communities. The first step involves collecting two types of data. The data is used to construct evaluation indicators and apply these indicators to the evaluation of new technologies. This type of data mining allows a new method of technology evaluation and better predictor of how new technologies are adopted.

Keywords: data mining, evaluating new technology, technology opportunity, patent analysis

Procedia PDF Downloads 381
25436 Anomaly Detection Based on System Log Data

Authors: M. Kamel, A. Hoayek, M. Batton-Hubert

Abstract:

With the increase of network virtualization and the disparity of vendors, the continuous monitoring and detection of anomalies cannot rely on static rules. An advanced analytical methodology is needed to discriminate between ordinary events and unusual anomalies. In this paper, we focus on log data (textual data), which is a crucial source of information for network performance. Then, we introduce an algorithm used as a pipeline to help with the pretreatment of such data, group it into patterns, and dynamically label each pattern as an anomaly or not. Such tools will provide users and experts with continuous real-time logs monitoring capability to detect anomalies and failures in the underlying system that can affect performance. An application of real-world data illustrates the algorithm.

Keywords: logs, anomaly detection, ML, scoring, NLP

Procedia PDF Downloads 100
25435 Fabrication of Graphene Oxide Based Planar Hetero-Junction Perovskite Solar Cells

Authors: Khursheed Ahmad, Shaikh M. Mobin

Abstract:

In this work, we have developed a highly stable planar heterojunction perovskite solar cells (PSCs) with a architecture (ITO/GO/PEDOT:PSS/MAPbI3/PCBM/Carbon tape). The PSCs was fabricated under air using GO/PEDOT:PSS as hole transport layer while the carbon tape used as a back contact to complete the device. The fabricated PSCs device exhibited good stability and performance in terms of power conversion efficiency of 5.2%. The PSCs devices were exposed to ambient condition for 4 days which shows excellent stability confirmed by XRD analysis. We believed that the stability of the planar heterojunction perovskite solar cell may be due the presence of GO which inhibits the direct contact between PEDOT:PSS and MAPbI3.

Keywords: graphene oxide, perovskite solar cells, hole transport layer, PEDOT:PSS

Procedia PDF Downloads 183
25434 Study of Anti-Symmetric Flexural Mode Propagation along Wedge Tip with a Crack

Authors: Manikanta Prasad Banda, Che Hua Yang

Abstract:

Anti-symmetric wave propagation along the particle motion of the wedge waves is known as anti-symmetric flexural (ASF) modes which travel along the wedge tips of the mid-plane apex with a small truncation. This paper investigates the characteristics of the ASF modes propagation with the wedge tip crack. The simulation and experimental results obtained by a three-dimensional (3-D) finite element model explained the contact acoustic non-linear (CAN) behavior in explicit dynamics in ABAQUS and the ultrasonic non-destructive testing (NDT) method is used for defect detection. The effect of various parameters on its high and low-level conversion modes are known for complex reflections and transmissions involved with direct reflections and transmissions. The results are used to predict the location of crack through complex transmission and reflection coefficients.

Keywords: ASF mode, crack detection, finite elements method, laser ultrasound technique, wedge waves

Procedia PDF Downloads 142
25433 Photochemical Degradation of Ibuprofren in Aqueous Solutions

Authors: Stavros Poulopoulos, Aphrodite Tetorou, Constantine Philippopoulos

Abstract:

Day after day more pharmaceutical compounds that are not efficiently removed by conventional treatment methods are found in treated wastewaters and drinking waters. Due to their refractory nature, they escape conventional wastewater treatment facilities, and thus advanced oxidation processes have to be utilized to effectively eliminate them. In the present study, the removal of Ibuprofen from aqueous solutions containing the commercial drug Algofren (non-steroidal, anti-inflammatory) using UV irradiation, hydrogen peroxide, titanium dioxide and ferric ions was examined. All experiments were conducted in a batch photoreactor operated for 120 min. The main target was to select the most effective operating conditions for the mineralization of the solutions treated. The combination of Fe(III)/ H₂O₂/UV proved to be very efficient in terms of total organic carbon removal and ibuprofen conversion. For solutions containing 5 mg/L ibuprofen and initial total carbon 51.1 mg/L, complete mineralization was achieved by means of 2.2 ppm Fe(III) and 333 mg/L H₂O₂.

Keywords: pharmaceuticals, photocatalytic, photo-Fenton, TiO₂

Procedia PDF Downloads 156
25432 EnumTree: An Enumerative Biclustering Algorithm for DNA Microarray Data

Authors: Haifa Ben Saber, Mourad Elloumi

Abstract:

In a number of domains, like in DNA microarray data analysis, we need to cluster simultaneously rows (genes) and columns (conditions) of a data matrix to identify groups of constant rows with a group of columns. This kind of clustering is called biclustering. Biclustering algorithms are extensively used in DNA microarray data analysis. More effective biclustering algorithms are highly desirable and needed. We introduce a new algorithm called, Enumerative tree (EnumTree) for biclustering of binary microarray data. is an algorithm adopting the approach of enumerating biclusters. This algorithm extracts all biclusters consistent good quality. The main idea of ​​EnumLat is the construction of a new tree structure to represent adequately different biclusters discovered during the process of enumeration. This algorithm adopts the strategy of all biclusters at a time. The performance of the proposed algorithm is assessed using both synthetic and real DNA micryarray data, our algorithm outperforms other biclustering algorithms for binary microarray data. Biclusters with different numbers of rows. Moreover, we test the biological significance using a gene annotation web tool to show that our proposed method is able to produce biologically relevent biclusters.

Keywords: DNA microarray, biclustering, gene expression data, tree, datamining.

Procedia PDF Downloads 374
25431 The Impact of Financial Reporting on Sustainability

Authors: Lynn Ruggieri

Abstract:

The worldwide pandemic has only increased sustainability awareness. The public is demanding that businesses be held accountable for their impact on the environment. While financial data enjoys uniformity in reporting requirements, there are no uniform reporting requirements for non-financial data. Europe is leading the way with some standards being implemented for reporting non-financial sustainability data; however, there is no uniformity globally. And without uniformity, there is not a clear understanding of what information to include and how to disclose it. Sustainability reporting will provide important information to stakeholders and will enable businesses to understand their impact on the environment. Therefore, there is a crucial need for this data. This paper looks at the history of sustainability reporting in the countries of the European Union and throughout the world and makes a case for worldwide reporting requirements for sustainability.

Keywords: financial reporting, non-financial data, sustainability, global financial reporting

Procedia PDF Downloads 183
25430 Methods and Algorithms of Ensuring Data Privacy in AI-Based Healthcare Systems and Technologies

Authors: Omar Farshad Jeelani, Makaire Njie, Viktoriia M. Korzhuk

Abstract:

Recently, the application of AI-powered algorithms in healthcare continues to flourish. Particularly, access to healthcare information, including patient health history, diagnostic data, and PII (Personally Identifiable Information) is paramount in the delivery of efficient patient outcomes. However, as the exchange of healthcare information between patients and healthcare providers through AI-powered solutions increases, protecting a person’s information and their privacy has become even more important. Arguably, the increased adoption of healthcare AI has resulted in a significant concentration on the security risks and protection measures to the security and privacy of healthcare data, leading to escalated analyses and enforcement. Since these challenges are brought by the use of AI-based healthcare solutions to manage healthcare data, AI-based data protection measures are used to resolve the underlying problems. Consequently, this project proposes AI-powered safeguards and policies/laws to protect the privacy of healthcare data. The project presents the best-in-school techniques used to preserve the data privacy of AI-powered healthcare applications. Popular privacy-protecting methods like Federated learning, cryptographic techniques, differential privacy methods, and hybrid methods are discussed together with potential cyber threats, data security concerns, and prospects. Also, the project discusses some of the relevant data security acts/laws that govern the collection, storage, and processing of healthcare data to guarantee owners’ privacy is preserved. This inquiry discusses various gaps and uncertainties associated with healthcare AI data collection procedures and identifies potential correction/mitigation measures.

Keywords: data privacy, artificial intelligence (AI), healthcare AI, data sharing, healthcare organizations (HCOs)

Procedia PDF Downloads 100
25429 Mapping Tunnelling Parameters for Global Optimization in Big Data via Dye Laser Simulation

Authors: Sahil Imtiyaz

Abstract:

One of the biggest challenges has emerged from the ever-expanding, dynamic, and instantaneously changing space-Big Data; and to find a data point and inherit wisdom to this space is a hard task. In this paper, we reduce the space of big data in Hamiltonian formalism that is in concordance with Ising Model. For this formulation, we simulate the system using dye laser in FORTRAN and analyse the dynamics of the data point in energy well of rhodium atom. After mapping the photon intensity and pulse width with energy and potential we concluded that as we increase the energy there is also increase in probability of tunnelling up to some point and then it starts decreasing and then shows a randomizing behaviour. It is due to decoherence with the environment and hence there is a loss of ‘quantumness’. This interprets the efficiency parameter and the extent of quantum evolution. The results are strongly encouraging in favour of the use of ‘Topological Property’ as a source of information instead of the qubit.

Keywords: big data, optimization, quantum evolution, hamiltonian, dye laser, fermionic computations

Procedia PDF Downloads 198
25428 Applying Different Stenography Techniques in Cloud Computing Technology to Improve Cloud Data Privacy and Security Issues

Authors: Muhammad Muhammad Suleiman

Abstract:

Cloud Computing is a versatile concept that refers to a service that allows users to outsource their data without having to worry about local storage issues. However, the most pressing issues to be addressed are maintaining a secure and reliable data repository rather than relying on untrustworthy service providers. In this study, we look at how stenography approaches and collaboration with Digital Watermarking can greatly improve the system's effectiveness and data security when used for Cloud Computing. The main requirement of such frameworks, where data is transferred or exchanged between servers and users, is safe data management in cloud environments. Steganography is the cloud is among the most effective methods for safe communication. Steganography is a method of writing coded messages in such a way that only the sender and recipient can safely interpret and display the information hidden in the communication channel. This study presents a new text steganography method for hiding a loaded hidden English text file in a cover English text file to ensure data protection in cloud computing. Data protection, data hiding capability, and time were all improved using the proposed technique.

Keywords: cloud computing, steganography, information hiding, cloud storage, security

Procedia PDF Downloads 198
25427 Associated Problems with the Open Dump Site and Its Possible Solutions

Authors: Pangkaj Kumar Mahanta, Md. Rafizul Islam

Abstract:

The rapid growth of the population causes a substantial amount of increase in household waste all over the world. Waste management is becoming one of the most challenging phenomena in the present day. The most environmentally friendly final disposal process of waste is sanitary landfilling, which is practiced in most developing countries. However, in Southeast Asia, most of the final disposal point is an open dump site. Due to the ignominy of proper management of waste and monitoring, the surrounding environment gets polluted more by the open dump site in comparison with a sanitary landfill. Khulna is 3rd largest metropolitan city in Bangladesh, having a population of around 1.5 million and producing approximately 450 tons per day of Municipal Solid Waste. The Municipal solid waste of Khulna city is disposed of in Rajbandh open dump site. The surrounding air is being polluted by the gas produced in the open dump site. Also, the open dump site produces leachate, which contains various heavy metals like Cadmium (Cd), Chromium (Cr), Lead (Pb), Manganese (Mn), Mercury (Hg), Strontium (Sr), etc. Leachate pollutes the soil as well as the groundwater of the open dump site and also the surrounding area through seepage. Moreover, during the rainy season, the surface water is polluted by leachate runoff. Also, the plastic waste flowing out from the open dump site through various drivers pollutes the nearby environment. The health risk assessment associated with heavy metals was carried out by computing the chronic daily intake (CDI), hazard quotient (HQ), and hazard index (HI) via different exposure pathways following the USEPA guidelines. For ecological risk, potential contamination index (Cp), Contamination factor (CF), contamination load index (PLI), numerical integrated contamination factor (NICF), enrichment factor (EF), ecological risk index (ER), and potential ecological risk index (PERI) were computed. The health risk and ecological risk assessment results reveal that some heavy metals possess strong health and ecological risk. In addition, the child faces higher harmful health risks from several heavy metals than the adult for all the exposure pathways and media. The conversion of an open dump site into a sanitary landfill and a proper management system can reduce the problems associated with an open dump site. In the sanitary landfill, the produced gas will be managed properly to save the surrounding atmosphere from being polluted. The seepage of leachate can be minimized by installing a compacted clay layer (CCL) as a baseline and leachate collection in a sanitary landfill to save the underlying soil layer and surrounding water bodies from leachate. Another important component of a sanitary landfill is the conversion of plastic waste to energy will minimize the plastic pollution in the landfill area and also the surrounding soil and water bodies. Also, in the sanitary landfill, the bio-waste can be used to make compost to reduce the volume of bio-waste and proper utilization of the landfill area.

Keywords: ecological risk, health risk, open dump site, sanitary landfill

Procedia PDF Downloads 199
25426 Investigation on Performance of Change Point Algorithm in Time Series Dynamical Regimes and Effect of Data Characteristics

Authors: Farhad Asadi, Mohammad Javad Mollakazemi

Abstract:

In this paper, Bayesian online inference in models of data series are constructed by change-points algorithm, which separated the observed time series into independent series and study the change and variation of the regime of the data with related statistical characteristics. variation of statistical characteristics of time series data often represent separated phenomena in the some dynamical system, like a change in state of brain dynamical reflected in EEG signal data measurement or a change in important regime of data in many dynamical system. In this paper, prediction algorithm for studying change point location in some time series data is simulated. It is verified that pattern of proposed distribution of data has important factor on simpler and smother fluctuation of hazard rate parameter and also for better identification of change point locations. Finally, the conditions of how the time series distribution effect on factors in this approach are explained and validated with different time series databases for some dynamical system.

Keywords: time series, fluctuation in statistical characteristics, optimal learning, change-point algorithm

Procedia PDF Downloads 430
25425 Determination of the Risks of Heart Attack at the First Stage as Well as Their Control and Resource Planning with the Method of Data Mining

Authors: İbrahi̇m Kara, Seher Arslankaya

Abstract:

Frequently preferred in the field of engineering in particular, data mining has now begun to be used in the field of health as well since the data in the health sector have reached great dimensions. With data mining, it is aimed to reveal models from the great amounts of raw data in agreement with the purpose and to search for the rules and relationships which will enable one to make predictions about the future from the large amount of data set. It helps the decision-maker to find the relationships among the data which form at the stage of decision-making. In this study, it is aimed to determine the risk of heart attack at the first stage, to control it, and to make its resource planning with the method of data mining. Through the early and correct diagnosis of heart attacks, it is aimed to reveal the factors which affect the diseases, to protect health and choose the right treatment methods, to reduce the costs in health expenditures, and to shorten the durations of patients’ stay at hospitals. In this way, the diagnosis and treatment costs of a heart attack will be scrutinized, which will be useful to determine the risk of the disease at the first stage, to control it, and to make its resource planning.

Keywords: data mining, decision support systems, heart attack, health sector

Procedia PDF Downloads 358
25424 Wood Energy, Trees outside Forests and Agroforestry Wood Harvesting and Conversion Residues Preparing and Storing

Authors: Adeiza Matthew, Oluwadamilola Abubakar

Abstract:

Wood energy, also known as wood fuel, is a renewable energy source that is derived from woody biomass, which is organic matter that is harvested from forests, woodlands, and other lands. Woody biomass includes trees, branches, twigs, and other woody debris that can be used as fuel. Wood energy can be classified based on its sources, such as trees outside forests, residues from wood harvesting and conversion, and energy plantations. There are several policy frameworks that support the use of wood energy, including participatory forest management and agroforestry. These policies aim to promote the sustainable use of woody biomass as a source of energy while also protecting forests and wildlife habitats. There are several options for using wood as a fuel, including central heating systems, pellet-based systems, wood chip-based systems, log boilers, fireplaces, and stoves. Each of these options has its own benefits and drawbacks, and the most appropriate option will depend on factors such as the availability of woody biomass, the heating needs of the household or facility, and the local climate. In order to use wood as a fuel, it must be harvested and stored properly. Hardwood or softwood can be used as fuel, and the heating value of firewood depends on the species of tree and the degree of moisture content. Proper harvesting and storage of wood can help to minimize environmental impacts and improve wildlife habitats. The use of wood energy has several environmental impacts, including the release of greenhouse gases during combustion and the potential for air pollution from combustion by-products. However, wood energy can also have positive environmental impacts, such as the sequestration of carbon in trees and the reduction of reliance on fossil fuels. The regulation and legislation of wood energy vary by country and region, and there is an ongoing debate about the potential use of wood energy in renewable energy technologies. Wood energy is a renewable energy source that can be used to generate electricity, heat, and transportation fuels. Woody biomass is abundant and widely available, making it a potentially significant source of energy for many countries. The use of wood energy can create local economic and employment opportunities, particularly in rural areas. Wood energy can be used to reduce reliance on fossil fuels and reduce greenhouse gas emissions. Properly managed forests can provide a sustained supply of woody biomass for energy, helping to reduce the risk of deforestation and habitat loss. Wood energy can be produced using a variety of technologies, including direct combustion, co-firing with fossil fuels, and the production of biofuels. The environmental impacts of wood energy can be minimized through the use of best practices in harvesting, transportation, and processing. Wood energy is regulated and legislated at the national and international levels, and there are various standards and certification systems in place to promote sustainable practices. Wood energy has the potential to play a significant role in the transition to a low-carbon economy and the achievement of climate change mitigation goals.

Keywords: biomass, timber, charcoal, firewood

Procedia PDF Downloads 104
25423 Bayesian Borrowing Methods for Count Data: Analysis of Incontinence Episodes in Patients with Overactive Bladder

Authors: Akalu Banbeta, Emmanuel Lesaffre, Reynaldo Martina, Joost Van Rosmalen

Abstract:

Including data from previous studies (historical data) in the analysis of the current study may reduce the sample size requirement and/or increase the power of analysis. The most common example is incorporating historical control data in the analysis of a current clinical trial. However, this only applies when the historical control dataare similar enough to the current control data. Recently, several Bayesian approaches for incorporating historical data have been proposed, such as the meta-analytic-predictive (MAP) prior and the modified power prior (MPP) both for single control as well as for multiple historical control arms. Here, we examine the performance of the MAP and the MPP approaches for the analysis of (over-dispersed) count data. To this end, we propose a computational method for the MPP approach for the Poisson and the negative binomial models. We conducted an extensive simulation study to assess the performance of Bayesian approaches. Additionally, we illustrate our approaches on an overactive bladder data set. For similar data across the control arms, the MPP approach outperformed the MAP approach with respect to thestatistical power. When the means across the control arms are different, the MPP yielded a slightly inflated type I error (TIE) rate, whereas the MAP did not. In contrast, when the dispersion parameters are different, the MAP gave an inflated TIE rate, whereas the MPP did not.We conclude that the MPP approach is more promising than the MAP approach for incorporating historical count data.

Keywords: count data, meta-analytic prior, negative binomial, poisson

Procedia PDF Downloads 123
25422 Strategic Citizen Participation in Applied Planning Investigations: How Planners Use Etic and Emic Community Input Perspectives to Fill-in the Gaps in Their Analysis

Authors: John Gaber

Abstract:

Planners regularly use citizen input as empirical data to help them better understand community issues they know very little about. This type of community data is based on the lived experiences of local residents and is known as "emic" data. What is becoming more common practice for planners is their use of data from local experts and stakeholders (known as "etic" data or the outsider perspective) to help them fill in the gaps in their analysis of applied planning research projects. Utilizing international Health Impact Assessment (HIA) data, I look at who planners invite to their citizen input investigations. Research presented in this paper shows that planners access a wide range of emic and etic community perspectives in their search for the “community’s view.” The paper concludes with how planners can chart out a new empirical path in their execution of emic/etic citizen participation strategies in their applied planning research projects.

Keywords: citizen participation, emic data, etic data, Health Impact Assessment (HIA)

Procedia PDF Downloads 488
25421 Data Augmentation for Automatic Graphical User Interface Generation Based on Generative Adversarial Network

Authors: Xulu Yao, Moi Hoon Yap, Yanlong Zhang

Abstract:

As a branch of artificial neural network, deep learning is widely used in the field of image recognition, but the lack of its dataset leads to imperfect model learning. By analysing the data scale requirements of deep learning and aiming at the application in GUI generation, it is found that the collection of GUI dataset is a time-consuming and labor-consuming project, which is difficult to meet the needs of current deep learning network. To solve this problem, this paper proposes a semi-supervised deep learning model that relies on the original small-scale datasets to produce a large number of reliable data sets. By combining the cyclic neural network with the generated countermeasure network, the cyclic neural network can learn the sequence relationship and characteristics of data, make the generated countermeasure network generate reasonable data, and then expand the Rico dataset. Relying on the network structure, the characteristics of collected data can be well analysed, and a large number of reasonable data can be generated according to these characteristics. After data processing, a reliable dataset for model training can be formed, which alleviates the problem of dataset shortage in deep learning.

Keywords: GUI, deep learning, GAN, data augmentation

Procedia PDF Downloads 188